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Professors Balakrishnan and Zhao have written an excellent survey on the recent devel-
opments of stochastic comparisons of order statistics, which cover almost every aspect of
ordering properties of order statistics from both continuous and discrete heterogeneous
populations. My discussion will be limited to the skewness of order statistics and order
statistics from heterogeneous populations with different shape parameters.

1. SKEWNESS OF ORDER STATISTICS

It is known in the literature that two common and popular measures to compare skewness
of distributions are convex transform order (≤c) and star order (≤�); see, for example,
Marshall and Olkin [8]. Assume that X1, . . . , Xn are independent samples, and Y1, . . . , Yn

are the other independent samples. If Xi’s have the same distribution as X, and Yi’s have
the same distribution as Y , then (cf. Thm 5.7, Barlow and Proschan [2]),

X ≤c(�) Y =⇒ Xk:n ≤c(�) Yk:n,

which means that more skewed the population is, the more skewed are order statistics from
this population. Then, a natural question arises as to how the heterogeneity affects the skew-
ness of order statistics? Intuitively, order statistics from more heterogeneous populations are
more skewed. However, this is not true in general as shown in Example 2.4 of Balakrishnan
and Zhao! Such results are only true under certain conditions. For example, it is shown in
Kochar and Xu [5] that the largest order statistics from heterogeneous exponential samples
are more skewed than the one from homogeneous exponential samples in the sense of convex
transform order without any restriction on the parameters. As a consequence, it holds that
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where Xn:n is the largest order statistic from any heterogeneous exponential sample with size
n, and cv means the coefficient of variation. In the literature, the discussions are only limited
to heterogeneous exponential random variables. In fact, it has been shown in Kochar and
Xu [7] that for some distributions in the PHR family, order statistics from those heteroge-
neous populations are more skewed than that from homogeneous populations. For example,
the largest order statistics from heterogeneous Weibull distributions with different scale
parameters are more skewed than that from homogeneous Weibull distributions.

One may wonder why should we care about the skewness of order statistics? The
research in this direction, in fact, is of great interest from both theoretical and practi-
cal point of view. I briefly discuss the significance of this research in the following. More
details may be found in Kochar and Xu [7].

(a) Detecting the heterogeneity in the population.
The research on the skewness of order statistics is useful in detecting the het-
erogeneity of population with limited information. For example, suppose a “black
box”parallel system is composted of independent exponential components (which
is a common assumption in engineering). The available observations are only the
lifetimes of the “black box”. Then an interesting question is whether the types of
composing components are the same based on the available data? One “dirty”but
quick way to check this answer is to look at the sample coefficient of variation. If it
is far larger from the value in Eq. (1), we then reject the homogeneity assumption.
The formal test statistic can also be developed based on Eq. (1).

(b) Unifying and simplifying the study on stochastic comparisons.
Under the restriction of some skewness order, stochastic comparisons of order statis-
tics may be equivalent for different stochastic orders. For example, under the star
ordering, stochastic comparisons of order statistics based on stochastic order, hazard
rate order or dispersive order may be equivalent; excess wealth order may be just
equivalent to expect value order, (cf. Kochar and Xu [5]). This is not surprising since
magnitude and dispersion of order statistic are determined by the shape of its density
function, which is closely related to the skewness. Moreover, under some skewness
order restriction, the proof of stochastic comparison may be greatly simplified. For
example, Kochar and Xu [6] proved that for two non-negative random variables X
and Y with distribution functions F and G, respectively, if X ≤� Y , then

X ≤st Y ⇐⇒ lim
x→0+

F (x)/G(x) ≥ 1.

This result reveals that under the star order restriction, stochastic order between
two random variables is determined by the magnitudes of distribution functions
near origins. This fact can be used to simplify the proof.

There are also applications of skewness of order statistics in the statistical inference. For
example, we may improve the estimates of distribution functions of order statistics under
the star order restriction. One may refer to Barlow et al. [1] and Kochar and Xu [7] for
more details.

2. ORDER STATISTICS FROM POPULATIONS WITH DIFFERENT SHAPES

In the literature, most discussion on ordering properties of order statistics assumes that
the underlying populations have different scale parameters as seen from this review paper.
However, order statistics from heterogeneous populations with different shape parameters
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may be also of interest. In the following, I will discuss order statistics from distributions
with regular varying tails to make this point clear.

A distribution F is said to have regularly varying tail at ∞ with tail index −α, denoted
by RV(−α), if its survival function is of the following form,

F̄ (t) = t−αL(t), t ∈ R+,

where L is a slowly varying function; that is, L is a positive function on R+ with property

lim
t→∞

L(ct)
L(t)

= 1, c ∈ R+.

Equivalently, one has

lim
t→∞

F̄ (ct)
F̄ (t)

= c−α, c ∈ R+.

Similarly, a distribution F is said to have regularly varying tail at 0 with index α,
denoted by RV0(α), if

lim
t→0

F (ct)
F (t)

= cα, c ∈ R+.

Distributions with regularly varying tails appear naturally in many fields of statistics
and applied probability, including the extreme value theory, reliability theory, queuing the-
ory, insurance, actuarial science etc. One may refer to Bingham, Goldie and Teugels [3] for
an encyclopedic treatment of regular variation. Many distribution families have regular vari-
ation tail properties at ∞ or 0. For example, Burr XII, Pareto and stable survival functions
have regularly varying tails at ∞; Uniform, Gamma, Weibull and Burr XII distributions
have regular variation properties at 0. One may refer to Huang, Li and Xu [4] for more
distributions.

The following result shown in Huang et al. [4] provides necessary conditions to compare
order statistics from distributions with regular varying tail properties.

Proposition 1: Assume Xi’s are independent random variables with distribution func-
tions Fi and survival functions F̄i, i = 1, . . . , n, respectively, and Yj’s are other independent
random variables with distribution functions Gj, and survival functions Ḡj, j = 1, . . . ,m,
respectively.

(a) If F̄i ∈ RV(−αi), Ḡj ∈ RV(−α∗
j ), and αi > 0, α∗

j > 0, i = 1, . . . , n, j = 1, . . . ,m,
then

Xr:n ≤icx Ys:m =⇒
n−r+1∑

i=1

α(i) ≥
m−s+1∑

i=1

α∗
(i).

(b) If Fi ∈ RV0(αi), Gj ∈ RV0(α∗
j ) and αi > 0, α∗

j > 0, i = 1, . . . , n, j = 1, . . . ,m, then

Xr:n ≤icv Ys:m =⇒
r∑

i=1

α(i) ≤
s∑

i=1

α∗
(i).

It is seen that order statistics from distributions with regular variation tails have close
relations with tail indexes α’s, which are shape parameters for most distributions (cf. Huang
et al. [4]). However, in the literature, order statistics from populations with different shape
parameters have not received much attention yet. More research in this direction is needed.
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