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Finding one’s geographical position (fix) without the use of a Global Navigation Satellite Sys-
tem (GNSS), which was common place before the establishment of the latter, could be tedious
and/or inaccurate. Apart from sound knowledge of spherical trigonometry and navigational
methods, it also requires the knowledge of the navigator’s approximate or assumed position,
the use of the current year’s celestial bodies’ ephemeris (Nautical Almanac), and graphical
methods (Lines of Position – LOP) which sometimes can prove wanting in accuracy and/or
challenging for the unaccustomed user. The method proposed here is based on sight reduction
from two celestial bodies, and directly calculates the geographical position, both for stationary
and moving observers (“running fix”) using easily available modern programmable calculat-
ing devices, without the need of the assumed position, graphical methods (LOP) or the current
year’s ephemeris, hence the term “stand-alone”. This self-contained method is implemented
by the author in a software application, which can be easily used in a portable computer (for
example, a smartphone). The results are considered satisfactorily accurate.
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1. INTRODUCTION. Today, the use of Global Navigation Satellite Systems, most
particularly the Global Positioning System (GPS) has made the traditional method of
sight reduction less used. However, there are cases where the use of GPS is not pos-
sible, either because of lack of a GPS receiver or due to satellite unavailability caused
by solar flares, magnetic storms or other reasons (for further GPS issues to be con-
sidered, there is an interesting list, primarily concerning GPS compass reliability, at
http://www.compassadjustment.com/#gnss). So, the historical navigational method of sight
reduction must be applied, if other, simpler methods, may not. This method, apart from alti-
tude measurement of at least two celestial bodies with a sextant at a given accurate time,
provided by a chronometer, also requires the use of the current year’s ephemeris for finding
the Greenwich Hour Angle (GHA) and Declination (Dec) of the said bodies, as well as
knowledge of the observer’s assumed or approximate position. The latter can be deduced
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by “dead reckoning”; that is the process of updating position based on speed and direc-
tion of the observer/vessel. With the above known, the navigator usually finds the “fix”
by applying graphical methods (Line Of Position (LOP)) on the map, methods historically
introduced mainly by Thomas H. Sumner in 1837 and Marcq de Blond de St. Hilaire in
1875 (Umland, 2011). However, dead reckoning and graphical methods are prone to errors
and are sometimes challenging for the unaccustomed user.

There is a considerable amount of literature on the subject of calculating a fix
using “pure” (non-graphical) mathematical methods, either direct analytical (A’Hearn and
Rossano, 1977; Bennett, 1980; Gery, 1997; Kjer, 1981), and most notably Van Allen
(1981), or numerical (Daub, 1979; Kotlaric, 1981; Metcalf and Metcalf, 1991; Ogilvie,
1977). A very thorough and instructive vector approach has been presented by Ruiz Gonza-
lez (2008). Some of these methods do not require an assumed position, while others require
one, or at least an assumed latitude, mainly for integrating the solution of the running fix
problem.

The stand-alone method proposed here consists of two sub-methods: (a) for a stationary
observer, calculates directly and analytically two possible fixes (one of which is elimi-
nated, usually by common sense), and (b) directly calculates a single position for a moving
observer using the secant root-finding numerical method. Both sub-methods only require a
sextant – or similar instrument, an accurate time measuring device (chronometer, or even a
reliable watch set at Coordinated Universal Time – UTC), the formulae and Table presented
in Appendix A and a (preferably programmable) calculating device. The mathematics of
the methods are of course known, but the work presented here provides a self-contained
step by step, accurate and effort-effective way to determine one’s position on the globe.

The advantages of the method, compared with similar ones are: (a) Relative mathe-
matical simplicity and straight-forwardness, as will be shown in Sections 2 and 4 and
the Appendices, making the solution possible even with a non-programmable calcula-
tor (at least for the stationary observer case). (b) Generality: no need to select particular
celestial bodies, for example each lying in opposite east-west hemispheres relative to the
observer’s meridian, as required by other methods. (c) Use of the formulae and Table from
Appendix A, thus eliminating the necessity of the current year’s Almanac. (d) Accuracy,
practically depending only on the accuracy of the observation. (e) In the case of the run-
ning fix problem (Section 4), the use of the secant method and the integration with the
“stationary case” (Section 2) eliminates the need for an estimated latitude and significantly
reduces the number of iterations required, thus making the solution possible even with
a non-programmable calculator. (f) It is already developed and tested by the author as a
working software application, with all the necessary functions and data (see appendices)
incorporated and hard-coded.

2. SIGHT REDUCTION POSITIONING. The Earth is considered as a perfect sphere.
For any given altitude of a celestial body, with geographical position GP1, determined by
its GHA1 and Dec1, there is an infinite number of terrestrial positions having the same
distance from GP1, thus forming a circle on the Earth’s surface (Figure 1). The centre of
this circle is on GP1, and its radius (in spherical trigonometry terms) is equal to the body’s
zenith distance z1 = 90◦ − H1, where H1 is the body’s observed altitude. Any observer
along the circumference of this circle will measure this constant altitude (ergo zenith
distance) of the body, irrespective of his/her position on the circle. This is a Circle of Equal
Altitude.
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Figure 1. Two circles of equal altitudes for celestial bodies with geographical positions GP1 and GP2
respectively.

Let our observer be at position Pos1 on the surface of the Earth (Figure 1). In the same
way, another celestial body is observed at GP2 (GHA2, Dec2) with observed altitude H2.
Another circle of equal altitude is drawn centred at GP2 with radius z2 = 9◦ − H2. Obvi-
ously, the two circles intersect, and the position of the observer is one of the two points of
intersection Pos1 and Pos2 and the navigator should be able to choose the correct one by
other means (see below).

If t is the meridian angle of the observer situated at latitude Lat and longitude Lon, the
following formulae apply:

t = GHA + Lon
if

GHA + Lon ≤ 180◦ (1)

t = GHA + Lon − 360◦ if
GHA + Lon > 180◦ (2)

Also, the following conventions apply:

Eastern longitude: positive

Western longitude: negative

Northern latitude: positive

Southern latitude: negative

Eastern meridian angle: negative

Western meridian angle: positive
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Northern declination: positive

Southern declination: negative

3. DETERMINING THE POSITION OF A STATIONARY OBSERVER. Applying
the above formulae and conventions and using spherical trigonometry for the observer’s
position Pos1 (meridian angle t1) and observed body B1 with geographical position GP1,
declination Dec1 and zenith distance z1:

cos z1 = sin Lat sin Dec1 + cos Lat cos Dec1 cos t1 (3)

and since z1 = 90◦ – H1,

sin H1 = sin Lat sin Dec1 + cos Lat cos Dec1 cos t1 (4)

and hence:

cos t1 =
sin H1

cos Lat cos Dec1
− tan Lat tan Dec1 (5)

and from Equation (1):

cos(GHA1 + Lon) =
sin H1

cos Lat cos Dec1
− tan Lat tan Dec1 (6)

Similarly, for the second celestial body B2:

cos(GHA2 + Lon) =
sin H2

cos Lat cos Dec2
− tan Lat tan Dec2 (7)

Equations (6) and (7) consist of a trigonometrical equation system with two unknowns
(Lat and Lon), and resolving it can appear tedious.

Nevertheless, by elimination of Lon, the problem can be reduced to a quadratic equation
for Lat, having the solutions (Huxtable, 2006; Zevering, 2003):

Lat1 = arcsin

(
M +

√
N

W

)
(8)

Lat2 = arcsin

(
M − √

N
W

)
(9)

The discriminant N must not be negative, and it should be checked. If so, some or all of the
data entered (GHA, Dec, H , Date/Time) are erroneous. This is also a good way to check
one’s data and observations.
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Where:

M = −ih − kl

N = (ih + kl)2 − (
i2 + l2 + j 2) (h2 + k2 − j 2)

W = i2 + l2 + j 2

(10)

and:

h =
sin H1 cos GHA2

cos Dec1
− sin H2 cos GHA1

cos Dec2
i = tan Dec2 cos GHA1 − tan Dec1 cos GHA2

j = sin GHA1 cos GHA2 − sin GHA2 cos GHA1

k =
sin H1 sin GHA2

cos Dec1
− sin H2 sin GHA1

cos Dec2
l = tan Dec2 sin GHA1 − tan Dec1 sin GHA2

(11)

Equation (8) corresponds to the northernmost intersection point of Figure 1 (Pos2),
while Equation (9) corresponds to the southernmost one (Pos1). Substituting the (now
known) latitude Lat1 into each of Equations (6) and (7), we find two solutions for the
longitude for each of the equations:

LonA = GHA1 + arccos
(

sin H1
cos Lat1 cos Dec1

− tan Lat1 tan Dec1
)

(12)

LonB = GHA1 − arccos
(

sin H1
cos Lat1 cos Dec1

− tan Lat1 tan Dec1
)

(13)

for Equation (6) (circle centred at GP1 of Figure 1) and

LonC = GHA2 + arccos
(

sin H2
cos Lat1 cos Dec1

− tan Lat1 tan Dec2
)

(14)

LonD = GHA2 − arccos
(

sin H2
cos Lat1 cos Dec2

− tan Lat1 tan Dec2
)

(15)

for Equation (7) (circle centred at GP2 of Figure 1).
These four angles are best put into a common range 0◦ to 360◦. Now, one of the possible

values LonA and LonB of Equations (12) and (13), should match one of the possible values
LonC and LonD of Equations (14) and (15), with a tolerance of say 0·0001◦. This will be
the longitude Lon1 sought for the northernmost point of intersection Pos2. In the same way,
using the southernmost latitude Lat2, we obtain the other longitude Lon2, corresponding to
the southernmost point of intersection. Since the two points are usually distanced several
thousand miles apart, it is easy to determine which of the two is the observers’ position. If
the observer is at sea and one of the two points is on land (or vice versa), the selection is
even more obvious.
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3.1. Order of operations and remarks. Although there are a handful of calculations
to be performed, setting the correct order helps, both for manual calculation, as well as for
setting an algorithm for a computer program:

(1) Take the altitudes H1 and H2 of two celestial bodies with a sextant, or other similar
instrument, and make all the appropriate corrections (see Appendix C). Mark the
time (UTC) of the observation.

(2) Calculate the corresponding GHA’s and Dec’s (as described in Appendices A and B).
(3) Calculate quantities using Equations (10) and (11).
(4) Find Lat1 and Lat2 using Equations (8) and (9).
(5) For Lat1, calculate LonA, LonB, LonC and LonD using Equations (12)–(15).
(6) Find which Lon(A,B) is equal to which Lon(C,D), and set it as Lon1.
(7) Repeat the procedures (5) and (6) for Lat2 and determine Lon2.
(8) The two points sought are (Lat1, Lon1) and (Lat2, Lon2). Select the most appropriate

from the two.

Remark 1: The observations of the two celestial bodies must be simultaneous, or, at least,
quasi-simultaneous.

Remark 2: For the stationary observer, only one celestial object is necessary (for example,
the Sun), provided that altitudes are taken at different times. The first measurement corre-
sponds to B1 (“celestial body 1”) and the second to B2 (“celestial body 2”). Of course, the
same can be done if two celestial bodies are actually used.

Remark 3: If the latitude is known, or otherwise estimated (for example, from observation
of Polaris), the method is reduced to just resolving Equation (6) (or (7)) for Lon (we must
have in mind that a small error in Lat induces a larger error in Lon, as also implied by
Malkin (2014), so this particular method is not very reliable, unless we know the exact
latitude).

Remark 4: The calculations in Equations (2)–(7) can be performed, with relatively little
effort, using a scientific pocket calculator. Nevertheless, for greater speed and reliability,
and as mentioned in the abstract, the use of a programmable device is recommended.

To better improve accuracy, inaccuracies due to errors in altitude measurements can be
reduced in impact, by selecting a third celestial body B3 (GHA3, Dec3) with geographical
position GP3 and altitude H3. Then, from Equation (4) with t3 = GHA3 + Lon:

sin H3 = sin Lat sin Dec3 + cos Lat cos Dec3 cos(GHA3 + Lon) (16)

By successively substituting Lat and Lon with (Lat1, Lon1) and (Lat2, Lon2) we firstly
find which of the two points best satisfies Equation (16), hence the “exact” fix (Figure 2),
be it (Lat, Lon). So, we can determine which of the two solutions is correct (if no other
means is available).

Secondly, we can repeat the method above described for (B1, B3) and (B2, B3). The
result will be two additional possible solutions (Lat′, Lon′) and (Lat′′, Lon′′), normally very
close to the first one (Figure 3).
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Figure 2. Three circles of equal altitudes for celestial bodies with geographical positions GP1, GP2 and GP3
respectively.

Figure 3. “Uncertainty” triangle ABC after applying the method on the pairs of celestial bodies (B1,B2),
(B1,B3) and (B2,B3).

We can consider that the correct position should be inside the “uncertainty” triangle
ABC. Since, at this scale, the arcs are reduced to linear segments, we can average latitudes
and longitudes to find a more exact solution. Further observations of more stars would give
an even more accurate result.
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Table 1. Positioning method for the stationary observer. Results of the virtual tests.

Actual Lat Actual Lon Date UTC Time UTC B1/Hc1 B2/Hc2 Calculated Lat Calculated Lon

37 58·3 N 23 43·0 E 03/03/16 21:00:00 Capella Betelgeuse 37 58·3 N 23 43·0 E
44 52·4 34 16·2 21 09·7 N 84 05·5 E

33 55·5 S 18 25·4 E 03/03/16 21:00:00 Betelguese Canopus 33 55·5 S 18 25·4 E
29 39·2 56 21·1 40 36·5 S 67 49·3 W

40 42·8 N 74 00·4 W 03/03/16 4:00:00 Alkaid Denebola 40 42·8 N 74 00·4 W
48 03·4 52 55·9 7 46·8 N 6 41·0 W

37 48·8 S 144 57·8 E 03/03/16 11:00:00 Achernar Acrux 37 48·8 S 144 57·8 E
32 29·5 39 37·4 47 43·6 S 45 28·8 W

64 10·5 N 51 44·3 W 03/03/16 3:00:00 Alphard Betelgeuse 64 10·5 N 51 44·3 W
16 28·9 17 08·2 64 21·1 S 134 09·1 W

00 10·8 S 78 28·1 W 03/03/16 6:00:00 Procyon Acrux 0 10·8 S 78 28·1 W
31 53·7 26 08·7 39 43·1 S 176 29·9 W

3.2. Testing. Virtual tests were executed. Different points on the globe were
selected and their coordinates were marked. Celestial bodies were selected for each
location, and their calculated altitudes (Hc) were used as observed altitudes. To find
the Hc for the bodies, the US Naval Observatory’s Celestial Navigation data at
http://aa.usno.navy.mil/data/docs/celnavtable.php was used. The proposed method was
then applied, using the related software, and tested to see whether these calculated
coordinates coincide with the actual ones. The results are shown in Table 1.

The correct solutions are shown in bold. The calculated coordinates show a perfect
match with the actual ones. However, in reality, the accuracy of the method mainly depends
on the accuracy of the observation (celestial body altitude measurement) as also pointed out
by Malkin (2014).

4. THE MOVING OBSERVER (RUNNING FIX). To determine the position of a mov-
ing observer, the following example will be processed: An observer is at coordinates (Lat1,
Lon1) on a vessel moving at constant ground speed V knots with constant course θ (mea-
sured eastward from the North, 0◦ to 360◦). At time UTC1 he/she takes the altitude of a
celestial body (GHA1, Dec1), H1. At time UTC2, being now at (Lat2, Lon2), he/she takes
the altitude of the same, or another, body (GHA2, Dec2), H2. Using Equations (4) and (1):

sin H1 = sin Lat1 sin Dec1 + cos Lat1 cos Dec1 cos(GHA1 + Lon1) (17)

sin H2 = sin Lat2 sin Dec2 + cos Lat2 cos Dec2 cos(GHA2 + Lon2) (18)

from Equation (18):

Lon2 = S · a cos
(

sin H2 − sin Lat2 sin Dec2
cos Lat2 cos Dec2

)
− GHA2 (19)

S equals −1 if the body is observed east of the observer’s meridian, otherwise +1 (see
“conventions” in Section 2).
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We also have that:
Lat1 = Lat2 − �Lat (20)

with

�Lat =
V cos θ (UTC2 − UTC1)

60
(21)

and
Lon1 = Lon2 − �Lon (22)

with

�Lon =
1

60

UTC2∫
UTC1

V sin θ · dt
cos LAT

(23)

where LAT is the latitude, varying with time, from LAT1 to LAT2.
The integral in Equation (23) can be solved analytically, but, since V and θ are assumed

constant, it can be approximated (Daub, 1979) with:

�Lon =
V sin θ (UTC2 − UTC1)

60 cos Lat2
(24)

If |Lat2| < 90 − 19
12 V (UTC2 − UTC1), the approximation’s resulting error is less than 0·1’.

Subtracting Equation (17) from Equation (18) and moving to the left side:

sin Lat1 sin Dec1 − sin Lat2 sin Dec2 + cos Lat1 cos Dec1 cos(GHA1 + Lon1)

− cos Lat2 cos Dec2 cos(GHA2 + Lon2) − sin H1 + sin H2 = 0 (25)

Substituting Lon2 from Equation (19), Lat1 from Equations (20) and (21) and Lon1 from
Equations (22) and (24), the expression on the left of Equation (25) is a function F only of
Lat2, so:

F(Lat2) = 0 (26)

We can find the root numerically, using the secant method iteratively (x = Lat2):

xn = xn−1 − F (xn−1)
xn−1 − xn−2

F (xn−1) − F (xn−2)
(27)

terminating when |xn − xn−1| is less than, say 0·0001◦. The longitude Lon2 can then
be calculated from Equation (19). The method’s algorithm and flowchart is shown in
Appendix B.

The secant method requires two initial values, x0 and x1, ideally close to the root sought.
This does not compromise the independence from an assumed position (just latitude to
be exact) because: (a) The secant method is very “tolerant” as far as the initial values
are concerned. Choosing initial values “reasonably” far from the actual root does not affect
accuracy but only the number of iterations needed. (b) One can find a first initial value with-
out dead reckoning, by using the method described in Section 3, considering the observer
as stationary (see Remark 2). A second initial value can be then selected, close to this one.

Also, determining S for Equation (19) does not require an assumed position, since:
(a) The navigator most probably has a rough, at least, estimation of the local magnetic
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declination, hence the local meridian’s relative position regarding East and West. (b) Even
if this not the case, this can be deduced in various ways (for example, by observing the
Sun’s meridian passage). (c) If the navigator selects the wrong S, the method will either
not converge or it will give an obviously erroneous solution, as in the case of choosing
between the two intersection points of two circles of equal altitude. He/she can then repeat
the method with the correct S. Nevertheless, the observer must avoid using celestial bod-
ies close to his/her local meridian (meridian angle close to 0◦), since this may result to an
inaccurate solution or no solution at all, as also mentioned by Kotlaric (1981). For the Sun,
this is easily achieved by taking sights when relatively low on the horizon (but at least 10◦

high, since the variation of refraction due to temperature and atmospheric pressure along
the sighting path is less predictable at low altitudes).

4.1. Example (virtual test). In this example, calculated altitudes (see Section 3.2) are
again used instead of observed ones.

On 18 May 2016, a vessel travels with speed 20 kts and course 225◦. At UTC1 =
18:00:00 it is at position 45◦00′·0N, 45◦00′·0W, and the altitude of the Sun (GHA1 =
90◦53′·0, Dec1 = 19◦45′·5) is H1 = 44◦36′·6. At UTC2 = 18:30:00 the Sun is west of the
observer’s meridian (S = +1) and the corresponding values are GHA2 = 98◦23·0, Dec2 =
19◦45·8 and H2 = 39◦38′·0. Using Equations (19)–(20) and (21)–(23), we estimate that at
the time of the second observation, the vessel should be at position 44◦52′·9N, 45◦10·0W.

(1) Using the “stationary” method we calculate a first assumed latitude of 46◦08′·2N.
(2) Using initial values Lat20 = 46 N and Lat21 = 45 N, and S = +1, we apply the secant

method described and find the solution: 44◦53′·0N, 45◦09′·9W, after 3 iterations. The
error, compared with the “expected” position, is 0·1 nautical miles.

As with the “stationary” case, we can use more sightings and repeat the procedure to better
improve accuracy.

5. CONCLUSIONS. It can be concluded that the method proposed gives satisfactory
results, both for the stationary as well as the moving observer, is straightforward, and rela-
tively easy to apply, especially with a programmable calculating device equipped with the
appropriate software. The only caveat seems to be that, for the running fix case, celestial
bodies relatively far from the observer’s local meridian must be selected.

The advantages of the method, apart from independence of GNSS/GPS availability,
graphical methods and estimation of an assumed position, and compared with other similar
ones are: (a) Relative mathematical simplicity and straight-forwardness, making the solu-
tion possible even with a non-programmable calculator. (b) Generality: no need to select
particular celestial bodies, for example, each lying in opposite east-west hemispheres rel-
ative to the observer’s meridian, as other methods require. (c) Use of the formulae from
Appendix A, thus eliminating the necessity of the current year’s Almanac. (d) Accuracy,
practically depending only on the accuracy of the observation. (e) In the case of the run-
ning fix problem the use of the secant method and the integration with the “stationary case”
eliminates the need of an estimated latitude and significantly reduces the number of itera-
tions required, thus making the solution possible even with a non-programmable calculator.
Also, it eliminates the need to derivate function F(Lat2), as the Newton method described
by Daub (1979) requires. Both methods always converge, as long as the data entered are
correct and the initial value(s) correctly chosen (as mentioned in Section 4, the secant
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method is also more flexible, concerning the initial values). (f) It is already developed and
tested by the author as a working software application, with all the necessary functions and
data (see appendices) incorporated and hard-coded.
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APPENDIX A – CALCULATION OF CELESTIAL BODIES’ APPARENT
EQUATORIAL COORDINATES

A1. USEFUL FUNCTIONS

a. Function floor(x), where x a real number. This function is implemented in most
programming languages (in some is found as int(x)). It returns the greatest integer
smaller than x. For example, floor(3·8) = 3, floor(−2·2) = −3.

b. Function Wrap(x), where x a real number (angle expressed in degrees). This is used
to remove the multiples of 360 from an angle. Is defined as:

Wrap(x) = 360
[ x

360
− floor

( x
360

)]
(A1)
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c. Function ATAN2(y,x), where x, y real numbers, not both equal to 0. This returns the
angle (in radians) between the positive x-axis of a plane and the point given by the
coordinates (x, y) on it. In contrast to just computing arctan(y/x), this function gath-
ers information on the signs of the inputs y and x, in order to return the appropriate
quadrant of the computed angle, which is not possible for the single-argument arc-
tangent function. It also avoids the problem of division by zero, as atan2(y, 0) will
return a valid answer as long as y is non-zero. The function ATAN2 is implemented
in most programming languages and is defined as:

arctan
(y

x

)
if x > 0

arctan
(y

x

)
+ π if x < 0 and y ≥ 0

arctan
(y

x

)
− π if x < 0 and y < 0

+
π

2
if x = 0 and y > 0

−π

2
if x = 0 and y < 0

0 if x �= 0 and y = 0

Undefined if x = 0 and y = 0

(A2)

A2. COMMON CALCULATIONS

a. Calculate the days and fractions of a day, before or after Jan 1, 2000, 12:00:00 UTC

D = JD +
UTC
24

− 2451545·0 (A3)

where JD is the Julian Date. An equivalent formula is given instead of Equation (A3)
(Umland, 2011; Albrand and Stein, 1992) as:

D = 367y − floor
{

1·75
[

y + floor
(

m + 9
12

)]}
+ floor

(
275

m
9

)

+ d +
UTC
24

− 730531·5 (A4)

where y is the year (4 digits), m is the number of the month, and d the number of
the day in the respective month. UTC is the Universal Time in decimal format (e.g.,
12 h 30 m 45 s = 12·5125). For May 17, 1999, 12:30:45 UTC, for example, D is
−228·978646. The formula is valid from 1 March 1900 to 28 February 2100.
b. Calculate the respective Julian centuries:

t =
D

36525
(A5)

From this point on, the formulae and Table A1 come from Yallop and Hohenkerk
(2007), except the Wrap and ATAN2 functions which are not explicitly used in their
paper.
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A3. APPARENT EQUATORIAL COORDINATES OF THE SUN

Convert t to Dynamical Time T:

�T (t) = 0·808 (t − 2)2 × 10−8 (A6)

T = t + �T (t) (A7)

Mean anomaly of the Sun:

G = Wrap (357◦·529 + 35999◦·05029T) (A8)

Mean ecliptic longitude of the Sun:

LM = Wrap
(
280◦·46645 + 36000◦·76975T + 0◦·0003132T2) (A9)

Mean obliquity of the ecliptic:

ε0 = 23◦·4393 − 0◦·01301T − 0◦·0000001T2 + 0◦·0000006T3 (A10)

Longitude of Moon’s ascending node on the ecliptic:

� = Wrap (125◦·045 − 1934◦·136T) (A11)

True obliquity of the ecliptic:

ε = ε0 + 0◦·0026 cos � (A12)

GHAAries = 100◦·4606 + 36000◦·76998t + 0◦·000387t2 + 15UTC − 0◦·0048 sin � cos ε0
(A13)

Important: in the last formula, the time variable is t, not T.
Equation of the centre:

C =
(
1◦·9147 − 0◦·00482T − 0◦·000015T2) sin G + 0◦·01999 sin 2G (A14)

Apparent ecliptic longitude of the Sun:

LT = Wrap (LM + C − 0◦·0057 − 0◦·0048 sin �) (A15)

Rectangular coordinates:

x = cos LT, y = cos ε sin LT, z = sin ε sin LT (A16)

Right ascension:

RA =
180◦

π
ATAN2 (y, x) (A17)

Declination:

Dec =
180◦

π
arcsin (z) (A18)
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GHA:

GHA = Wrap (GHAAries − RA) (A19)

Semidiameter: SD =
0◦·2666

1 − 0·017 cos G
=

15′·96
1 − 0·017 cos G

(A20)

A4. APPARENT EQUATORIAL COORDINATES OF NAVIGATIONAL STARS

Let λ0 and β0 be the ecliptic longitude and latitude, respectively, for epoch and equinox
2000·0, and μ and μ′ their respective centennial rates of change (for values, see Table A1).
Note that the time variable is t (see Equation (A5)). Strictly speaking the time variable
should be T = t + �T (t) (Equations (A6) and (A7)) except when calculating GHAAries as in
Equation (A13). However, since the movement of the stars is very small in the time inter-
val �T the change in time scales produces negligible differences (Yallop and Hohenkerk,
2007).

a. Calculate the proper motion:

λ1 = λ0 + μt (A21)

β1 = β0 + μ′t (A22)

b. Apply aberration:

λ	 = 280·460 + 36000◦·770t

λ2 = λ1 − 0◦·0057 cos (λ1 − λ	)

cos β1
(A23)

β2 = β1 + 0◦·0057 sin (λ1 − λ	) sin β1 (A24)

c. Apply precession:

a = 1◦·39697t + 0◦·000309t2 (A25)

b = 0◦·0131t − 0◦·00001t2 (A26)

c = 5◦·1236 + 0◦·2416t (A27)

β3 = β2 + b sin (λ2 + c) (A28)

λ3 = λ2 + a − b cos (λ2 + c) tan β3 (A29)

Apply nutation:

λ = λ3 − 0◦·0048 sin � (A30)

β = β3 (A31)

d. Finally:
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Rectangular coordinates:

x = cos β cos λ (A32)

y = cos ε cos β sin λ − sin ε sin β (A33)

z = sin ε cos β sin λ + cos ε sin β (A34)

Right ascension:

RA =
180◦

π
ATAN2(y, x) (A35)

Declination:

Dec =
180◦

π
arcsin (z) (A36)

GHAAries = 100◦·4606 + 36000◦·77005t + 0◦·000388t2 + 15UTC − 0◦·0048 sin � cos ε

(A37)

GHA:
GHA = Wrap (GHAAries − RA) (A38)

Table A1. Longitude and Latitude referred to the ecliptic and mean equinox of J2000·0
λ0 μ β0 μ′

No. Name ◦ ◦ ◦ ◦

1 Acamar θ Eri 23·2723 −0·00152 −53·7402 0·00112
2 Achernar α Eri 345·3117 0·00285 −59·3783 −0·00275
3 Acrux α Cru 221·8701 −0·00047 −52·8787 −0·00070
4 Adhara ε CMa 110·7630 0·00025 −51·3602 0·00010
5 Aldebaran α Tau 69·7892 0·00104 −5·4674 −0·00550
6 Alioth ε UMa 158·9334 0·00417 54·3188 0·00194
7 Alkaid η UMa 176·9331 −0·00430 54·3880 −0·00230
8 Al Na’ir α Gru 315·9070 0·00184 −32·9133 −0·00536
9 Alnilam ε Ori 83·4636 −0·00002 −24·5064 −0·00007
10 Alphard α Hya 147·2792 −0·00074 −22·3825 0·00067
11 Alphecca α CrB 222·2959 0·00568 44·3236 −0·00118
12 Alpheratz α And 14·3085 0·00162 25·6804 −0·00575
13 Altair α Aql 301·7765 0·01939 29·3035 0·00733
14 Ankaa α Phe 345·4938 −0·00100 −40·6331 −0·01237
15 Antares α Sco 249·7623 −0·00007 −4·5699 −0·00061
16 Arcturus α Boo 204·2337 −0·00768 30·7363 −0·06288
17 Atria α TrA 260·8962 0·00123 −46·1513 −0·00075
18 Avior ε Car 173·1294 −0·00250 −72·6798 −0·00013
19 Bellatrix γ Ori 80·9464 −0·00032 −16·8161 −0·00037
20 Betelgeuse α Ori 88·7547 0·00080 −16·0270 0·00026
21 Canopus α Car 104·9614 0·00308 −75·8239 0·00076
22 Capella α Aur 81·8579 0·00126 22·8643 −0·01191
23 Deneb α Cyg 335·3293 0·00029 59·9061 −0·00002
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Table A1. Continued

λ0 μ β0 μ′

No. Name ◦ ◦ ◦ ◦

24 Denebola β Leo 171·6176 −0·01153 12·2669 −0·00849
25 Diphda β Cet 2·5835 0·00673 −20·7836 −0·00191
26 Dubhe α UMa 135·1975 −0·00239 49·6802 −0·00343
27 Elnath β Tau 82·5750 0·00037 5·3851 −0·00491
28 Eltanin γ Dra 267·9687 −0·00080 74·9223 −0·00055
29 Enif ε Peg 331·8850 0·00090 22·0999 −0·00029
30 Fomalhaut α PsA 333·8604 0·00716 −21·1357 −0·00802
31 Gacrux γ Cru 216·7397 0·00737 −47·8312 −0·00543
32 Gienah γ Crv 190·7256 −0·00449 −14·5009 −0·00128
33 Hadar β Cen 233·7925 −0·00036 −44·1375 −0·00076
34 Hamal α Ari 37·6625 0·00364 9·9651 −0·00569
35 Kaus Australis ε Sgr 275·0787 −0·00106 −11·0519 −0·00346
36 Kochab β UMi 133·3195 −0·00112 72·9876 −0·00088
37 Markab α Peg 353·4857 0·00125 19·4060 −0·00182
38 Menkar α Cet 44·3201 −0·00091 −12·5856 −0·00197
39 Menkent θ Cen 222·3086 −0·00873 −22·0800 −0·01871
40 Miaplacidus β Car 211·9692 −0·01254 −72·2357 −0·00329
41 Mirfak α Per 62·0810 0·00051 30·1255 −0·00084
42 Nunki σ Sgr 282·3853 0·00026 −3·4495 −0·00156
43 Peacock α Pav 293·8176 −0·00041 −36·2677 −0·00244
44 Pollux β Gem 113·2156 −0·01700 6·6842 −0·00436
45 Procyon α CMi 115·7855 −0·01504 −16·0196 −0·03143
46 Rasalhague α Oph 262·4487 0·00459 35·8352 −0·00609
47 Regulus α Leo 149·8292 −0·00648 0·4649 −0·00222
48 Rigel β Ori 76·8295 −0·00003 −31·1228 −0·00007
49 Rigil Kentaurus α Cen 239·4793 −0·13521 −42·5959 −0·02399
50 Sabik η Oph 257·9696 0·00084 7·1978 0·00275
51 Schedar α Cas 37·7838 0·00105 46·6222 −0·00157
52 Shaula λ Sco 264·5858 0·00007 −13·7884 −0·00079
53 Sirius α CMa 104·0816 −0·01524 −39·6053 −0·03492
54 Spica α Vir 203·8414 −0·00075 −2·0545 −0·00118
55 Suhail λ Vel 161·1877 −0·00116 −55·8708 0·00011
56 Vega α Lyr 285·3164 0·01403 61·7328 0·00709
57 Zubenelgenubi α2 Lib 225·0827 −0·00226 0·3330 −0·00267
58 Polaris α UMi 88·5676 0·00098 66·1014 −0·00118
59 σ Octantis σ Oct 271·8706 0·00118 −65·8402 −0·00042
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APPENDIX B
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APPENDIX C. SEXTANT ALTITUDE CORRECTIONS

Altitude corrections are necessary to eliminate systematic altitude errors and to reduce the
altitude measured relative to the visible horizon, to the altitude with respect to the celestial
horizon and the centre of the Earth (Umland, 2011).

In the following formulae, the altitudes are measured in degrees and minutes of arc,
while the corrections in minutes of arc. Let Hs the altitude initially measured with the
sextant.

C1. INDEX ERROR (IE). The index error is inherent to the particular sextant used and
must be known. It can be either positive, if the displayed value is greater than the actual
one, or negative in the opposite case. So:

1st correction: H1 = Hs − IE

If using an artificial horizon (not bubble sextant), H1 (not Hs) must be divided by 2.

C2. DIP OF HORIZON (D). This is due to the curvature of the Earth’s surface. It is the
angle between the line perpendicular to the observer at the height of the eye and the visible
horizon.

D = 1·76
√

HE (HE in metres) or D = 0·97
√

HE (HE in feet) (C1)

Where HE is the height of eye of the observer.

2nd correction: H2 = H1 − D

Notice: This correction must be omitted if any kind of artificial horizon is used, including
a bubble sextant.

C3. CORRECTION FOR ATMOSPHERIC REFRACTION (R). For altitudes between
15◦ and 90◦:

R =
1·0067
tan H2

(C2)

For altitudes between 0◦ and 15◦:

R =
34·133 + 4·197H2 + 0·00428H 2

2

1 + 0·505H2 + 0·0845H 2
2

(C3)

Refraction is influenced by temperature and atmospheric pressure. The formulae above
are valid for temperature 10◦C and pressure 1010 mbar. For other values of temperature
and pressure, R must be multiplied by a factor f :

f = 0·2802
P

273 + T
(P in mbar, T in ◦C) or

f = 17·0969
P

460 + T
(P in in.Hg, T in ◦F)

(C4)

3rdcorrection: H3 = H2 − fR

C4. SUN’S SEMIDIAMETER. If the observed body is the Sun, it’s Semidiameter
(SD – see Appendix A, Equation (A20)) must be taken into account, because usually the
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lower or the upper limb is observed. If a bubble sextant is used (which is less accurate), we
usually observe the centre of the body, so this correction is omitted.

4thcorrection: H4 = H3 ± SD

(+ for the lower limb, − for the upper limb)

The altitude obtained after applying the above corrections, is the observed altitude:

Ho = H4
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