Annals of Actuarial Science (2022), 16, pp. 42-67
doi:10.1017/S174849952100004X Institute

and Faculty

PAPER of Actuaries

Automatic analysis of insurance reports through deep
neural networks to identify severe claims

Isaac Cohen Sabban'*, Olivier Lopez** and Yann Mercuzot®

Sorbonne Université, CNRS, Laboratoire de Probabilités, Statistique et Modélisation, LPSM, 4 place Jussieu, F-75005 Paris,
France Pacifica, Crédit Agricole Assurances, F-75015 Paris, France; 2Sorbonne Université, CNRS, Laboratoire de
Probabilités, Statistique et Modélisation, LPSM, 4 place Jussieu, F-75005 Paris, France and ®Pacifica, Crédit Agricole
Assurances, F-75015 Paris, France

*Corresponding author. E-mails: isaac.cohen-sabban@etu.upmec.fr, olivier.lopez@sorbonne-universite.fr

(Received 13 May 2020; revised 07 December 2020; accepted 23 January 2021; first published online 9 March 2021)

Abstract

In this paper, we develop a methodology to automatically classify claims using the information contained
in text reports (redacted at their opening). From this automatic analysis, the aim is to predict if a claim is
expected to be particularly severe or not. The difficulty is the rarity of such extreme claims in the database,
and hence the difficulty, for classical prediction techniques like logistic regression to accurately predict
the outcome. Since data is unbalanced (too few observations are associated with a positive label), we
propose different rebalance algorithm to deal with this issue. We discuss the use of different embedding
methodologies used to process text data, and the role of the architectures of the networks.

Keywords: Insurance; Deep neural networks; Long Short-Term Memory; Convolutional Neural Networks; Text analysis

1. Introduction

The automatisation of text data analysis in insurance is a promising and challenging field, due
to the importance of reports and analysis in the treatment of claims or contracts. In this paper,
we focus on data coming from expert reports on a claim, but textual informations may be found
also in declarations filled by policyholders themselves, or in medical questionaries used in credit
insurance. Our aim is to process these reports and develop an automatic way to categorise the
corresponding claims and to identify, soon after their occurrence, which one will lead to a heavy
loss. Apart from the complexity of the input information, a particular difficulty is caused by the
rareness of such claims (a few percent of the total database).

The rise of deep learning techniques introduces the possibility of developing an automated
treatment of these data, with potential reduced costs — and, ideally, a more accurate analysis — for
the insurance company, hence a potential increase of rentability. Text mining has received a lot of
attention in the past decades in the machine learning literature, with many spectacular examples.
Many examples can be found, for example, in Aggarwal & Zhai (2012) or Berry & Castellanos
(2004), with applications to insurance such as Ellingsworth & Sullivan (2003) or Kolyshkina &
van Rooyen (2006).

As we already mentioned, our main difficulty is to focus on the prediction of relatively rare
events, which is a classical specificity of the insurance business compared to other fields. Indeed,
while typical claims and behaviour are usually easy to understand and measure, the tail of the
distribution of the losses is much more delicate, since there are quite few events in the database to
evaluate it properly. Of course, these so-called “extreme” events may, in some cases, constitute an
important part of the total losses at a portfolio level.
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In this paper, we consider the case of text data coming from experts in view of clustering
some claims depending on their severity. Typically, the insurance company wants to separate
“benign” claims from the heaviest ones in order to perform a different treatment of these two
types of claims. Indeed, in terms of reserving, a different model can be used on these two types
of events. Moreover, a particular attention can then be devoted to the most serious claims dur-
ing their development. As described above, the difficulty is that the proportion of heavy claims is
quite low compared to the other class. This imbalance is present in other potential applications,
such as fraud detection. We rely on deep neural networks methodologies. Neural networks have
already demonstrated to be valuable tools when it comes to evaluating claims, see, for example,
Saputro et al. (2019) or Wiithrich (2018). The network architectures that we use — Convolutional
Neural Networks (CNNs), see Aloysius & Geetha (2017), and Recurrent Neural Networks (RNNs)
(such as Long Short-Term Memory (LSTM) networks introduced by Hochreiter & Schmidhuber
(1997)) - are powerful tools to perform such text analysis, see, for example, Mikolov et al. (2010)
and Cheng et al. (2016). The specificity of our approach is twofold:

e Weintroduce a bias correction in order to deal with the fact that claim development time may
be long: indeed, our models are calibrated on a database made of claims that are closed, but
also from unsettled ones. Calibrating the model on the closed claims solely would introduce
some bias due to the over-representation of claims with small development time (this is a
classical problem linked to the concept of censoring in survival analysis, see, for example,
Lopez, 2019; Gerber et al., 2020).

e Once this bias correction has been done, a re-equilibration of the database is required to
compensate the rareness of the events we focus on. For this, we use Bagging methodologies
(for Bootstrap Aggregating, see Breiman, 1996), introducing constraints in the resampling
methodology which is at the core of Bagging.

The contribution of this paper is to show how performing these two tasks (censoring correction
and re-equilibration) can improve existing deep learning methods to analyse a corpus of texts
which is very specific: indeed, apart from the rareness of the event that are considered, the reports
on car insurance claims that we study in our applications, are characterised by a very specific
vocabulary and a particular syntax that makes text classification more challenging.

The rest of the paper is organised as follows. In section 2, we describe the general framework
and the general methodology to address these two points. A particular focus on processing text
data is shown in section 3, where we explain the process of embedding such data (this means
to perform an adapted dimension reduction to represent efficiently such complex unstructured
data). The deep neural networks architectures that we use are then described in section 4. In
section 5, a real example on a database coming from a French insurer gives indications on the
performance of the methodology.

2. Framework and Neural Network Predictors

In this section, we describe the generic structure of our data. Our data are subject to random
censoring, as a time variable (time of settlements of the claims) is present in the database. The
correction of this phenomenon, via classical methodologies from survival analysis, is described
in section 2.1. Next, the general framework of neural networks is defined in section 2.2. The
imbalance in the data, caused by the fact that we focus on predicting rare events, is described
in section 2.3, along with methodologies to improve the performance of our machine learning
approaches under this constraint.

2.1. The censoring framework
Our aim is to predict a 0-1 random response I, which depends on a time variable T and covariates
X € X ¢ R% In our practical application, I is an indicator of the severity of a claim (I =1 if the
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claim is considered as “extreme”, 0 otherwise). The definition of what we refer to as an extreme
claim depends on management conventions that will be described in the real data section. The
variable T represents the total length of the claim (i.e. the time between the claim occurence and
its final settlement), and X some characteristics.

In our setting, the variables I and T are not observed directly. Since T is a duration variable, it is
subject to right censoring. This means that, for the claims that are still not settled, T is unknown.
On the other hand, I is known only if the claim is closed. This leads to the following observations
(Ji» Yi, 8i, Xi)1<i<n assumed to be i.i.d. replications of (], Y, §, X) where

Y =inf (T, C),
8 = ITSC)
J =461

and X represents some covariates that are fully observed (in our case, X is text data coming from
reports, hence it can be understood as a vector in R? with d being huge: more precisely, X can be
understood as a matrix, each column representing an appropriate coding of a word, see section 3,
the number of columns being the total number of words). The variable C is called the censoring
variable and is assumed to be random. The censoring variable corresponds to the time after which
the claim stops to be observed for any other reason than its settlement (either because the obser-
vation period ends before settlement, or because there has been a retrocession of the claim). This
setting is similar to the one developed by Lopez et al. (2016) or Lopez (2019) in the case of claim
reserving, with a variable I that may not be binary in the general case. In the following, we assume
that T and C have continuous distributions so that these variables are perfectly symmetric, which
means that one has the same level of information on the distribution of T' as on the distribution of
T (otherwise, a dissymmetry can appear due to ties, since one could have P(T = C) # 0, leading
to potential inconsistencies, see Stute & Wang, 1993).

Considering only the complete data (i.e. with §; = 1, which corresponds to the case where the
claim is settled) would introduce some bias: amongst the complete of observations, there is an
overrepresentation of claims associated with a small value of T;. Since T and I are dependent (in
practice, one often observes a positive correlation between T and the corresponding amount of
the claim), neglecting censoring would imbalance the sample, modifying the proportion of values
of i for which I; = 1.

Our aim is to estimate the function 7 (x) = P(I = 1|X = x), in a context where the dimension
d of x is large. Typically, how an estimated function fits data is quantified by minimising some
loss function. If we were dealing with complete data, a natural choice would be the logistic loss
function (also called “cross entropy” in the neural network literature, see, for example, Kline &
Berardi, 2005), that is

n

Lip) == 3 {Iilogp-+ (1~ 1) log (1 - )]

i=1
which is a consistent estimator of
L(p) =—E [Ilogp—i— (I1-1log(1 —p)]

As stated before, computation of L is impossible in presence of censoring due to the lack of
information, and an adaptation is required to determine a consistent estimator of L.

A simple way to correct the bias caused by censoring is to rely on the Inverse Probability of
Censoring Weighting (IPCW) strategy, see, for example, Rotnitzky & Robins (2014). The idea
of this approach is to find a function y — W(y) such that, for all positive function v with finite
expectation,

E[WY)Y(, Y, X)]=E[y(, T,X)] (1)
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and to try to estimate this function W (in full generality, this function can also depend on X). The
function W depends on the identifiability assumptions that are required to be able to retrieve the
distribution of I and T from the data. In the following, we assume that

1. Cis independent from (J,T)
2. B(T<C|LT,X)=P(T < C|T),

as in Lopez (2019), and is similar to the one used, for example, in Stute (1996) or Stute (1999)
in a censored regression framework. These two conditions ensure that (1) holds to W(y) =
Sc(y)~! =P(C > y)~!, provided that inf{£:Sc(t) = 0} > inf{£:P(T > t) = 0}, which will be assumed
throughout this paper. These assumptions are identifiability assumptions that can not be tested
statistically, see Andersen et al. (1998), section II1.2.2.3 p. 148. Alternative assumptions can be
found, for example, in Van Keilegom & Akritas (1999), and the procedure we develop can be
modified to address this more complex situation, in the same spirit as Gerber et al. (2020). In the
real data application that we consider in section 5 below, censoring is mainly caused by adminis-
trative issues (the claim is not closed at the date of extraction of the database), which makes these
more classical identifiability assumptions reasonable. This also ensures that W is strictly positive
and finite.

Sc can then be consistently estimated by the Kaplan-Meier estimator (see Kaplan & Meier,

1958), that is
Sc(t) = l_[ PR
2 lyey,

Yi<t

Consistency of Kaplan-Meier estimator has been derived by Stute (1995) and Akritas et al. (2000).
Hence, each quantity of the type E [y(I, T,X)] can be estimated by Y 1~ , Wi, ¥ (Ji, Yi, X))
where

Win=08in""Sc(Y;) ™! 2)

In other words, a way to correct the bias caused by the censoring consists in attributing the weight
Wi, at observation i. This weight is 0 for censored observations, and the missing mass is attributed
to complete observations with an appropriate rule. A convenient way to apply this weight once and
for all is to duplicate the complete observations in the original data accordingly to their weight.
This is a way to artificially (but consistently) compensate the lack of complete observations asso-
ciated with a large value of Y; (let us observe that W, is an increasing function of Y;). This leads
to the following duplication algorithm.

The cross-entropy that we want to minimise is then computed from the duplicated dataset,
defining

n/

1
Ln/(p)=—;;{I?logPJr(l—Iﬁ)lOg(l—P)} (3)
Remark. In the experimental part of the paper, we will also introduce two alternative loss func-
tions, which can be seen as modifications of cross-entropy. The focal-loss (see Lin et al., 2017) is
defined as

n/

- 1
Lopy==—2% {J'wlogp+(1—J)" log(1 - p)} (4)

i=1

where y > 0. The parameter y helps to focus on “hard” examples, by avoiding attributing
too much weights at easily well-predicted observations. The Weighted Cross-Entropy (see
Panchapagesan et al., 2016) is a weighted version of (3). Introducing a weight « € (0, 1), define
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Algorithm 1 Duplication algorithm for censored observations

Require:
- a dataset (Ji, Y;, 8;, Xi)1<i<n-
- a list of weights W;,, computed from the data accordingly to (2), and let w = minj<j<, Wi,.
Setn' =1.
for i < 1 to ndo
1.1f8; =0, gotostep i+ 1.
2. Else:
o Letk= |_W,;n / wj , where | x| denotes the integer part of x.
° Deﬁne, forj € {1, vees k} ];,_I_H. = ]ia Yl/1’—1+j = Yi> Xn’—1+i = Xi-

o «—n+k
end for

return The duplicated dataset: (Z;)1<i< = (J}, Y}, X)) 1<i<n'-

1

n/

- 1
Lip)==—% {Jialogp+ (1 —e)1—J)log(1-p)} (5)
i=1
The parameter o can be used to increase the importance of good prediction for one of the two
classes, or to reflect its under-representation in the sample.

2.2. Neural network under censoring

A neural network (see, for example, Hastie et al., 2009, Chapter 11) is an over-parametrised func-
tion x — p(x, 6), that we will use in the following to estimate function 7. By over-parametrised,
we mean that 6 € R¥, with k usually much larger than d (the dimension of x). The function p(-, 6)
can also have a complex structure depending on the architecture of the network, that we present
in more details in section 4. Typically, a neural network is a function that can be represented as
shown in Figure 1. Following the notations of Figure 1, each neuron is described by a vector of
weights w (of the same size as x), a bias term b (one-dimensional), and an activation function f
used to introduce some non-linearity. Typical choices of functions f are described in Table A.1.
Following our notations, 6 represents the list of the weights and bias parameters corresponding
to all neurons of the network. For a given value of 6 and an input x, the computation of p(x, €) is
usually called “forward propagation”.

On the other hand, “backward propagation” (see Rumelhart et al., 1986) is the algorithmic
procedure used to optimise the value of the parameter 6. Since our aim is to estimate the function
7, fitting the neural network consists of trying to determine

0% = arg mgin Ly (p(-,0))

where we recall that L, has been defined in equation (3) (or, alternatively, using L, or L,y from
(4) and (5)), and is adapted to the presence of censoring since computed on the duplicated dataset
obtained from Algorithm 1.

2.3. Bagging for imbalanced data

Bagging (for bootstrap aggregating, see Breiman, 1996) is a classical way to stabilise machine
learning algorithms. The heuristic behind bagging is to avoid overfitting, and to perform a
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Figure 1. Left-hand side: representation of a simple neural network (multilayer perceptron). Each unit of the network (repre-
sented by a circle), is called a neuron (a neuron is represented on the right-hand side). X! represents the jth component of
the covariate vector X.

synthesis (through the aggregation of results) of different calibrations of the models, which sta-
bilises the results. In an ideal situation, one would use aggregation of models calibrated on totally
different datasets generated from the same distribution as the one we are targeting through our
statistical analysis. This is of course impossible, since generating the observed random sample is an
experiment that can not be replicated indefinitely, so pseudo samples are generated by bootstrap,
using the empirical distribution of the data instead of the true (unknown) one. Instead, bootstrap
resampling is used to create pseudo samples. In our case, a different neural network is fitted from
each pseudo sample, before aggregating all the results. Introducing bootstrap is expected to reduce
the variance of estimation, while avoiding overfitting.
Formally, the procedure can be described in the following way.

Algorithm 2 Bagging algorithm applied to neural networks

Require:

- a neural network architecture, that is a function 8 — p(-, 6);

- a subset of the original data (Z})1<i<m = (Zs(i))1<i<m for m < n and o a permutation of
{1,..,n}

- B the number of iterations of the algorithm (number of estimators that are aggregated).

fork < 1toBdo

1. Draw a bootstrap sample (ng)) from (Zlf)lf,-sm.
2. Fit p(-, 8'k)) on this bootstrap sample.

end for

return The final estimator is x — 7(x) = % Zle px, 0 (O

A particular difficulty in applying bagging to our classification problem is that we have a prob-
lem in which a class is under-represented amongst our observations. If we were to apply bagging
as in Algorithm 2 directly, many bootstrap samples may contain too few observations from the
smallest class to produce an accurate prediction. This could limit considerably the performance of
the resulting estimator.

For structured data, methods like SMOTE (see Chawla et al., 2002) can be used to generate new
observations to enrich the database. Data augmentation techniques are also available for image
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analysis, see Ronneberger et al. (2015). These techniques are difficult to adapt to our text anal-
ysis framework, since they implicitly rely on the assumption that there is some spatial structure
underlying data: typically, if the observations are represented as points in a multi-dimensional
space, SMOTE joins two points associated with label 1, and introduce a new pseudo observa-
tion somewhere on a segment joining them. In our situation, labels are scattered through this
high-dimensional space, and the procedure does not seem adapted.

We here propose two simple ways to perform rebalancing, that we refer to as “Balanced
bagging” and “Randomly balanced bagging” respectively.

Balanced bagging:

Algorithm 3 Balanced Bagging Algorithm

Require:
- same requirements as in Algorithm 2.

- n1 = number of desired observations in the under-represented class (corresponding to J = 1,
denoted Cy).

fork < 1toBdo

1. Draw a bootstrap sample (Z,(k))lsiszm from (Z})1<i<m, under the constraint that
(Z;k))lfjfnl € (Cy and (ka))n1+1§i§2n1 € Cy (where Cy denotes the class of observations such
that J; =0).

2. Fit p(-, #®)) on this bootstrap sample.

3. Compute the corresponding fitting error ey, and let wy = ek_l.

end for

return The final estimator is x — 7(x) = ZBI ” Zle wip(x, ok,
j=1Wj

Randomly balanced bagging:

Algorithm 4 Randomly Balanced Bagging Algorithm

Require:

- same requirements as in Algorithm 2.
- n1 = mean number of desired observations in the under-represented class.
— a such that n; + a is less than the total number of observations in Cj.

fork < 1toBdo

1. Simulate two independent variables (Up, U;) uniformly distributed on [ — g, a],
and define ng = ny + Uy, 11 = ny + Uy.

2. Draw a bootstrap sample (Z,(k))lgigﬁo-i-le from (Z})1<i<m, under the constraint that
(Z1<ii, € Crand (Zzgk))ﬁwlsisﬁwho € Co.

3. Fit p(-, 0®)) on this bootstrap sample.

4. Compute the corresponding fitting error ey, and let wy = ek_l.

end for

return The final estimator is x — 7(x) = ZB;W Zle wip(x, 6k,
j=1Wj

https://doi.org/10.1017/5174849952100004X Published online by Cambridge University Press


https://doi.org/10.1017/S174849952100004X

Annals of Actuarial Science 49

In each case, the final aggregated estimator perform the synthesis of each step, giving more
importance to step k if its fitting error ey is small.

2.4. Summary of our methodology

Let us summarise our methodology, which combines bias correction (censoring correction), and
bagging strategies to compute our predictor. First, we compute Kaplan—-Meier weights and use
them to duplicate data according to these weights as described in Algorithm 1. Then, from a given
neural network architecture, we use one of the bagging algorithms of section 2.3 to create pseudo
samples, and aggregate the fitted networks to obtain our final estimator 7 (x).

The quality of the prediction strongly depends on two aspects that have still not been
mentioned in this general description of the method:

e Pre-processing of text data: this step consists in finding the proper representation of the
words contained in the reports in a continuous space, adapted to defining a proper distance
between words.

e Architecture: the performance is strongly dependent on the type of neural networks used
(number of layers, structure of the cells and connexions).

This two points are developed in sections 3 and 4, respectively.

3. Embedding Methodology

In this section, we discuss the particularity of dealing with text data. To be analysed by neural
networks structures, text data first require to be transformed into covariates of large dimension
in an appropriate space. After discussing one-hot encoding in section 3.1, we will explain the
concept of word embedding in section 3.2. A combination of the standard Fasttext embedding
methodology (see Joulin et al., 2016a) with our database of text reports is discussed in section 3.2.1.

3.1. One-hot encoding

Since our procedure aims at automatically treating text data and use them to predict the severity
of a claim, we need to find a convenient representation of texts so that it can be treated efficiently
by our network. The first idea is to rely on one-hot encoding. The set of whole words in the
reports forms a dictionary of size V' (Vocabulary size), then each word is associated to a number
1 <j < V. Areport is then represented as a matrix. If there is / words in the report, we encode it
as a matrix X = (%, 4)1<a<v,1<b<)> With V lines and / columns. The kth column represents the kth
word of the report, say x. If this word is the jth word of the dictionary, then xjx =1 and x;; =0
for all i # j. Hence, each column has exactly one non-zero value.

To introduce some context of use of the words, the size of the dictionary can be increased by
not considering single words but n-grams. A n-gram is a contiguous sequence of n items from a
given sample of text or speech (either a sequence of words, or of letters). The vocabulary size V'
becomes the total number of #n-grams contained in the report.

Using one-hot encoding makes the data ready for machine learning treatment, but it raises at
least two difficulties:

— the vocabulary size V is huge.

— It is not adapted to defining a convenient distance between words. Indeed, we want to take
into account that there are similarities between words (synonyms, for instance, or even
spelling errors).

Hence, there is a need for a more compact representation that would define a proper metric on
words.
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Figure 2. Summary of the embedding matrix determination.

3.2. Word embedding

This process of compacting the information is called word embedding, see Bojanowski et al.

(2016), Joulin et al. (2016b). The idea of embedding is to map each column of a one-hot encoded

matrix to a lower dimension vector (whose components are real numbers, not only 0-1 valued).
Embedding consists in defining dense vector representations of the characters. The objectives

of these projections are:

— Dimension Reduction: as already mentioned, embedding maps a sparse vector of size V to a
lower dense vector of size N < V.

— Semantic Similarity: typically, words that are similar or that are often associated, will be close
in terms of embedded vectors.

To perform embedding, we will use a linear transform of vectors. This transformation is defined
by the embedding matrix W (V columns and N lines). A one-hot encoded report X is then trans-
formed into X’ = WX (according to the notations of section 2), which becomes the input of our
neural network models. How to determine a proper matrix W is described by the diagram of
Figure 2. A full description of the steps of the methodology is the following:

e a “context window” of size c = 2p + 1 is centred on the current word x: this defines a set of ¢
words (X¢_;)—p<j<p that are used as inputs of the procedure of Figure 2.

e The embedding matrix W is applied to each of these words, and an hidden layer, producing,
for the kth group of words, hy = C! Z}?:_p Wxy.

e The N-dimensional vector Ay is then sent back to the original V-dimensional space by com-
puting X = W'hy = (Xjx)1<j<v, where W’ denotes the synaptic matrix of the hidden layer
also called the “context embedding”.

The error used to measure the quality of the embedding for word k is

\%4 ~
_ Z log ( exp(xj,kx],k) )

i N
o\ i Pk

A global error is then obtained by summing all the words of the report, and by summing over all
the reports. The embedding matrix is the one which minimises this criterion. In this paper, we
consider embedding through neural networks, but alternative methodologies such as Pennington
et al. (2014) can be used.
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3.2.1. FastText

The gist of FastText, see Joulin et al. (2016a), is that instead of directly learning a vector rep-
resentation for a word (as with Word2vec, see Mikolov et al., 2013; Rong, 2014), the words are
decomposed into small character n-grams (see Bojanowski et al., 2017), and one learns a rep-
resentation for each n-gram. A word is represented as words being represented as the sum of
these representations. So even if a word is misspelled, its representation tends to be close to the
one of the well-spelled words. Moreover, FastText proposes an efficient algorithm to optimise the
choice of the embedding matrix. A pre-trained FastText embedding matrix is available, trained
on a huge number of words. Nevertheless, it has not been calibrated from on a vocabulary and
a context specific to insurance. Hence, a possibility that we develop in the following is to use the
FastText algorithm (not the pre-trained matrix), but training our embedding matrix on the corpus
of insurance reports from our database.

In the following, we distinguish between three ways of performing embedding;:

o the matrix W is determined via FastText’s algorithm once and for all at the beginning of the
procedure. The embedded words are sent as inputs into the network architectures described
in the following section 4. Only the parameters of these networks are iteratively optimised.
We call this method “static” embedding.

e The embedding is considered as a first (linear) layer of the network. The values of the embed-
ding matrix W are initialised with FastText’s algorithm, but updated at the same time the
other coefficients of the network are optimised. We call this method “non-static”.

e For comparison, we also consider the case of a random initialisation of this matrix W, whose
coefficients are then updated in the same way as in the non-static method. We refer to it as
the “random” method.

4. Network Architectures for Text Data

The architecture of neural networks is a key element that can considerably impact their perfor-
mance. We consider to types of architectures in the following:

e CNNg, described in section 4.1;
e LSTM networks which are a particular kind of RNNs, described in section 4.2.

4.1. Convolutional Neural Network

CNNs are nowadays widely used for image processing (image clustering, segmentation, object
detection. . .), see, for example, Krizhevsky et al. (2012). Kim (2014) showed that they can achieve
nice performance on text analysis. Compared to the multilayer perceptron, which is the most
simple class of neural network and corresponds to the architecture described in Figure 1, CNN
are based on a particular spatial structure that prevents overfitting.

A CNN is made of different type of layers composing the network. One may distinguish
between:

e convolutional layers: each neuron only focus on a localised part of the input, see below;

e fully connected layers: every neuron of the layer is connected to every neuron in the
following one;

e normalisation layers: used to normalise the inputs coming from the previous layer;

e padding and pooling layers: the aim is either to expand or to reduce the dimension of the
inputs coming from the previous layer through simple operations, see below;

e the final output layer that produces a prediction of the label through combination of the
results of the previous layer.

The convolutional layers are at the core of the idea of spatial structure of CNNs. They extract
features from the input while preserving the spatial relationship between the coordinates of the
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A Input B: Filter or C : Feature map
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Figure 3. An example of a convolution layer. Convolution Layer. Each coefficient ¢;; of the output matrix is obtained by a
linear combinations of coefficients a;; in a f x f square of the input matrix. The colour code shows which coefficients of the
input matrix have been used to compute the corresponding coefficient of C.

embedding matrix. Typically, they operate simple combinations of coefficients whose coordinates
are closed to each other, as illustrated in Figure 3.

In CNN terminology, the matrix B in Figure 3 is called a “filter” (sometimes “kernel” or “fea-
ture detector”) and the matrix formed by sliding the filter over the input and computing the dot
product is called the “Convolved Feature” (“Activation Map” or “Feature Map”). A filter slides
over the input (denoted by A in Figure 3) to produce a feature map. Each coefficient of the output
matrix (C in Figure 3) is made of a linear combination of the coefficients of A is a small square
of the input matrix. This linear combination is a convolution operation. Each convolution layer
aims to capture local dependencies in the original input. Moreover, different filters make appear
different features, that is different structures in the input data. In practice, a CNN learns the values
of these filters on its own during the training process (although we still need to specify parameters
such as number of filters, filter size, architecture of the network before the training process). The
higher the number of filters, the more features get extracted, increasing the ability of the network
to recognise patterns in unseen inputs.

The other types of layers are described in section 7.2. An example of CNN architecture is
described in the real data application, see Figure 7.

4.2. Recurrent Neural Networks and Long Short-Term Memory (LSTM) networks

RNN are designed to handle dependent inputs. This is the case when dealing with text, since a
change in the order of words induce a change of meaning of a sentence. Therefore, where conven-
tional neural networks consider that input and output data are independent, RNNs consider an
information sequence. A representation of a RNN is provided in Figure 4.

According to this diagram, the different (embedded) words (or n-grams) constituting a report,
pass successively into the network A. The t-h network produces an output (the final one con-
stituting the prediction), but also a memory cell ¢; which is sent to the next block. Hence, each
single network uses a regular input (that is an embedded word), plus the information coming
from the memory cell. This memory cell is the way to keep track on previous information. The
most simple way to keep this information would be to identify the memory cell with the output
of each network. Hence, the ¢-th network uses the information from the past in the sense that it
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Figure 6. LSTM notations.

take advantage of the prediction done at the previous step. Nevertheless, this could lead to a fade
of the contribution of the first words of the report, while they could be determinant.

To circumvent this issue, one can turn at LSTM networks have been introduced by Hochreiter
& Schmidhuber (1997). They can be considered as a particular class of RNN with a design which
allows to keep track of the information in a more flexible way. The purpose of LSTM is indeed
to introduce a properly designed memory cell whose content evolves with ¢ to keep relevant
information through time (and “forget” irrelevant).

As RNN, LSTM are successive blocks of networks. Each block can be described by Figure 5
(whose notations are summarized in Figure 6). The specificity of LSTM is the presence of a “cell”
¢¢ which differs from the output h;, and which can be understood as a channel to convey context
information that may be relevant to compute the following output A in the next block of the
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Table1l. Empirical statistics on the variable T, before and after correction by Kaplan-Meier weights
(“after KM”). The category “Extreme claims” corresponds to the situation where / =1 for x =3%
of the claims, while “Standard claims” refers to the 97% lower part of the distribution of the final

amount

Categories min mean var median max
Standard claims (uncensored) 0 1 1 0,75 16.3
E)'(tv}e'rﬁe'c'lé'iﬁqg ('u'n.(';éﬁséfe'd) ....... 0,25 R 383 ....... 6,93 ........ 3,03 ......... 1.6..3
Standardclams(afterKM) 0 125 226 0’83 163
Extreme claims (after KM) 0,25 5.24 11.7 4.17 16.3

network. The information contained in the cell passes through three gates. These so-called gates
are simple operations that permit to keep, add or remove information to the memory cell.

Following the diagram of Figure 5, the memory cell ¢; first goes through a multiplicative gate.
This mean that each component of the vector ¢; is multiplied by a number between 0 and 1 (con-
tained in a vector f;), which allows to keep (value close to 1) or suppress (value close to 0) the
information contained in each component of ¢;. This vector f; is computed from the new input x;
and the output of the previous block h;_;.

Next, the modified memory cell enters an additive gate. This gate is used to add information.
The added information is a vector C;, again computed from the input x; and the previous output
hs—y. This produces the updated memory cell that passes through the next block.

Moreover, this memory cell is transformed and combined with (xy, h;—;) through the third
step, to produce a new output.

To summarise, the following set of operations are performed in each unit (here, o denotes the
classical sigmoid function, and [x;, h;—1] the concatenation of the vectors x; and h;):

e Compute uy=0(0[xp, he—1] +bo), vi=0(01[xr, he—1]+b1), and w;=tanh (6>[xs,
hi—1] + by).

e The updated value of the memory cell is ¢; = u X ¢r—1 + v¢ X Wy,

e The new output is hy = o (03[x¢, hy—1] + b3) X tanh (¢¢).

5. Real Data Analysis

This section is devoted to a real data analysis. The aim is to predict a severity indicator of a claim
(which is known only when the claim is fully settled) from expert reports. The main difficulty
stands in the fact that the proportion of “severe” claims that require a specific response is quite
low. In section 5.1, we present the structure of the database and its specificities. Section 5.2 is
devoted to the inventory of the different network structures and embedding methods that we
use. The performance indicators that can be used to assess the quality of the method are shown
in section 5.3. The results and discussion is made in section 5.4. Section 5.5 discusses the use of
alternative methods for imbalanced text data.

5.1. Description of the database

The database we consider gathers 113,072 claims from a French insurer, and corresponding expert
reports describing the circumstances. These reports have been established at the opening of the
claim, and do not take into account counter-expertises. Amongst these claims, 23% are still open
(censored) at the date of extraction. Empirical statistics on the duration of a claim T are shown in
Table 1.

For the claims that are closed, different severity indicators are known. These severity indicators
have been previously computed from the final amount of the claim: I =1 if the claim amount
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Table 2. Summarised characteristics of the reports. The dataset is split into the train set (con-
taining the observations used to fit the parameter of the network), the validation set (used to
tune the hyperparameters), and the test set (used to measure the quality of the model). The
vocabulary size “with n-grams” is the total of 1-grams, 2-grams and 3-grams

Average sentence length 10 words for a standard claim (12 for an extreme one)
Maxsentencelength e et ettt ot 25 e oo e
'Mvi'nv'séﬁtéﬁcvé [ength SN 3 S
Vocabulary size 9,749 (without n-grams) 256,020 (with n-grams)
Tféin..sets.i.ze.. AR ..73,6.34.. il > s 4
Testset5|ze SO N 20’971 e
Va||dat|onsets|ze N 18417 S

Table 3. Ranking of the words (translated from French)
used in the reports, depending on the category of claims
(Extreme corresponds to /=1 and Standard to /= 0.)

Rank Extreme Normal

1 Insurer 90% Insurer 87%

2 Thirdparty56%  Thirdparty61%
3 . . |nJured 33% [ Front4e% i
4 To ram 30% Way 41%

5 . HT‘o‘Hiit>21410/l‘,m s Backs|de4o% —
6 . . Motorcycl ..1.8%. R Leftzo% el
7 . Dnveru% s nghtls% S
8 Pedestrian 16% Side 17%

9 Inverse15%  Toshock14%
10 Deceased13%  Control10%

exceeds some quantile of the distribution of the amount, corresponding to the x% upper part of
the distribution. In the situation we consider, this percentage x ranges from 1.5 to 7, which means
that we focus on relatively rare events, since I = 0 for the vast majority of the claims.

Some elements about the structure of the reports are summarised in Table 2 below. To get a
first idea of which terms in the report could indicate severity, Table 3 shows which are the most
represented words, distinguishing between claims with I = 1 and claims with I = 0.

In both cases, the two most frequent words are “insurer” and “third party”, which have to be
linked with the guarantee involved. For extreme claims, we notice a frequent presence of a term
related to a victim, for example, motorcycle or pedestrian. In addition there are also words related
to the severity of the condition of a victim, such as injured or deceased. Moreover, two verbs
are present in our top, “to ram” (we used this translation of the French verb “percuter”) and “to
hit” (in French, “frapper”), which are related to some kind of violence of the event. On the other
hand, for “standard” claims, the most frequent words are related to the car. Hence, reports on
extreme claims use the lexical field of bodily damage, while the others use the terminology related
to material damage.

Let us give two examples of phrases for each category (standard claim and severe claim):

e standard claim:

1. pile-up on the road, 58 vehicles involved.
2. Insured gets hit at the rear, shock to the rear bumper.
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Table 4. Hyperparameters of the RNN used in the real data analysis

CNN LSTM
Dense size 1 400 500
Denses|zez e 250 e 300 S
Ridge coefficienta 0001 0004
NB filter 1,024 Not for LSTM
. F||ters|ze e [1’2] [ Notfor |_s'|'M !
NB umts e NotforCNN e [256,123] -

e Extreme claim:

3. insured hits the solid ground of a roundabout and dies during the transfer to emergency.
4. Third party does not stop at a stop sign and hits the insured in the front right, air bag
triggered.

As one can see from these example, one of the specificities is that reports are often written in a
short way, with a syntax which can sometimes be very brief. The vocabulary is also very specific to
car insurance. On the other hand, in the third example, one can see that the conclusion that the
claim is severe is obvious, since someone died. But example 4 is less obvious. A shock in the front
is reported, but without explicit reference to the state of the victims, identification of such a claim
as severe is expected to be much harder.

5.2. Hyperparameters of the networks and type of embedding
Let us recall that our procedure is decomposed into three steps:

e A preliminary treatment to correct censoring (Kaplan-Meier weighting);

e Embedding (determination of some appropriate metric between words);

e Prediction, using the embedded words as inputs of a neural network. Depending on the
embedding strategy, the prediction phase is either disconnected from the embedding (static
method) or done at the same time (after a FastText initialisation, non-static method, or a
random initialisation, random method).

For the last phase, we use LSTM and CNN described in section 4. For each of these architectures,
we compare the different variations (static, non-static and random). The static and non-static
classes of method are expected to behave better, taking advantage of a pre-training via FastText.
For the LSTM networks, we consider two cases: when the words are decomposed into n-grams
(n=1,2,3) or without considering n-grams. In each case, the idea is to measure the influence of
the different rebalancing strategies.

The weights in each of the networks we consider are optimised using the Adagrad optimiser,
see Duchi et al. (2011). Training is done through stochastic gradient descent over shuffled mini
batches with the Adagrad update rule. The architecture and hyperparameters of the LSTM and
CNN are shown in Table 4 and Figures 7 and 8 below. A ridge regularisation is applied to the
layer kernel of the output layer, that is introducing a L?-penalty multiplied by a penalisation coef-
ficient or. These parameters are used in every CNN/LSTM model that is considered. The codes are
available on https://github.com/isaaccs/Insurance-reports-through-deep-neural-networks.

Our model is implemented using Tensorflow, see Abadi et al. (2015), on Python for deep
learning models, and we use sk-learn, see Pedregosa et al. (2011), for the Machine Learning
models.
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Figure 8. Representation of the LSTM network used in the real data analysis. The output of the network is followed by a

multilayer perceptron.

5.3. Performance indicators

In this section, we describe the criteria that are used to compare the final results of our models.

Due to the small proportion of observations such that I = 1, measuring the performance only by
the well-predicted responses would not be adequate, since a model which would systematically
predict 0 would be ensured to obtain an almost perfect score according to this criterion. Let us

introduce some notations:

e TN is the number of negative examples (I = 0) correctly classified, that is “True Negatives”.

e FP is the number of negative examples incorrectly classified as positive (I = 1), that is “False

Positives”.

e FN is the number of positive examples incorrectly classified as negative (“False Negatives”).
e TP is the number of positive examples correctly classified (“True Positives”).

We then define Recall and Precision as

TP
Recall = ——,
TP+ FN
L TP
Precision = ———
TP+ FP
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So, Recall is the proportion of 1 that have been correctly predicted with respect to the total number
of 1. For Precision, the number of correct predictions of 1 is compared to the total of 1-predicted
observations. F;-score (see, for example, Akosa, 2017) is a way to combine these two measures,
introducing

2 x Recall x Precision

Recall + Precision

The F;-score conveys the balance between the precision and recall.
Remark: Fj-score is a particular case of a more general family of measures defined as

P (14 B?%) x Recall x Precision
P = " Recall + B2 x Precision

where B is a coefficient to adjust the relative importance of precision versus recall, decreasing
leads a reduction of precision importance. In order to adapt the measure to cost-sensitive learning
methods, Chawla et al. (2002) proposed to rely on

. ¢(1,0)
~¢(0,1)

where ¢(1,0) (resp. ¢(0,1)) is the cost associated to the prediction of a False Negative (resp. of a
False Positive). The rationale behind the introduction of such Fg measure is that misclassifying
within the minority class is typically more expansive than within the majority class. Hence, con-
sidering the definition (6) of 8, improving Recall will more affect Fg than improving Precision. In
our practical situation, it was difficult to define a legitimate cost for such bad predictions, which
explains why we only considered F;-score amongst the family of Fg-measures.

B

(6)

5.4. Results

As we have already mentioned, I = 1 corresponds to a severe event, that is the loss associated with
the claim corresponds to the x% upper part of the loss distribution. We made this proportion
vary from 1.5% to 7% to see the sensitivity to this parameter. Table 5 shows the benefits of using
the different resampling algorithms of section 2.3 in the case where the proportion of 1 in the
sample is 3% (which is an intermediate scenario considering the range of values for x that we
consider). The neural networks methods are benchmarked with a classical logistic predictor, and
two other competing machine learning methodology (Gradient Boosting and Random Forests,
see Friedman et al., 2001). To make think comparable, all these alternatives methodologies are
combined with the FastText embedding (as in the static methods). Moreover, we apply the same
resampling algorithms of section 2.3 to these methods. For Algorithm 4, we considered a balanced
case, where the proportion of 1 in the bootstrap samples is 50%, and a “lightly” rebalanced case
where these proportion is only 10%. This choice of 10% was motivated by Table 1 in Verdikha et al.
(2018): it corresponds to a situation that the authors qualify as “moderately imbalanced”, instead
of “extremely imbalanced”. In Table 6, confidence intervals (CI) are provided for the performance
indicators.

Let us first observe that the network methodologies lead to a relatively good precision if one
does not use rebalancing strategies. This is due to the fact that precision only measures the pro-
portion of true positive amongst all the claims that have been predicted to be 1. Typically, the
networks methodologies, in this case, predict correctly the “obviously” severe claims, but miss lots
of these severe claims. This explains why recall and F; -score are much lower.

The rebalancing algorithm mostly benefit the machine learning methodologies. One also
observes that the embedding methodologies based on FastText (static and non-static methods)

https://doi.org/10.1017/5174849952100004X Published online by Cambridge University Press


https://doi.org/10.1017/S174849952100004X

Annals of Actuarial Science 59

Table 5. Influence of the constrained bagging algorithms of section 2.3. For “Classical,” no rebalancing algo-
rithm has been used. “Balanced” corresponds to algorithm 2.3 with an equal proportion of 1 and 0 in each
sample. “Randomly” corresponds to algorithm 3 with an equal proportion (in average) of 1 and 0 in each sample.
“Lightly” corresponds to Algorithm 4 with 10% of 1 (in average) in each sample. In the Random Forest algorithm,
we used 200 trees, with a Gini criterion and a maximal depth of 3. In the Gradient Boosting algorithm, 200 trees
were used, and a deviance loss with a learning rate of 0.1

Method Model Type embedding Precision Recall F1l-score

Logistic static 0.26 0.30 0.28
L

Gradient Boosting static 0.17 0.31 0.22

. [ e e e oae
. L
i e

rand 0.78 0.06 0.11

LSTM no n-grams static 0.58 0.14 0.22
S
L

LSTM n-grams ~ staic o057 013 021

non-static 0.57 0.14 0.22

Logistic static 0.34 0.34 0.34
e P
GradlentBoostmg T S

' rand 028 0.36 1030

CNN  static 028 035 031
B S

rand 0.34 0.31 0.32
T — S
non-static 0.28 0.46 0.35
LSTMngrams L
T e
T
Logistic static 0.30 0.38 0.34
Random Forest static 0.22 0.43 0.29
Grad|entBoost|ng L
i
NN e
non-static 0.33 0.42 0.37

Randomly
rand 0.33 0.33 0.33
T —— P
B T P
P
LSTM n-grams static 0.23 0.53 0.32
B ST
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Table 5. Continued

Method Model Type embedding Precision Recall F1l-score
Logistic static 0.34 0.39 0.36
P S
GradlentBoostmg e

rand 0.43 0.37 0.40
. L
et P
e
P— T e
non-static 0.47 0.40 0.43
P
T — S
o S

leads to better performances. The performance of all techniques in terms of F;-score is not spec-
tacular (in the sense that it is not close to 1), but this has to be related with the complexity of the
problem (predicting a relatively rare class of events). Compared to the basic logistic method (after
embedding), the best network (LSTM without considering n-grams, with the lightly balanced
bagging algorithm) leads to an improvement of 20% in terms of F)-score.

Let us also observe that the LSTM network architecture, which does not rely on n-grams
behaves better than the LSTM which actually uses these n-grams. This may be counterintuitive,
since the use of n-grams is motivated by the idea that one could use them to take the context of the
use of a word into account. Nevertheless, considering n-grams increases the number of parameters
of the network, while context information is already present in the embedding methodologies. On
the other hand, CNN methods have lower performance than LSTM ones, but the performances
stay in the same range (with a computation time approximatively four times smaller to fit the
parameters of the network).

Table 7 shows the influence of the proportion x on the performance (we only report a selected
number of methods for the sake of brevity. We observe that the performance of the logistic
method decreases with the proportion of 1 contained in the sample. On the other hand, the
network-based methods’ performance stay relatively stable.

5.5. Alternative methods for text analysis of imbalanced data

Amongst the techniques that are frequently used when it comes to dealing with imbalanced data,
SMOTE, see Chawla et al. (2002), has not been used in our context, because this approach is
designed for image and not adapted to text analysis. ForesTexter, see Wu et al. (2014), is an algo-
rithm based on random forests which can be used for text categorisation, with promising results.
Therefore, we compared the results of our approach with ForesTexter. Through this method, we
obtained a Precision of 0.58, a Recall of 0.07 and a F1-Score of 0.12 (when the percentage of
1is 3%).

Hence, the Precision is much better for ForesTexter. This means that, when ForesTexter pre-
dicts an extreme claims, it tends to be right (at least, more than with our procedure). On the other
hand, it has a poor performance in terms of Recall, which means it tends to “under-detect” these
extreme claims. In other words, this approach tends to only detect obvious extreme claims. For
insurance applications, the F1-Score seems a much adapted metric.
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Table 6. Cl of the scoring. The Cl for Precision and Recall (columns 4 and 5) are computed using a beta distribution following the methodology of Goutte & Gaussier (2005). For

bagging (columns 6-8), the Cl is based on percentile bootstrap following Hesterberg (2014)

Precision Cl for Recall Cl for F1 Cl for
Method Model Type embedding Cl precision Cl recall bagging estimator bagging estimator bagging estimator
Logistic static (0.976,0.981) (0.975, 0.98) None None None

‘"Random Forest

Gradient Boosting

static (0.965,0.971)

i}éﬁdluiluiuluil(&Léé;6393yluiulu
0. 998 0.999

. Statlc. e

Stat|c (0945 0953).,., .

(0.974,0.978)

(0977 0981)

None

None

None

None

None

None

None

None

None

None

None

None

LSTM n-grams

N ( ) fééf 69%4)”.”...”.v
_— e ﬂancvv”"”v(0998 0999)”.,.,(0969.0974) vvvvvvvvvvv N
rand (0998 0.999) (0968 0.973) None None None
LSTM no n-grams Cstatic (0.996,0.998)  (0.971,0.976)  None " None “None
.hohnﬁéﬂé ........ (bbéé,bbéé) ...... (déf,déf& ........... Mmoo Mmoo Mmoo
S (Q997;6999)”'”vﬂfdééé,d974)”v'”v” o o o
LSTM n-grams static (0995 0997) (0.971,0.976) None None None
* non-static (0.996,0.998)  (0.971,0976)  None None None
Logistic static (0.901,0.911) (0.968,0.973) (0.33,0.35) (0.29, 0.34) (0.33,0.34)
e i (0925,0933) ........ (0959 0965) ........ (025, d..27.) ............ (034, 040) ........... (O 30 32) .....
GradlentBoostlng e (0939,0945)(0956, 0962) (020’024) (031,036) ”(O 24028 B
rand (0.932,0.94) (0.959, 0.964) (0.17,0.37) (0.22,0.67) (0.25,0.32)
AN e (0 918 . 926) B (0962,0967) I (017’029) B (034,067) e (027,034)
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LSTM no n-grams static (0.953, 0.959) (0.961,0.9663) (0.27,0.46) (0.04, 0.49) (0.07,0.37)
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Table 7. Performance of the different methodologies (combined with the different embedding
technics). The first column indicates the percentage of 1 in the sample

Extreme values (%) Model Type embedding Precision Recall fl-score
Logistic static 0.19 0.24 0.21
rand 0.38 0.41 0.39
AN T
s O
rand 0.42 0.33 0.37
LSTM o static 034 047 039
P P
. Loglstlc B O o
rand 0.39 0.47 0.43
CNN  static 037 048 042
e
B
LSTM static 0.35 0.49 0.40
P
a5 ‘L'oéi'st'i‘c” L
s PO
CNN static 0.40 0.46 0.43
L
B S s
L PP
non-static 0.43 0.37 0.40
Log|st|c i
e L oae o s
CNN static 043 0.46 0.44
7 non-static 0.38 0.46 0.41
Crand 032 0.34 0.33
o i o e o
P

6. Conclusion

In this paper, we proposed a detailed methodology to perform automatic analysis of text reports
in insurance, in view of predicting a rare event. In our case, the rare event is a particularly severe
claim. This question of clustering such claim is of strategic importance, since it allows to operate
a particular treatment of the claims that are identified as “extreme”. Four steps of our method are
essential:

e correction of censoring via survival analysis techniques;

e compensation of the rarity of the severe events via rebalancing bagging techniques;

e a proper representation of the words contained in the reports via an appropriate embedding
technique;

e the choice of a proper neural network architecture.

LSTM networks, associated with a performant embedding method, appear to be promising
tools to perform this task. Nevertheless, learning rare events is still a hard task, especially in
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such insurance problem where the volume of data is limited, especially when dealing with such a
specific vocabulary. Insurance is, of course, not the only sector where specific terminologies can
influence the behaviour of such techniques, see, for example, Lee et al. (2020) for similar biomedi-
cal problematics. The integration of additional variables to increase the information on the claims
should be essential to improve the prediction. Moreover, let us mention that, in this work, we
only considered information available at the opening of the claim to predict its outcome. For long
development branches, the incorporation of updated information on the evolution of the claims
could be determinant and should be incorporated in the methodology.

Acknowledgements. The author acknowledge the support of Crédit Agricole Assurances and of Agence Nationale de la
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A. Appendix
A.1. Typical choices of activation functions for neural networks
A list of typical activation functions is provided in Table A.1.
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Table A.1. Typical choices of activation functions

Name Function
Sigmoid function R — [0,1]
1

Hyperbolic tangent tanh:R — [—1,1]

X+ 20(2x)+1
RelLU f:R - Rt

X — max (0, x)
Leaky RelLU f:R - Rt

X > axly<o + x1y-o wherea > 0.
Swish function (Ramachandran et al., 2017) o:R — [0,1]
X = ew

Table A.2. Range of values on which the hyperparame-

ters have been optimised

Hyperparameter Grid
Embedding dimension 32-126
‘n—vgrams cHarsctérﬁfofehbedding v ‘1—v5 o
Batch size 8-256
Numberofmdden[ayers e 1_5 i
Number of neuronsineach layer ~ 450-50
‘NLvaber offil{ér§ fdrthe CNN - -32;1024-
Size of the filters 1-5

A.2. Additional type of layers in a CNN

Zero padding. Zero padding is the simplest way to avoid diminishing too much the dimension
of the input when going deeper into the network. As we can see above in Figure 3, a convolution
step will produce an output C of smaller dimension than A. Moreover, when dealing with our text
data, it is useful to control the size of our inputs. Let us recall that we want to automatically analyse
reports to predict the severity of a claim. These reports do not all have the same size in terms of
words. Zero padding creates a larger matrix by adding zeros on the boundaries, as shown in the
example of Figure A.1. Similar issues are present when dealing with images that may not all have
the same number of pixels.

Pooling Step. Pooling steps work similarly as convolution layers, but applying locally a function
that may not be linear. An example is shown in Figure A.2.

Let us note that, in the example of Figure A.2, the functions “Average” and “Sum” may be seen
as linear filters, as shown in Figure 3 (for example, function “Sum” is related to a filter B whose
coefficients are all 1). The only difference is that the parameters of a convolution layer evolves
through the calibration process of the network, while the coefficients of a pooling layer are fixed.

A.3. Hyperparameters

We list below the hyperparameters used in the different networks. A grid search has been used to
determine which set of hyperparameters lead to the best performance. Table A.2 lists the range of
values on which the optimisation has been done. The embedding dimension denotes the dimen-
sion N after reduction of the vocabulary V. Batch size is a parameter used in the Batch Gradient
Descent (used in the algorithm of optimisation of the weights of the networks), see Bengio (2012).
The number of hidden layers refer to the final multilayer perceptron block used at the output of
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Hyperparameters of the embedding matrix used

Training algorithm

CBOW

Sample

Embeddmgdlmensmn e

Window context

Min word count

n-grams

le-3
100

Minimum length

Maximum length of char n-grams

A
1010f10/0[0[0]  ( EreRETGTETETo
101010/0 /0|0
1010100010l |0 /20/20/20,0]0]0(0
101010/0|0 |0 0 (10|10/1] 0|00
101010/0/0 (0 0 |10(10 0o(0|0
101010/0/0 |0 0|10/10/10/0|0 |0 |0
p=0 0 [10{10/10/ 0|0 |0 |0
0/0j0/0/0|O|O0]|0O
p=1
Figure A.1. Zero padding.
. 69
ié 1/9
al61 A 314
1/0/9 914 |52+ x [+ 1
2(0(8
s 0 -1
: | 20
| 1114
Sum
117

Figure A.2. Example of a pooling layer: each function is applied to a moving square of input coefficients of size 2 x 2.

LSTM and CNN networks. A separate Table (see Table A.3 is devoted to the parameters involved

in the embedding part of the procedure.

All the codes are available at the following url:

https://github.com/isaaccs/Insurance-reports-through-deep-neural-networks.
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