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00-656 Warszawa, Poland
(e-mail: jinleim@mail.ustc.edu.cn)

§ Institut für Mathematik, Universität Paderborn, Warburger Strasse 100,
33098 Paderborn, Germany

(e-mail: lusky@math.uni-paderborn.de)
¶ School of Mathematical Sciences, South China Normal University, Guangzhou,

Guangdong 510631, China
(e-mail: yxqiao@mail.ustc.edu.cn)

(Received 20 September 2017 and accepted in revised form 8 November 2018)

Abstract. By an assignment we mean a mapping from a Choquet simplex K to probability
measure-preserving systems obeying some natural restrictions. We prove that if 8 is an
aperiodic assignment on a Choquet simplex K such that the set of extreme points exK
is a countable union

⋃
n En , where each set En is compact, zero-dimensional and the

restriction of 8 to the Bauer simplex Kn spanned by En can be ‘embedded’ in some
topological dynamical system, then 8 can be ‘realized’ in a zero-dimensional system.

Key words: assignment, zero-dimensional system, isomorphic model, measure-theoretic
isomorphism
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1. Introduction
For a convex set K we shall denote by exK the set of its extreme points. A metrizable
Choquet simplex (which in this note will be briefly called just a simplex) is a compact
convex subset K of a metric-linear space endowed with a convex metric such that every
point p ∈ K is the barycenter of a unique probability distribution supported by exK (we
are using the Choquet–Meyer characterization of simplices; see e.g. [Ph01]). A simplex
K is called Bauer if exK is closed (and hence compact). Any simplex is a compact
connected space, but its set of extreme points may have various topological attributes: it
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may but need not be compact, sigma-compact or zero-dimensional, etc. We will shortly
say that the simplex has any of the above topological properties, meaning that its set of
extreme points has it. For instance, we will speak about zero-dimensional, sigma-compact
simplices. Exception: since Bauer simplices already have their name, we will not use the
confusing term ‘compact simplex’.

A face of a simplex K is a compact convex subset F ⊂ K such that exF ⊂ exK . A
face of a simplex is a simplex.

By a topological dynamical system we mean a pair (X, T ), where X is a compact metric
space and T : X→ X is a homeomorphism. It is well known that the set MT (X) of all T -
invariant Borel probability measures (in the following we will skip the adjectives ‘Borel’
and ‘probability’) on X , equipped with the weak-star topology, is a simplex and we shall
call it the simplex of invariant measures. The standard metric on measures

dist(µ, ν)=
∑
n≥1

2−n
∣∣∣∣∫ fn dµ−

∫
fn dν

∣∣∣∣,
where ( fn)n≥1 is some fixed sequence of normed continuous functions linearly dense in
C(X) (the space of continuous real functions on X with the uniform norm), is well known
to be convex and it induces the weak-star topology. We denote by Me

T (X) the collection
of all ergodic T -invariant measures on X , which coincides with the collection of extreme
points of MT (X). By a zero-dimensional system we understand a topological dynamical
system (X, T ), where the space X is zero-dimensional.

By an assignment we will understand a mapping 8 defined on a simplex K , whose
‘values’ are measure-preserving systems (by a measure-preserving system we mean a
standard probability space (X, 6, µ) together with a measure-automorphism T : X→ X ).
We also require that the assignment obeys the following rules:
(1) extreme points are assigned ergodic measure-preserving systems,
(2) if p ∈ K is the barycenter of a probability distribution ξ on exK , then

8(p)≈
∫
8(e) dξ(e),

where ‘≈’ denotes measure-theoretic isomorphism and the integral is realized on a
disjoint union of the spaces realizing the assignments8(e) for e ∈ exK (we will say
that 8 is harmonic).

Two assignments, 8 and8′ defined on K and K ′, respectively, are said to be equivalent if
there exists an affine homeomorphism π : K → K ′ such that 8(p)≈8′(π(p)) for every
p ∈ K . Since 8 and 8′ are both harmonic, it suffices to check that 8(e)≈8′(π(e)) for
e ∈ exK . By a face of an assignment 8 on a simplex K we mean the restriction of 8 to a
face of K .

An assignment 8 on K is called aperiodic if 8(e) is aperiodic for each e ∈ exK .
For a topological dynamical system (X, T ), the assignment 8 on MT (X) defined by

8(µ)= (X, Borel(X), µ, T ) is called the natural assignment of (X, T ). We say that an
assignment can be realized (embedded) in a topological dynamical system (X, T ) if it is
equivalent to (a face of) the natural assignment of (X, T ).

The general question about a characterization of assignments realizable in topological
dynamical systems is wide open and seems to be hopelessly difficult. It is not only the
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question about a possible affine-topological shape of the set MT (X) in a topological
dynamical system (X, T ) but also about the possible configuration of ergodic systems
placed over the extreme points of this set. For example, one can ask whether it is possible
to have, in one topological dynamical system (perhaps minimal), a sequence of measures
isomorphic to, say, irrational rotations, converging to, say, a Bernoulli measure. Or is
it possible to have a closed arc of Bernoulli measures parametrized continuously and
increasingly by their entropies, and no other ergodic measures. The variety of imaginable
questions of this kind is endless. So far, there exist only partial results and most of them
concern zero-dimensional systems. Let us review briefly some of them.
(1) On any simplex K there exists an assignment realizable in a minimal zero-

dimensional system (more precisely, in a Toeplitz subshift [Dow91]).
(2) On any simplex K , given any non-negative affine function h on K , of the class

LU (increasing limit of a sequence of upper semicontinuous functions), there
exists an assignment realizable in a zero-dimensional minimal system such that the
resulting entropy function on invariant measures coincides with h. If h is upper
semicontinuous, the minimal system can be a subshift [DS03].

(3) The natural assignment of any aperiodic zero-dimensional system can be realized in
a minimal zero-dimensional system [Dow06].

(4) Any aperiodic assignment that can be embedded in a zero-dimensional system can
also be realized in a zero-dimensional system [Dow08].

(5) If K is a simplex such that exK is countable, then any aperiodic assignment on K
can be realized in a Cantor minimal system [KO06].

The result (5) allows us to answer positively all questions of the kind ‘can there be a
sequence of such and such measures converging to such and such measure’. The result (4)
has many applications; in particular, it allows us to settle the above-mentioned question
about an arc of Bernoulli measures; it also allows us to construct universal topological
systems (even minimal) which contain (up to isomorphism) every possible aperiodic
ergodic system (both invertible and non-invertible). The result (4) will be heavily used
also in this note.

Since all the above results concern zero-dimensional systems, the following question
seems to be of crucial importance toward understanding the assignments realizable in all
topological dynamical systems.
(*) Is every natural assignment arising from an aperiodic topological dynamical system

equivalent to a natural assignment arising from a zero-dimensional dynamical system?
Aperiodicity restriction is added in order to avoid some trivial counterexamples, such as
the identity map on a connected space. There is a large class of systems which have the
so-called small boundary property (SBP), for instance all invertible finite entropy systems
which possess an aperiodic minimal factor (see [Lin99]). It is fairly obvious that systems
with SBP have so-called isomorphic zero-dimensional extensions (see e.g. [BD04]) and,
since isomorphic extensions preserve natural assignments (up to equivalence), for such
systems the answer to the question (*) is positive. It is worth mentioning that it remains an
open problem whether possessing an isomorphic zero-dimensional extension is equivalent
to SBP. But the property asked for in (*) is much weaker than possessing an isomorphic
zero-dimensional extension, and the answer to that question beyond systems with SBP is
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unknown and seems hopelessly difficult. Any progress in this direction is valuable. In this
paper we will provide the following partial answer.

THEOREM 1.1. Let (X, T ) be an aperiodic topological dynamical system such that
MT (X) is a zero-dimensional Bauer simplex or a zero-dimensional sigma-compact
simplex†. Then the natural assignment arising from the system (X, T ) can be realized
in a zero-dimensional system.

In fact, our main achievement is the following, slightly more general, theorem (of which
Theorem 1.1 is an obvious particular case).

THEOREM 1.2. Suppose that 8 is an aperiodic assignment on a simplex K such that
exK is a countable union

⋃
n≥1 En , where every set En is zero-dimensional and compact.

Assume that for each n the restriction of 8 to the Bauer simplex Kn spanned by En

can be embedded in a topological dynamical system. Then 8 can be realized in a zero-
dimensional system.

The difference between the above two theorems is that in the latter we demand separate
embeddings for the restrictions 8|Kn . This does not directly imply the existence of a
joined realization for 8, which is assumed in the former theorem (obviously, the converse
implication holds).

2. Preliminaries
In this section, we summarize necessary notions; in particular, we discuss array systems
and markers in aperiodic systems. For details we refer to [Boy83, DK16]. We let (X, T )
and (Y, S) be topological dynamical systems.

For µ ∈MT (X), a point x ∈ X is said to be generic for µ if the sequence of measures
(1/n)

∑n−1
i=0 δT i (x) tends to the measure µ as n→+∞, in the weak-star topology, where

δx denotes the Dirac measure at the point x . It is well known that for any µ ∈Me
T (X),

the set of generic points in X has full µ-measure. We say that MS(Y ) is a copy of
MT (X) if (Y, S) and (X, T ) are topologically conjugate. It is clear that then the natural
assignments on MS(Y ) and MT (X) are equivalent via a mapping π induced by the
topological conjugacy.

Let 31, 32, . . . be finite sets each containing at least two elements (called alphabets,
endowed with the discrete topology, the cardinalities need not be bounded). By an array
system (over 31, 32, . . .) we mean any closed, shift-invariant subset of the Cartesian
product

∏
k≥1 3

Z
k (endowed with the product topology). Each element of the array system

can be pictured as an array x = (xk,n)k≥1,n∈Z such that each symbol xk,n belongs to 3k .
Any finite array of the form

a = a[1,k]×[0,n−1] = (ai, j )1≤i≤k, 0≤ j≤n−1

with each entry ai, j belonging to 3i will be called a (k × n)-rectangle. The product
topology is generated by the collection of all cylinder sets corresponding to centered

† Recall that we consider properties of Me
T (X). We remark that a set is zero-dimensional and sigma-compact if

and only if it is a countable union of zero-dimensional compact sets.
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(k × (2n + 1))-rectangles a (with k and n ranging over N), defined as follows:

[a] = {x : x[1,k]×[−n,n] = a[1,k]×[0,2n]}.

The array system is by default regarded with the action of the horizontal shift σ given
by

(σ (x))k,n = xk,n+1, x = (xk,n)k≥1,n∈Z.

Speaking about an array, we will refer to the indices k ≥ 1 and n ∈ Z as vertical and
horizontal coordinates (positions), respectively.

Notice that regardless of the cardinalities of the alphabets 3k (as long as each of these
cardinalities is at least two), the product

∏
k 3k is homeomorphic to the Cantor set C.

Thus, the system
∏

k 3
Z
k (with the horizontal shift σ ) is conjugate to CZ (with the shift).

The latter is the universal zero-dimensional system in the sense that any zero-dimensional
system is topologically conjugate to a subsystem of (CZ, σ ). We shall call the simplex of
invariant measures of the universal system (CZ, σ ) the universal simplex. Recall that it
has the affine-topological structure of the Poulsen simplex, i.e., its extreme points form a
dense subset.

Let us return to the case of a general topological dynamical system (X, T ). Let
(P(k))k∈N be a sequence of finite Borel-measurable partitions of X . For each k, let λ 7→ Pλ
be a bijection from a finite alphabet 3k onto P(k). By the array-name of a point x ∈ X
under the action of T with respect to (P(k))k∈N we shall mean the array (xk,n)k≥1,n∈Z
obtained by the rule:
• the value xk,n is the symbol λ ∈3k if and only if the point T n(x) is in the subset

Pλ ∈ P(k) of X .
Notice that the closure of all array-names (with respect to (P(k))k∈N) is an array system.
Note that if X is zero-dimensional then there exists a sequence of clopen partitions (P(k))k
which separate points. It is not hard to see that then (X, T ) is topologically conjugate to
the array system obtained as the collection of all corresponding array-names (which in this
case is already closed).

Let (X, T ) be a zero-dimensional system. By an n-marker we mean a clopen set F ⊂ X
such that:
(1) no orbit visits F twice in n steps (i.e., F, T−1 F, . . . , T−(n−1)F are disjoint);
(2) every orbit visits F at least once (by compactness, this implies that for some N ∈ N,

we have F ∪ T−1 F ∪ · · · ∪ T−(N−1)F = X ).
We have the following key fact.

THEOREM 2.1. (Krieger’s marker lemma, aperiodic case) If (X, T ) is an aperiodic zero-
dimensional system, then for every n ∈ N there exists an n-marker. The parameter N in
(2) above can be selected equal to 2n − 1.

3. Special case
To prove Theorem 1.2, we first deal with the following special case, which will be used in
the main proof.
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THEOREM 3.1. Assume that 8 is an aperiodic assignment on a zero-dimensional Bauer
simplex K and that 8 can be embedded in a topological dynamical system. Then 8 can
be realized in a zero-dimensional system.

Theorem 3.1 will be proved in two major steps. At first, in Theorem 3.2 below, we
give a slightly weaker statement, saying that the assignment8 can be embedded in a zero-
dimensional system. We will take care of surjectivity later.

THEOREM 3.2. Assume that 8 is an aperiodic assignment on a zero-dimensional Bauer
simplex K and that 8 can be embedded in a topological dynamical system. Then 8 can
be embedded in a zero-dimensional system.

Proof. Let (X, T ) be a topological dynamical system. Assume that K is a zero-
dimensional Bauer simplex which is a face in MT (X) and that K contains no periodic
measures. We need to construct a zero-dimensional system (X ′′, T ′′) and a face K ′′ of
MT ′′(X ′′) such that the assignments on K and K ′′ obtained as the restrictions of the natural
assignments arising from (X, T ) and (X ′′, T ′′), respectively, are equivalent.

We start by inductively constructing a one-parameter family (P(k)t )k∈N with t ∈ [0, 1]
of sequences of partitions of X such that

lim
k

diam(P(k)t )= 0

uniformly in t .
Fix a decreasing to zero sequence (r (k)1 )k∈N. For each k, choose a finite open cover

U (k)1 of X which consists of open balls B(k)(x (k)1 , r (k)1 ), . . . , B(k)(x (k)mk , r (k)1 ) of radius r (k)1 .
There exists a positive number r (k)0 < r (k)1 such that the balls B(k)(x (k)1 , r (k)0 ), . . . ,

B(k)(x (k)mk , r (k)0 ) still form a cover U (k)0 of X . The covers U (k)t for t ∈ [0, 1] are then
constituted by the balls B(k)(x (k)1 , r (k)t ), . . . , B(k)(x (k)mk , r (k)t ) with radii r (k)t ∈ [r

(k)
0 , r (k)1 ]

depending continuously and increasingly on t .
Next, for each k ∈ N and t ∈ [0, 1], we let P(k)t be the finite partition of X consisting of

all intersections of the form

Pηt =
mk⋂
i=1

(Bi )
η(i),

where η : {1, . . . , mk} → {0, 1}, U (k)t = {B1, . . . , Bmk }, (Bi )
0
= Bi and (Bi )

1
= X \ Bi

(some of the sets Pηt may be empty). Since for η ≡ 1 the set Pηt is empty (and we agree
that the empty set has diameter zero), all members Pηt of P(k)t have diameters at most 2r (k)1 .
Thus, limk diam(P(k)t )= 0, uniformly in t , as required.

For a family P of subsets of X , we denote by ∂P the union of all boundaries of the
members of P . Notice that ∂P(k)t = ∂U

(k)
t , which equals the union of boundaries of finitely

many balls of radius r (k)t and with centers not depending on t . Since the boundary of a ball
of radius r is contained in the sphere of radius r , the boundaries of balls with a common
center and different radii are pairwise disjoint (in a zero-dimensional space, two balls with
a common center and of different radii may be equal, but then their boundary is necessarily
empty). Thus, at most countably many of the boundaries of balls with a common center
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may have positive measure for a fixed probability measure µ. It follows that the set

I+µ =
{

t ∈ [0, 1] : µ
(⋃

k∈N
∂P(k)t

)
> 0

}
is at most countable. Thus, for any µ ∈Me

T (X), the set

I 0
µ = C \ I+µ

is a dense subset of the classical Cantor set C⊂ [0, 1].
We suspend the main proof for a while and prove two auxiliary lemmas. The first one

is about the following upper semicontinuity.

LEMMA 3.3. For every k ∈ N, the function

ψ (k) :Me
T (X)× [0, 1] → [0, 1], (µ, t) 7→ µ(∂P(k)t )

is upper semicontinuous (of two variables).

Proof. Fix k ∈ N. We have

∂P(k)t =

mk⋃
i=1

∂B(k)(x (k)i , r (k)t ).

Hence,
1
∂P(k)

t
= max

1≤i≤mk
1
∂B(k)(x (k)i ,r (k)t )

.

Given t ∈ [0, 1] and d > 0, we denote by h(k)t,d : R→ [0, 1] the continuous tent function

assuming the value 1 at r (k)t and 0 outside the interval [r (k)t − d, r (k)t + d]. Now, for 1≤
i ≤ mk , we define, for all x ∈ X ,

g(k)t,d,i (x)= h(k)t,d(dist(x, x (k)i )) and g(k)t,d = max
1≤i≤mk

g(k)t,d,i .

Clearly, for each t and d, g(k)t,d is a continuous function; moreover, for fixed d > 0, the

family of functions {g(k)t,d : t ∈ [0, 1]} is equicontinuous, which easily implies the double
continuity of

(µ, t) 7→
∫

g(k)t,d dµ

on Me
T (X)× [0, 1].

Further, as d→ 0, g(k)t,d tends non-increasingly to 1
∂P(k)

t
; hence, by the dominated

Lebesgue theorem,
∫

g(k)t,d dµ tends non-increasingly to µ(∂P(k)t )= ψ (k)(µ, t). Since a
non-increasing limit of continuous functions is upper semicontinuous, we have completed
the proof of the lemma. �

Our next goal is to prove the following ‘continuous selector lemma’.

LEMMA 3.4. Let K be as in the formulation of Theorem 3.2. Then there exists a
continuous function s : exK → C satisfying s(µ) ∈ I 0

µ for every µ ∈ exK .
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Proof. We can assume that diam(exK )= 1. For every natural number n, we will
inductively define a finite clopen partition {K (n)

1 , . . . , K (n)
ln } of exK and a finite family

{W (n)
1 , . . . , W (n)

ln } of clopen subsets of C having, for each n ∈ N, the following properties:

(1) max{diam(K (n)
i ), diam(W (n)

i )} ≤ 21−n for every 1≤ i ≤ ln ;
(2) if n > 1, then for each 1≤ i ≤ ln there is some 1≤ j ≤ ln−1 such that K (n)

i ×W (n)
i

is a subset of K (n−1)
j ×W (n−1)

j ;

(3) ψ (k)(K (n)
i ×W (n)

i )⊂ [0, 21−n
] for every 0≤ k ≤ n and 1≤ i ≤ ln .

To begin with, we set l1 = 1, K (1)
1 = exK and W (1)

1 = C. Clearly, the conditions (1)
and (3) are fulfilled. Next, we fix an n ≥ 2 and suppose that {K (n−1)

1 , . . . , K (n−1)
ln−1
} and

{W (n−1)
1 , . . . , W (n−1)

ln−1
} have been defined. For each µ ∈ exK , there is a unique 1≤ jµ ≤

ln−1 with µ ∈ K (n−1)
jµ .

By Lemma 3.3 (noting that exK ⊂Me
T (X)) and since I 0

µ is dense in C, there exist

clopen subsets K (n)
µ ⊂ K (n−1)

jµ and W (n)
µ ⊂W (n−1)

jµ with µ ∈ K (n)
µ and

max{diam(K (n)
µ ), diam(W (n)

µ )}< 21−n

satisfying
ψ (k)(K (n)

µ ×W (n)
µ )⊂ [0, 21−n

]

for all 0≤ k ≤ n.
By compactness, exK can be covered by finitely many sets K (n)

µn,1 , . . . , K (n)
µn,ln

. Since
these sets are clopen, by subsequent subtracting we can make them disjoint (and still
covering exK ) and we denote them as K (n)

1 , . . . , K (n)
ln . Correspondingly, we also

enumerate W (n)
µn,1 , . . . , W (n)

µn,ln
as W (n)

1 , . . . , W (n)
ln . Clearly, the properties (1)–(3) are now

satisfied for n.
Once the induction is completed, we continue as follows. Given n ∈ N, let sn :

exK → C be a simple function assuming on each set K (n)
i a constant value t (n)i ∈W (n)

i
(1≤ i ≤ ln). Since the sets K (n)

i are clopen, sn is continuous. Finally, let s : exK → C

be the limit function of (sn)n∈N. By (1) and (2), s is a uniform limit of a sequence of
continuous functions and hence s is continuous as well. Also, the conditions (2) and (3)
imply that ψ (k)(µ, s(µ))≤ 2−n for each µ ∈ exK , n ∈ N and every k ≤ n. This yields
ψ (k)(µ, s(µ))= 0 for all µ ∈ exK and every k ∈ N. Thus, for any µ ∈ exK , we have
s(µ) ∈ I 0

µ, which ends the proof of the lemma. �

We return to the proof of Theorem 3.2. Recall that we aim to construct a zero-
dimensional system (X ′′, T ′′) and a continuous affine injection π ′′ : K →MT ′′(X ′′) such
that for anyµ ∈ K andµ′′ = π ′′(µ), the systems (X, µ, T ) and (X ′′, µ′′, T ′′) are measure-
theoretically isomorphic. The mapping π ′′ is not going to be surjective and its image is
going to be a face K ′′ of MT ′′(X ′′).

For a fixed k ∈ N and any η ∈ {0, 1}{1,...,mk }, we let

Pη =
⋃
t∈C

(Pηt × {t}).

Now, the collection
P(k) = {Pη : η ∈ {0, 1}{1,...,mk }}
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is a finite measurable partition of X × C labeled by the elements η. Let N (x, t) be
the array-name of the point (x, t) ∈ X × C under the action T × id with respect to the
sequence of partitions (P(k))k∈N of X × C, which uses the labels η ∈ {0, 1}{1,...,mk } as the
alphabet in the kth row of an array (notice that if Pηt is empty, the symbol η will not appear
in N (x, t) for any x ∈ X ). Set

X ′′ = {(N (x, t), t) : (x, t) ∈ X × C}.

Let T ′′ : X ′′→ X ′′ be given by T ′′ = σ × id, where σ denotes the shift on arrays. By
a standard argument, the dynamical system (X ′′, T ′′) is a zero-dimensional extension of
X × C via a factor mapping π0 : X ′′→ X × C which is one-to-one (has singleton fibers)
except for points (x, t) whose orbits visit the boundary of some member of P(k). The
mapping π0 yields a continuous mapping π∗0 from MT ′′(X ′′) onto MT×id(X × C). So,
by a simple argument (see [Dow05, Lemma 4.1]), the inverse mapping defined on the set
of measures which have a unique preimage is a homeomorphism in the relative topologies.

We note here that the section at a level t of ∂P(k) is contained in ∂U (k)t = ∂P
(k)
t . In fact,

if x ∈ X \ ∂P(k)t , then x belongs to some Pηt together with some δ-ball around x , which
implies that for all t ′ sufficiently close to t , the (δ/2)-ball around x is contained in Pηt ′ .
This implies that (x, t) is not in ∂Pη, i.e., x is not in the t-section of this boundary.

Let s be the continuous selector function defined in the statement of Lemma 3.4. For
µ ∈ exK , we have µ× δs(µ) ∈Me

T×id(X × C), where δt denotes the Dirac measure at t .
Note that

µ× δs(µ)

( ⋃
k∈N

∂P(k)
)
≤ µ

( ⋃
k∈N

∂P(k)s(µ)

)
= 0.

Therefore, the mapping π0 is one-to-one on a set of full measure µ× δs(µ), which implies
that µ× δs(µ) has a unique preimage by π∗0 (which we denote by µ′′) and, moreover, the
system (X ′′, µ′′, T ′′) is measure-theoretically isomorphic to (X × C, µ× δs(µ), T × id)
(and hence, trivially, via the projection onto the first coordinate, to (X, µ, T )). Clearly,
the mapping (µ, t) 7→ µ× δt is continuous from K × C to MT×id(X × C). Further, the
graph of s is a compact subset of the domain of this mapping and maps bijectively onto the
set {µ× δs(µ) : µ ∈ exK }; hence, the latter set is also compact. Since, as we have observed
earlier, the points in the latter set have singleton preimages by π0, the inverse of π∗0 is a
homeomorphism between the set {µ× δs(µ) : µ ∈ exK } and its preimage by π∗0 (i.e., the
set {µ′′ : µ ∈ exK }), which is hence compact as well. The composition

µ′′ 7→ µ× δs(µ) 7→ (µ, s(µ)) 7→ µ

serves as a homeomorphism between {µ′′ : µ ∈ exK } and exK ; moreover, the measures
corresponding to each other by this mapping are isomorphic.

Using the ergodic decomposition, the above mapping can be prolonged† to an affine
and continuous mapping from the compact convex hull spanned by the set {µ′′ : µ ∈ exK }
onto K . Since the measuresµ′′ are ergodic (being isomorphic to the corresponding ergodic
measures µ), this compact convex hull is a face of MT ′′(X ′′). Since both simplices are
Bauer, the prolongation is injective (see e.g. [Dow11, Appendix A.2.5]) and hence a

† We use the term ‘prolongation’ (of a function) for what is customarily described as ‘extension’, because the
word ‘extension’ has in this note a defined meaning (opposite to ‘factor’).
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homeomorphism (which is obviously affine) and maintains the property that the measures
corresponding to each other by this mapping are isomorphic. Now, we can define π ′′ as
the inverse of the above prolonged mapping. �

Proof of Theorem 3.1. Theorem 3.1 now becomes a direct consequence of Theorem 3.2
and [Dow08, Theorem 4.1] applied to the system (X ′′, T ′′) and the compact convex hull
spanned by the set {µ′′ : µ ∈ K }, which is a face K ′′ in MT ′′(X ′′). Each measure µ′′ is
isomorphic to some invariant measure µ ∈ K , where K is assumed to not contain periodic
measures. So, µ′′ is aperiodic. Thus, the face K ′′ contains no periodic measures, as
required in the cited theorem. �

4. Proof of the main result
The proof of Theorem 1.2 relies on the following three lemmas.

LEMMA 4.1. The simplex of invariant measures MT (X) of any aperiodic zero-
dimensional system (X, T ) ‘appears densely’ in the universal simplex, namely, inside any
open subset of the universal simplex, we can find a face K̃ such that the natural assignment
of the universal system restricted to K̃ is a copy of MT (X) (we will briefly say that K̃ is a
copy of MT (X)).

Proof. Take any aperiodic zero-dimensional system (X, σ ). Since (X, σ ) is conjugate to
a subsystem of the universal system, we can assume that X is an invariant closed subset
of CZ and σ denotes the shift. Let (ki , ni ) be a sequence of integer-valued vectors such
that both coordinates increase to infinity as i grows and let Ri denote the collection of all
(ki × ni )-rectangles. Note that all open sets in the universal simplex of the form

U (µ, i0, ε)= {ν : |µ(R)− ν(R)|< ε for all R ∈Ri and i ≤ i0}

with µ ranging over ergodic measures, i0 ∈ N and ε > 0 form a base of the weak-star
topology. Fix a set U (µ, i0, ε) in the universal simplex. There exist a point x0 ∈ C

Z

generic for µ and a constant N0 >max{2ni0/ε, ki0} such that for each N ≥ N0, the
frequency of occurrences of any R ∈Ri with i ≤ i0 in the rectangle [1, N0] × [0, N ] of
x0 equals µ(R) up to an error of ε/2. In X there exists a clopen N0-marker F visited by
the orbit of each x ∈ X with gaps ranging between N0 and 2N0 − 1. For each x ∈ X , we
define a new array x̃ with rows enumerated from −N0 + 1 to +∞ as follows: for i > 0
and any n ∈ Z, x̃(i, n)= x(i, n). The contents of the rows with indices in [−N0 + 1, 0]
are described below: let n and n + N be two consecutive times of visits of the orbit of x
in F . We define x̃ on the rectangle [−N0 + 1, 0] × [n, n + N − 1] by

x̃(i − N0, n + k)= x0(i, k), i ∈ [1, N0], k ∈ [0, N − 1].

Let φ(x) denote the array x̃ with the enumeration of rows shifted so that the rows of φ(x)
are indexed from 1 to+∞. From the construction of φ, we see that φ : X→ φ(X)⊂ CZ is
continuous and one-to-one and thus φ(X) is topologically conjugate to X , so Mσ (φ(X))
is a copy of Mσ (X). By the choice of N0, it is not hard to estimate that for any x ∈ X , any
rectangle R ∈Ri with i ≤ i0 occurs in φ(x) with frequency equal to µ(R) up to an error
of ε. This proves that Mσ (φ(X)) is a subset of U (µ, n0, ε). �
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LEMMA 4.2. Suppose that E is a σ -compact zero-dimensional set represented as a
countable union

⋃
n≥1 En , where every set En is compact. Then E =

⋃
n≥1 Ẽn , where

the sets Ẽn are compact, pairwise disjoint and each Ẽn is contained in some Em .

Proof. We let Ẽ0,0 = E1. Note that E2 \ E1 is relatively open in E2 and thus can be
represented as a countable disjoint union E2 \ E1 =

⋃
i≥1 Ẽ2,i , where every set Ẽ2,i is

clopen in E2 and thus is closed in E . We proceed analogously countably many times,
namely, for each n ≥ 2, the difference En \ (E1 ∪ · · · ∪ En−1) is relatively open in En

and thus can be represented as a countable disjoint union
⋃

i≥1 Ẽn,i , where every Ẽn,i is
clopen in En and thus is closed in E . It now suffices to rearrange the double sequence
(Ẽn,i )n,i into a single sequence (Ẽn)n . �

LEMMA 4.3. Let K be a simplex and let F be a face of K which is ε-dense in K (i.e.,
for each x ∈ K , there is some y ∈ F with dist(x, y) < ε). Then there exists an affine
continuous retraction (i.e., a map which is the identity on its range), θ : K → F, such that
dist(θ(x), x)≤ ε for all x ∈ K .

Proof. For each x ∈ K \ F , let 2(x)= {y ∈ F : dist(x, y) < ε} and 2̄(x)=2(x). For
x ∈ F , define 2(x)= 2̄(x)= {x}. By ε-density and convexity of F , and convexity of the
metric, the multifunction 2 has non-empty convex images and 2̄ has non-empty compact
and convex images. Moreover, 2̄ is lower hemicontinuous, i.e., for every relatively open
set U ⊂ F , the ‘preimage’ {x ∈ K : 2̄(x) ∩U 6= ∅} is open. Indeed, we have

{x ∈ K : 2̄(x) ∩U 6= ∅} = {x :2(x) ∩U 6= ∅} = {x : dist(x,U ) < ε},

which is open (regardless of the topological properties of U , which in this case is neither
open nor closed in K ). Also note that convexity of the metric and the fact that F is a face
(hence no point in F is a convex combination involving points from outside F) imply that
2 is convex, i.e., satisfies, for any x, y ∈ K and α ∈ (0, 1), the inclusion

α2(x)+ (1− α)2(y)⊂2(αx + (1− α)y).

Clearly, 2̄ is convex as well.
At this point we can apply the well-known Lazar–Michael selection theorem (see [La60,

FLP01]), which asserts that 2̄ admits an affine and continuous selector (i.e., a function
θ : K → F such that θ(x) ∈ 2̄(x) for all x ∈ K ). Clearly, θ satisfies the assertion of the
lemma. �

Proof of Theorem 1.2. As in the proof of Theorem 3.1, most of the effort will be devoted
to embedding8 on K in a zero-dimensional system (which is the same as embedding it in
the universal simplex). Surjectivity will be taken care of in the last paragraph of the proof.

Using the fact that the universal simplex is Poulsen, and that the Poulsen simplex is
universal in the sense that every simplex is affinely homeomorphic to a face of the Poulsen
simplex (see [LOS78]), we can assume that K is a face of the universal simplex. From
now on, for any face F of the universal simplex, we will abbreviate ‘the restriction to F
of the natural assignment coming from the universal simplex’ shortly as the ‘restricted
natural assignment on F’. So, on K we have two assignments: 8 and the restricted natural
assignment (which, at this stage, is beyond our control).
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Recall that exK =
⋃

n≥1 En , where each En is zero-dimensional and compact and the
restriction of 8 to the simplex Kn spanned by En is embeddable in a dynamical system.
Lemma 4.2 provides a partition of exK into disjoint compact sets Ẽn , each contained in
some Em . Then 8 restricted to each Ẽn remains embeddable in a dynamical system. In
other words, we can assume from the start that the sets En are disjoint. We choose a
summable sequence (εk)k≥1 of positive numbers and continue by induction, as follows.

Step 1. For a sufficiently large n1, the (disjoint) union E1 ∪ E2 ∪ · · · ∪ En1 is ε1-dense
in exK . Then the simplex L1 spanned by this union is ε1-dense in K . Each of the sets
En (1≤ n ≤ n1) can be partitioned into a finite union of disjoint clopen sets of diameters
smaller than ε1. We denote the finitely many sets obtained in this manner from all the
sets E1, . . . , En1 by E1,1, . . . , E1,m1 and we let K1,1, . . . , K1,m1 be the Bauer simplices
spanned by E1,1, . . . , E1,m1 , respectively. In a simplex, faces with disjoint sets of extreme
points are disjoint. This implies that the faces K1,i are disjoint. All of these simplices have
diameters smaller than ε1 and their union spans L1. The restriction of 8 to each K1,i

(i = 1, . . . , m1) is embeddable in a dynamical systemand, by Theorem 3.1, it is realizable
in a zero-dimensional system.

Now, we apply the affine continuous retraction of Lemma 4.3, which we denote by
Ret1 : K → L1, and which moves points by less than ε1.

Next, using Lemma 4.1, for each i = 1, . . . , m1, in the ε1-neighborhood of the set K1,i

(within the universal simplex) we find a face K ′1,i affinely homeomorphic to K1,i and such
that the restricted natural assignment on K ′1,i is equivalent to8|K1,i . Moreover, since every
proper face of any simplex is nowhere dense in that simplex†, we can easily arrange that
the faces K ′1,i are pairwise disjoint and disjoint from K . For each i , we choose an affine
homeomorphism from K1,i onto K ′1,i which establishes the equivalence between 8|K1,i

and the restricted natural assignment on K ′1,i . The union of these maps is then prolonged
harmonically to an affine homeomorphism π1 from L1 onto the simplex L ′1 spanned by
the union K ′1,1 ∪ · · · ∪ K ′1,m1

. Notice that π1 does not move points more than 2ε1 (this is
obvious for points in each K1,i ; then the property passes to the harmonic prolongation by
convexity of the metric). The composition φ1 = π1 ◦ Ret1 maps K onto L ′1 moving points
by less than 3ε1 and on L1 it coincides with π1 and establishes an equivalence between
8|L1 and the restricted natural assignment on L ′1.

Step k + 1. Suppose that for some k ≥ 1 we have constructed an affine continuous map
φk : K → L ′k onto some face of the universal simplex disjoint from K , so that on the face
Lk of K spanned by the union E1 ∪ · · · ∪ Enk it coincides with an affine homeomorphism
πk : Lk→ L ′k which establishes an equivalence between 8|Lk and the restricted natural
assignment on L ′k . We start by applying the convex combination

φ′k = (1− αk)φk + αk id,

where αk is positive, but small enough so that at each point of K , φ′k differs from φk (in
the distance) by less than εk+1. Contrary to the non-injective map φk , φ′k is easily seen
(using disjointness of K and L ′k) to be an affine homeomorphism between K and its image
(however, the good assignment on the image of Lk is now lost; moreover, the image,

† Indeed, let x ∈ F , where F is a proper face in a simplex K and let e ∈ exK \ exF . Then the sequence (1/n)e +
(n − 1/n)x tends to x from outside F .
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although remaining a simplex, is no longer a face of the universal simplex). Let Lk+1 be a
face of K spanned by a disjoint union of Lk and sufficiently many sets Enk+1, . . . , Enk+1 ,
so that φ′k(Lk+1) is εk+1-dense in φ′k(K ). As before, we partition the sets En (nk < n ≤
nk+1) into smaller clopen sets denoted by Ek+1,1, . . . , Ek+1,mk+1 such that, for each i =
1, . . . , mk+1, φ′k(Ek+1,i ) has diameter smaller than εk+1. Clearly, 8 restricted to each
Ek+1,i is embeddable in a topological system and, thus, by Theorem 3.1, realizable in a
zero-dimensional system.

We can now apply the retraction

Retk+1 : φ
′

k(K )→ φ′k(Lk+1),

which moves points by less than εk+1 and leaves the points of φ′k(Lk+1) invariant.
In the εk+1-neighborhood of each set φ′k(Kk+1,i ) we find a face (of the universal

simplex) K ′k+1,i affinely homeomorphic to Kk+1,i , on which the restricted natural
assignment is equivalent to8|Kk+1,i . Moreover, we can arrange that these faces are disjoint
from each other, from L ′k and from K . We let L ′k+1 be the simplex spanned by the union
L ′k ∪ K ′k+1,1 ∪ · · · ∪ K ′k+1,mk+1

. This simplex is affinely homeomorphic to Lk+1 (and thus
also to φ′k(Lk+1)) and we can select an affine homeomorphism πk+1 : φ

′

k(Lk+1)→ L ′k+1
so that:
• on φ′k(Lk), it acts by the formula πk+1(φ

′

k(x))= φk(x). Then it sends φ′k(Lk) onto L ′k
‘forgetting’ the effect of the convex combination with the identity and it establishes an
equivalence between (φ′k ◦8)|φ′k (Lk ) (the transported by φ′k assignment 8|Lk ) and the
restricted natural assignment on L ′k ;

• on each set φ′k(Kk+1,i ), it establishes an equivalence between (φ′k ◦8)|φ′k (Kk+1,i )

(the transported by φ′k assignment 8|Kk+1,i ) and the restricted natural assignment on
K ′k+1,i ; notice that on each set φ′k(Kk+1,i ), πk+1 moves points by less than 2εk+1.

Then we define φk+1 as the composition πk+1 ◦ Retk+1 ◦ φ
′

k (see Figure 1). This map
φk+1 has the following properties:
(1) it is an affine continuous map from K onto L ′k+1 which on Lk coincides with φk ;
(2) on Lk+1, it establishes an equivalence between 8|Lk+1 and the restricted natural

assignment on L ′k+1;
(3) it differs from φ′k by less than 3εk+1 and thus from φk by less than 4εk+1.

When the induction is complete, we define φ as the pointwise limit of the maps φk .
By (3) and summability of the sequence (εk)k≥1, the limit exists and is uniform, so φ
is continuous (and it is clearly affine). On each set Lk , the limit is achieved in step k
(further mappings coincide with φk), hence φ(Lk)= L ′k , and φ establishes an equivalence
between 8|Lk and the restricted natural assignment on L ′k . In particular, φ is injective
on Lk . Thus, φ is injective on exK =

⋃
k≥1 exLk and it sends extreme points of K to

points extreme in the universal simplex and thus extreme in the image K ′. This implies
that φ is injective on the entire simplex K and hence is an affine homeomorphism between
K and K ′. Also, it establishes an equivalence between 8|exK and the restricted natural
assignment on exK ′, which, by harmonicity of both assignments, implies that φ establishes
an equivalence between8 and the restricted natural assignment on K ′. This ends the proof
of embeddability of 8 in the universal simplex, i.e., in a zero-dimensional system.
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FIGURE 1. Construction of the map φ2.

To complete the proof, we apply once again [Dow08, Theorem 4.1], this time to the
universal simplex and its face K ′. Each ergodic measure µ′ ∈ exK ′ is isomorphic to
some ergodic measure in the assignment 8 and hence is aperiodic. Thus, according
to the above-cited theorem, the restricted natural assignment on K ′ can be realized in
a zero-dimensional system. Since we have just constructed an equivalence between 8
and the restricted natural assignment on K ′, the assignment 8 can be realized in a zero-
dimensional system as well.

5. Final remarks
(1) Both main Theorems 3.1 and 1.2 hold for non-invertible topological dynamical systems
(X, T ) (where T : X→ X is a continuous map, not necessarily a homeomorphism).
One has to extend the notion of an assignment admitting as values measure-preserving
endomorphisms (rather than automorphisms). The proof of Theorem 3.1 does not
depend on invertibility (also [Dow08, Theorem 4.1], used in the last stage, holds for
endomorphisms). Krieger’s marker lemma (Theorem 2.1) also remains valid for non-
invertible systems (see e.g. [Dow06, Lemma 1]). The only delicate place is in the proof of
Lemma 4.1, where we define the additional rows of x̃ by placing there certain rectangles to
the right of the N0-markers. In the non-invertible case, all arrays have only non-negative
column numbers and the first marker usually occurs at some positive position. Then we
have no indication as to what should be placed in the additional rows to the left of the first
marker. To cope with this problem, we first fill the new rows only to the right of the first
N0-marker and then we shift the contents of these rows to the left by 2N0 − 1 units. In this
manner the unfilled left section will certainly disappear.

(2) It seems that the proof of Theorem 1.2 could be used to show the following.
(A) Suppose that a simplex K equals the closed convex hull of a countable family of

its faces: K = conv
(⋃

n≥1 Kn
)
, where the faces Kn are disjoint and their diameters

tend to zero. Let 8 be an aperiodic assignment on K such that 8|Kn is embeddable
in a zero-dimensional system. Then8 can be realized in a zero-dimensional system.

Alas, there is one place where the proof does not pass: in step k + 1 we need to be able
to partition the sets En = exKn with nk < n ≤ nk+1 into finitely many separated pieces,
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each spanning a face of K , and whose images by φ′k have small diameters. This may be
impossible if the sets En are not compact zero-dimensional. We leave (A) as a conjecture.

(3) Initially the inductive part of the proof of Theorem 1.2 was supposed to be based on
the proof of [Dow08, Corollary 5.2]. While working on the details we have discovered a
serious gap in that proof. This paper fixes the gap: a correct proof of [Dow08, Corollary
5.2] is obtained by applying Theorem 1.2 in the case where all sets En (and thus Kn) are
singletons.

(4) Anticipating obvious inquiries, we confess that we do not have any example of an
aperiodic system with a zero-dimensional sigma-compact (or Bauer) simplex of invariant
measures, for which the realizability in a zero-dimensional system would not follow by
more direct reasons (for example from the SBP). So, one might criticize our results for
lack of evident applicability. This is true. However, we treat this work as an opportunity to
develop and practice new tools and methods in handling the difficult problem of realizing
assignments in zero-dimensional systems. As mentioned in the introduction, the ultimate
target is to prove (or disprove) such realizability for the natural assignments in all aperiodic
topological dynamical systems.

Acknowledgement. The authors are partially supported by the National Science Center
(Poland) grant 2013/08/A/ST1/00275.

REFERENCES

[BD04] M. Boyle and T. Downarowicz. The entropy theory of symbolic extensions. Invent. Math. 156 (2004),
119–161.

[Boy83] M. Boyle. Lower entropy factors of sofic systems. Ergod. Th. & Dynam. Sys. 3 (1983), 541–557.
[DK16] T. Downarowicz and O. Karpel. Dynamics in dimension zero: a survey. Discrete Cont. Dynam. Syst.

A 38(3) (2018), 1033–1062.
[Dow05] T. Downarowicz. Survey of odometers and Toeplitz flows. Contemp. Math. 385 (2005), 7–38.
[Dow06] T. Downarowicz. Minimal models for noninvertible and not uniquely ergodic systems. Israel J. Math.

156 (2006), 93–124.
[Dow08] T. Downarowicz. Faces of simplexes of invariant measures. Israel J. Math. 165(1) (2008), 189–210.
[Dow11] T. Downarowicz. Entropy in Dynamical Systems. Cambridge University Press, Cambridge, 2011.
[Dow91] T. Downarowicz. The Choquet simplex of invariant measures for minimal flows. Israel J. Math. 74

(1991), 241–256.
[DS03] T. Downarowicz and J. Serafin. Possible entropy functions. Israel J. Math. 135 (2003), 221–250.
[FLP01] V. P. Fonf, J. Lindenstrauss and R. R. Phelps. Infinite Dimensional Convexity (Handbook of the

Geometry of Banach Spaces, 1). North-Holland, Amsterdam, 2001, pp. 599–670.
[KO06] I. Kornfeld and N. Ormes. Topological realizations of families of ergodic automorphisms, multitowers

and orbit equivalence. Israel J. Math. 155 (2006), 335–357.
[La60] A. J. Lazar. Spaces of affine continuous functions on simplices. Trans. Amer. Math. Soc. 134 (1968),

503–525.
[Lin99] E. Lindenstrauss. Mean dimension, small entropy factors and an embedding theorem. Publ. Math. Inst.

Hautes Études Sci. 89 (1999), 227–262.
[LOS78] J. Lindenstrauss, G. Olsen and Y. Sternfeld. The Poulsen simplex. Ann. Inst. Fourier (Grenoble) 28

(1978), 91–114.
[Ph01] R. R. Phelps. Lectures on Choquet’s Theorem (Lecture Notes in Mathematics, 1757). Springer, Berlin,

2001.

https://doi.org/10.1017/etds.2018.131 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2018.131

	Introduction
	Preliminaries
	Special case
	Proof of the main result
	Final remarks
	Acknowledgement
	References

