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An elliptic curve analogue of Pillai’s lower
bound on primitive roots
Steven Jin and Lawrence C. Washington

Abstract. Let E/Q be an elliptic curve. For a prime p of good reduction, let r(E , p) be the smallest
non-negative integer that gives the x-coordinate of a point of maximal order in the group E(Fp).
We prove unconditionally that r(E , p) > 0.72 log log p for infinitely many p, and r(E , p) > 0.36 log p
under the assumption of the Generalized Riemann Hypothesis. These can be viewed as elliptic curve
analogues of classical lower bounds on the least primitive root of a prime.

1 Introduction

Let E/Fp be an elliptic curve. Recall that there exist unique positive integers L, M such
that

E(Fp) ≅ Z/LZ ×Z/MZ

and L ∣ M. Here, M is the maximal order of a point of E(Fp). In order to find a point
on E/Fp of maximal order, a natural strategy is to compute the orders of points with
x-coordinates 0, 1, 2, . . . and continue until the desired point is found. In practice,
this works fairly well. A natural question is how long this process takes in the worst
case.

Along these lines, fix an elliptic curve E/Q and let p be a prime of good reduction.
Let r(E , p) denote the minimal x-coordinate of a point of maximal order in the
reduction E/Fp . The goal of this note is to prove the following two lower bounds
on r(E , p).

Theorem 1.1 Let E/Q be an elliptic curve. There are infinitely many primes p such
that

r(E , p) > 0.72 log log p.

Theorem 1.2 Let E/Q be an elliptic curve. Under GRH, there are infinitely many
primes p such that

r(E , p) > 0.36 log p.
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These results can be viewed as elliptic curve analogues of lower bounds on the least
primitive root r(p) of a prime p. Pillai [14] proved that there is a positive constant C
such that r(p) > C log log p for infinitely many p. Using Linnik’s theorem in Pillai’s
proof, Fridlender [6] and Salié [15] improved the result to the following. We include
a proof since it inspired the result of the present paper.

Theorem 1.3 [6, 15] There exists a positive constant C such that r(p) > C log p for
infinitely many p.

Proof Linnik’s theorem says that there exist constants c and L such that every
arithmetic progression a + bn with gcd(a, b) = 1 contains a prime p < c ⋅ bL . For
x > 0 large, let k = ∏ �, where the product is taken over all primes � ≤ x. By Linnik’s
theorem, there exists a prime p = 1 mod 4k with p < c ⋅ (4k)L . It follows from
quadratic reciprocity that every positive prime divisor of k is a quadratic residue for
such a prime p. This implies that all positive integers n ≤ x are quadratic residues
for p and therefore cannot be primitive roots mod p. By the prime number theorem,
log k ∼ x. Therefore,

r(p) > x ∼ log k > C log p

for some constant C that is independent of x. ∎

The bound log p above has been improved to log p log log log p by Graham–
Ringrose [7] unconditionally and to log p log log p by Montgomery [13] under the
generalized Riemann hypothesis.

For an elliptic curve
E ∶ y2 = f (x) = x3 + Ax + B

with A, B ∈ Z, we follow a similar approach in the search for a prime p for which
r(E , p) is large. First, we force E(Fp) to have even order by requiring f (x) to
factor into linear factors mod p. Next, let N be a large integer. We force all points
(x , y) with 0 ≤ x ≤ N to be doubles of other points in E(Fp). Since E(Fp) has
even order, these points cannot have maximal order. Finally, we use an explicit
version of the Chebotarev Density Theorem to give an upper bound for p in
terms of N, which can be transformed into the desired lower bound for N in
terms of p.

It is reasonable to ask what can be said in terms of an upper bound. In the classical
setting, bounding r(p) from above is a well-studied problem (see, for instance, [4, 5,
8, 19]; see [3] for computational issues). The best known bound along these lines is
the Burgess bound [2], which states that r(p) ≪ p 1

4+ε . Under GRH, a result of Shoup
[16] yields the stronger statement r(p) ≪ log6 p.

Igor Shparlinski has pointed out to us that in the elliptic curve case, one can obtain
r(E , p) = O(p 1

2+ε) via results from [10]. This is done by using the analogue of the last
section of [2] and the technique of Theorem 2 of [10], combined with the estimate of
Theorem 1 of [10] for characters supported on Z/MZ. Computations suggest that the
true order of r(E , p) is smaller and that Theorem 1.2 is almost sharp, perhaps missing
by no more than a power of log log p. See Section 3.
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2 The proofs

Proof of Theorems 1.1 and 1.2. Fix N > 0. Let E/Q be an elliptic curve over Q given by
Weierstrass equation

y2 = f (x) = x3 + Ax + B,

where A, B ∈ Z. We are going to construct a suitable polynomial by constructing
several factors and multiplying them together.

Let {p1 , . . . , pm} consist of the distinct prime divisors of the discriminant of E/Q
and the primes up to and including 7. Let g(z) = z2 −∏m

i=1 p i . This polynomial is
constructed for the following technical reason: If a prime p is unramified in the
splitting field of g(z), then p is a prime of good reduction for E.

Recall that the x-coordinate of the doubling of a point (x , y) ≠ ∞ is given by

h(x) = r(x)
s(x) , where r(x) = x4 − 2Ax2 − 8Bx + A2 , s(x) = 4x3 + 4Ax + 4B.

For 0 ≤ j ≤ N , let ξ j(z) = r(z) − js(z).
Let

T(z) = f (z)g(z)
N
∏
j=0

ξ j(z),

and let F be the splitting field of T(z). If p splits completely in F/Q, then each of the
factors of T(z) factors into linear factors over Fp . Since p is unramified in F/Q and
g(z) is a factor of T(z), it follows that p > 7 and is a prime of good reduction for E.
Since f (z) factors, the two-torsion is contained in E(Fp), so E(Fp) has even order.

Suppose P = ( j, y) ∈ E(Fp) for some 0 ≤ j ≤ N . Since ξ j(z) factors into linear fac-
tors mod p, there exists x1 ∈ Fp such that ξ j(x1) ≡ 0 (mod p). Let y1 ∈ Fp2 satisfy y2

1 ≡
f (x1). Since the resultant of r(z) and s(z) is (4A3 + 27B2)2, which is not divisible by p
by assumption, we cannot have s(x1) ≡ 0 (mod p). Therefore, ( j, y) = 2(x1 , y1) for a
suitable choice of sign of y1. Suppose y1 /∈ Fp . Since y2

1 ∈ Fp , the Galois conjugate of y1
is −y1. Taking conjugates yields ( j, y) = 2(x1 ,−y1) = −2(x1 , y1) = −( j, y). Therefore,
( j, y) is a point of order 2. Since p > 7, the Hasse bound implies that ∣E(Fp)∣ > 4, so
( j, y) cannot be a point of maximal order. On the other hand, if y1 ∈ Fp , then ( j, y) =
2(x1 , y1) implies that ( j, y) cannot have maximal order. Therefore, r(E , p) > N .

To finish the proof, we need an upper bound on the smallest p. This estimate uses
an explicit Chebotarev Density Theorem, which bounds p in terms of the discriminant
of the splitting field F. The next few lemmas bound this discriminant.

Lemma 2.1 Let L/K be an extension of number fields with rings of integers OL and
OK , respectively. The different DL/K of L/K is the ideal generated by {g′(α)}, where α
runs through elements of OL such that L = K(α) and g runs through monic polynomials
in OK[x] satisfying g(α) = 0.

Proof See for instance [12, Proposition III.3]. Note that the usual statement of
this result requires g to be the minimal polynomial of α. However, if m(x) is
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the minimal polynomial for α, then g(x) = m(x)h(x) for some h(x) ∈ OK[x] and
g′(α) = m′(α)h(α), which is in the ideal generated by m′(α). Therefore, including
polynomials g that are potentially reducible does not affect the ideal DL/K . ∎

Henceforth, all mentions of discriminants are understood to refer to discriminants
over Q. The following result is probably well-known, but we could not find a good
reference so we include a proof.

Lemma 2.2 Suppose K/Q is a field extension given as K = K1⋯Kn . Then

∣disc(K)∣ ≤
n
∏
i=1
∣disc(K i)∣[K∶K i] .

Proof (cf. [18]) Consider the tower of fields Q ⊆ K1 ⊆ K1K2 ⊆ ⋯ ⊆ K = K1K2⋯Kn .
The different of (K1K2⋯K i)/(K1K2⋯K i−1) divides the different Di of K i/Q,
by Lemma 2.1. Since differents multiply in towers, the different of K/Q divides
D1D2⋯Dn . Taking the norm from K to Q yields the result. ∎

Lemma 2.3 Let f ∈ Z[x] be a monic polynomial with no repeated roots and let F be
the splitting field of f. Let d = [F ∶ Q]. Then disc(F)2 divides disc( f )d .

Proof Let f (x) = ∏n
i=1(x − β i). For i > 0, let K i = Q(β1 , β2 , . . . , β i). Let f i(x) =

∏n
j=i+1(x − β j). Since K i+1 = K i(β i+1) and f i(β i+1) = 0, the different DK i+1/K i divides

f ′(β i+1) =
n
∏

j=i+2
(β i+1 − β j)

by Lemma 2.1. Since differents multiply in towers, we have that DF/Q divides the ideal
generated by

n−2
∏
i=0

n
∏

j=i+2
(β i+1 − β j) =∏

i< j
(β i − β j) = disc( f )1/2 .

Squaring and taking norms, we obtain the result. ∎

By Lemma 2.3, the discriminant of splitting field K f of f (z) divides (4A3 + 27B2)3.
The discriminant of the splitting field Kg of g(z) divides 4∏m

i=1 p i . A computation
shows that the discriminant of ξ j(z) is

212(−4A3 − 27B2) f ( j)2 .

Therefore, the discriminant of the splitting field K j of ξ j(z) divides 2144(−4A3 −
27B2)12 f ( j)24.

Lemma 2.4 Let y2 = x3 + Ax + B define an elliptic curve over a field L of character-
istic not 2 and assume E(L) contains E[2]. Let j ∈ L and let L̃ be the splitting field of

ξ j(x) = x4 − 2Ax2 − 8Bx + A2 − j(4x3 + 4Ax + 4B).

Then [L̃ ∶ L] divides 4.
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Proof Let y′ =
√

j3 + Aj + B and L′ = L(y′). Then ( j, y′) ∈ E(L′). Let (a, b) ∈
E(L) satisfy 2(a, b) = ( j, y′) and let L′(a, b) be the field generated by a and b. Since
E[2] ⊆ E(L′), all four solutions of 2(a, b) = ( j, y′) have coordinates in L′(a, b), and
Gal(L′(a, b)/L′) is isomorphic to a subgroup of E[2]. Since L′(a, b) contains the
splitting field of ξ j(x), we conclude that the splitting field has degree over L dividing 8.

Note that −A3 − 27B2 is a square in L, and therefore the discriminant of ξ j(z) is a
square in L. It follows that the Galois group of ξ j(x) is a subgroup of A4, hence has
degree dividing 12. Since the degree also divides 8, the degree divides 4. ∎

The splitting field F of T(z) is K f Kg K0K1⋯KN . Therefore,

[F ∶ Q] ≤ 6 ⋅ 2 ⋅ 4N+1 .

If K j = Q for some j, then we can omit that field from our calculations. Therefore,
when we apply Lemma 2.2 to the present situation, we can bound the remaining
exponents [F ∶ K i] by [F ∶ Q]/2 and obtain

∣disc(F)∣ ≤
⎛
⎝

CE ∏
0≤ j≤N

C′E ∣ f ( j)∣24⎞
⎠

6⋅4N+1

≤ ((C′′E N)72(N+1))6⋅4N+1

= (C′′E N)432(N+1)4N+1
,

where CE , C′E , and C′′E are constants depending only on the elliptic curve E and where
we have bounded f ( j) by a constant times N3.

We now can estimate the smallest prime p that splits completely in F/Q. A theorem
of Ahn and Kwon [1] states that p < ∣disc(F)∣12577. Therefore,

log log p < log 12577 + log log ∣disc(F)∣
≤ log 12577 + log (432(N + 1)4N+1) + log log C′′E N
= N log 4 + o(N)
< N/0.72

when N is sufficiently large. But r(E , p) > N for this p, so the proof of Theorem 1.1 is
complete.

Assuming the generalized Riemann hypothesis for the Dedekind zeta function of
F, Lagarias and Odlyzko [11] show that there exists p < C0(log(∣disc(F)∣))2 for some
C0 > 0. Therefore,

log p < log C0 + 2 log log ∣disc(F)∣
≤ 2 log(4)N + o(N)
< N/0.36

when N is sufficiently large. Therefore, r(E , p) > N > 0.36 log p for this p. This com-
pletes the proof of Theorem 1.2.

Remark. As the proof indicates, the constants 0.72 and 0.36 can be replaced by
any k1 < 1/ log 4 and k2 < 1/ log 16, respectively. The constant 12577 in the bound of
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Ahn and Kwon is also not crucial; the existence of such a constant is enough for our
purposes. A recent preprint of Kadiri and Wong [9] improves the constant to 310.

3 Numerical results

For each of the elliptic curves in this section, we computed r(E , p) as p ran through
primes of good reduction less than 3 × 106. If a value was larger than r(E , q) for all
q < p, we recorded p and r(E , p). The results are given in Tables 1–7. We omit the data
for primes p < 100 since they are too small to consider in the asymptotic behavior. The
calculations were done in Sage [17].

The third and fourth columns of each table compare r(E , p) to log p log log p
and log p(log log p)2. It is well known that log log p grows so slowly that it is often
not easy to recognize what power is appropriate. In the present case, the ratio of
log log(2 × 106) to log log 200 is 1.6, and this is representative of the range of primes
in our data. So the numbers in the third and fourth columns sometimes exhibit a
definite increase or decrease when the power of log log p is modified. But other times,
it is not readily apparent which power is appropriate. For each column, we computed
the slope of the least-squares line through the data points and listed the result in the
last line of the table. For example, for the fourth column of Table 1, we used the points
(1, 1.49), (2, 0.94), (3, 1.10), . . . , (14, 1.38). The least-squares line has slope 0.018. In
three of the tables, the absolute value of the slope is smaller in the third column and
in the other four tables the absolute value of the slope is smaller in the second column.
We do not have an explanation for the potential variation of exponents. It seems
reasonable to guess that an upper bound of the form r(E , p) ≤ C log p(log log p)δ is
possible. In other words, the estimate of Theorem 2 is probably sharp, except for pow-
ers of log log p and smaller contributions. As mentioned in Section 1, Montgomery

Table 1: y2 = x3 + x.
p r(E , p) r(E , p)/ log p log log p r(E , p)/ log p(log log p)2

179 21 2.46 1.49
719 22 1.78 0.94
743 26 2.08 1.10

1,559 31 2.11 1.06
1,931 47 3.07 1.52
5,039 51 2.79 1.30
9,239 58 2.87 1.30

23,399 62 2.67 1.16
23,663 79 3.40 1.47
52,919 109 4.20 1.76

407,879 114 3.45 1.35
537,599 116 3.41 1.32

2,599,559 139 3.49 1.30
2,611,391 148 3.72 1.38

Slope 0.140 0.018
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Table 2: y2 = x3 − x.
p r(E , p) r(E , p)/ log p log log p r(E , p)/ log p(log log p)2

191 20 2.30 1.38
311 22 2.19 1.26
431 27 2.47 1.37
479 37 3.29 1.81
1,319 38 2.68 1.36
2,351 40 2.51 1.23
3,119 60 3.58 1.72
5,711 61 3.27 1.51
7,559 67 3.43 1.57

13,679 84 3.91 1.74
26,759 86 3.63 1.56
49,871 102 3.96 1.66
115,079 123 4.30 1.75
327,599 130 4.03 1.58
340,031 133 4.10 1.61
504,479 157 4.64 1.80
537,599 192 5.64 2.19
Slope 0.169 0.033

Table 3: y2 = x3 + 1.
p r(E , p) r(E , p)/ log p log log p r(E , p)/ log p(log log p)2

101 28 3.97 2.59
479 40 3.56 1.96
569 45 3.84 2.08
1,319 46 3.25 1.65
2,999 67 4.02 1.93
38,639 105 4.22 1.79
149,519 112 3.79 1.53
403,079 114 3.45 1.35

1,385,039 116 3.10 1.17
2,837,519 144 3.59 1.33

Slope −0.041 −0.127

[13] showed under GRH that the smallest quadratic nonresidue is Ω(log p log log p).
The numerical results for elliptic curves indicate that a similar result is possible for
elliptic curves. (Of course the estimate of Theorem 1 is probably not close to sharp,
unless GRH is false.)

The first four curves have complex multiplication by Z[i], Z[i], Z[(1 +
√
−3)/2],

and Z[(1 +
√
−7)/2], respectively. All of the p that occur are supersingular primes

for their respective curves with the exception of p = 13007 in Table 4. For these
supersingular primes, the group E(Fp) has order p + 1 and is either cyclic or cyclic
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Table 4: y2 = x3 − 385875x − 113447250.
p r(E , p) r(E , p)/ log p log log p r(E , p)/ log p(log log p)2

167 13 1.56 0.95
241 25 2.68 1.57
593 27 2.28 1.23

2,063 31 2.00 0.98
3,527 38 2.22 1.05
9,203 40 1.98 0.90
13,007 42 1.97 0.88
13,859 59 2.74 1.22

174,569 70 2.33 0.93
2,798,459 78 1.95 0.72

Slope 0.018 −0.043

Table 5: y2 = x3 + x + 1.
p r(E , p) r(E , p)/ log p log log p r(E , p)/ log p(log log p)2

197 8 0.91 0.55
283 13 1.33 0.77
613 17 1.42 0.77
647 18 1.49 0.80
811 19 1.49 0.78

1187 29 2.09 1.07
21023 31 1.36 0.59
29669 32 1.33 0.57
60317 42 1.59 0.66
76421 48 1.76 0.73
114269 51 1.78 0.73
250993 60 1.91 0.76

2800267 64 1.60 0.59
slope 0.048 −0.005

times a group of order 2. This can be seen as follows. The Frobenius map is given
by√−p in the endomorphism ring. If the full n-torsion is contained in E(Fp), then
the Frobenius endomorphism must be congruent to 1 mod n. But (√−p − 1)/n is not
integral when n > 2. It follows that E(Fp) is either Z/(p + 1)/Z, or Z/ p+1

2 Z ×Z/2Z.
The latter is always the case for the curve y2 = x3 − x. However, for the other three
curves, only one point of order 2 is in E(Fp), so the group is cyclic. A cyclic group
sometimes has fewer elements of maximal order than a noncyclic abelian group of
the same order. However, it is not clear why almost every example is a supersingular
prime.

The curves in the last three tables do not have complex multiplication (the last
curve is the Weierstrass form for X0(11)). The values of r(E , p) are somewhat smaller

https://doi.org/10.4153/S0008439521000448 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439521000448


504 S. Jin and L. Washington

Table 6: y2 = x3 − 13392x − 1080432.
p r(E , p) r(E , p)/ log p log log p r(E , p)/ log p(log log p)2

107 18 2.50 1.62
227 25 2.73 1.61
461 28 2.52 1.39
997 30 2.15 1.16
3613 37 2.15 1.02

20173 49 2.16 0.94
77813 51 1.87 0.77
93419 64 2.29 0.94
508213 81 2.39 0.93
2311823 96 2.44 0.91
slope −0.030 −0.089

Table 7: y2 = x3 − 7x + 6.
p r(E , p) r(E , p)/ log p log log p r(E , p)/ log p(log log p)2

101 28 3.97 2.59
1297 30 2.12 1.08
1511 34 2.33 1.17
1873 56 3.68 1.82
12119 68 3.23 1.44
12239 71 3.36 1.50
41039 74 2.95 1.25
47351 75 2.93 1.23
64679 91 3.42 1.42
178559 110 3.65 1.46
393121 142 4.31 1.69
1161599 169 4.59 1.74
2671679 194 4.87 1.81

slope 0.140 −0.004

than those for the curves with complex multiplication. Perhaps this reflects the fact
that supersingular primes are less frequent, but a good explanation is yet to be found.

The curves in Tables 2 and 7 have noncyclic two-torsion over Q, hence mod each
of the primes p considered. This phenomenon seems to cause larger values of r(E , p).

An interesting situation occurs in Tables 1 and 2, where the prime 537599 is in
both tables. Note that in Table 1, the group E(Fp) is cyclic of order 537600 = 210 ⋅ 3 ⋅
52 ⋅ 7, which is a very smooth number. This lowers the probability that a randomly
chosen element is a generator. In fact, ϕ(537600)/537600 = 8/35. The group for the
curve in Table 2 is the product of a cyclic group of order 29 ⋅ 3 ⋅ 52 ⋅ 7 times a group of
order 2. The probability is again 8/35 that a randomly chosen element of the group has
maximal order. These probabilities are low, but it still seems to be a lucky coincidence
that this p occurs in both tables. The smoothness of the group order is probably not
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the deciding factor. There are several smooth numbers close to each of the primes
in our table. For example, the Mersenne prime 219 − 1 = 524287 yields r(E , p) = 3 for
y2 = x3 + x and r(E , p) = 4 for y2 = x3 − x, and both curves have 219 points. The more
relevant property might be the existence of several small prime factors of n = p + 1
(in the supersingular case for the present curves) since this makes ϕ(n)/n small. But
this does not guarantee that r(E , p) is large. An example is p = 570569, where p + 1 =
2 ⋅ 3 ⋅ 5 ⋅ 7 ⋅ 11 ⋅ 13 ⋅ 19. But r(E , p) = 6 for both y2 = x3 + x and y2 = x3 − x. It would
be interesting to find a good explanation, if one exists, for the double occurrence of
537599.
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