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This paper proposes a numerical algorithm designed to integrate the GPS satellite perturbed
orbit. The numerical solution is applied to integrate the differential equation of perturbed
motion that frames the significant perturbing accelerations. Perturbing potentials are given

and the corresponding accelerations in Cartesian coordinates are subsequently deduced. The
C++ program that implements a fourth-order Runge-Kutta algorithm is described and
comment is made on the perturbed orbit integration results. The paper offers a set of con-

clusions that will hopefully create a quantitative and qualitative image of GPS orbital per-
turbations and open a few ways ahead.
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1. INTRODUCTION. Study of Earth’s artificial satellite perturbed motion
has, historically speaking, raised difficult, as yet unsolved problems. Closely connec-
ted to the three-body problem, it permits only non-exact, partial approaches. Both
analytical and numerical solutions have their strengths and weaknesses, as numer-
ous studies have unveiled over the years. In principle, the analytical orbit inte-
gration attempts to find algebraic expressions for all accelerations acting upon the
satellite and to integrate them in a close form. To perform that, a parameterization
has to be made by means of Keplerian orbital elements. Usually, these parameters
are the coefficients of the Earth’s gravitational potential and/or parameters of other
disturbing potentials. A special difficulty appears in the case of discontinuous, non-
conservative force fields, e.g. the Sun’s radiation pressure. In the numerical orbit in-
tegration, a direct, explicit computation of all perturbing accelerations is performed
and then, starting from known initial (Cauchy) conditions, a step-by-step direct in-
tegration of accelerations is made.

2. REPRESENTATION OF THE GPS SATELLITE PERTURBED
MOTION. In the absence of any perturbing influence, the equation of
motion of a unit-mass probe particle1 around a central attracting body has the

1 Dynamically speaking, the mass of a GPS satellite (m) is so small compared to that of the Earth (M),

that we may correctly associate the GPS satellite with a probe particle, having its mass equal to unit (m=1),

moving in the Earth’s gravitational field.
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well-known representation (Brower and Clemence 1961, p. 11, Zhang et al.
2006, p. 295) :

€~rr~rr=xm
~rr

r3
, (1)

derived from Newton’s universal attraction law.
When projected on the Cartesian reference system, Equation (1) becomes:

€xx=xm
x

r3
; €yy=xm

y

r3
; €zz=xm

z

r3
, (2)

where m =M.G, the product between the Earth’s mass (M) and the universal gravi-
tational constant (G), is the Earth’s gravitational parameter. Equation (1) clearly
indicates the co-linearity of the satellite’s geocentric position vector~rr and its accel-
eration vector €~rr~rr . When analytically integrated, the system (1) provides 6 integration
constants, generally recognized as the Keplerian elements of an un-perturbed GPS
satellite orbit, whose significance was extensively explained in the satellite-related
literature.

The Keplerian orbit of a satellite is purely a theoretical notion. The homogeneous,
2nd order differential Equation (1) describes the ideal satellite’s elliptic motion.
To describe the real, perturbed motion of a GPS satellite, one has to add all
known perturbing accelerations in the right member of the system (1), obtaining the
un-homogeneous, 2nd order differential equation of the perturbed motion of a GPS
satellite :

€~rr~rr=xm
~rr

r3
+d€~rr~rr (3)

and subsequently on the Cartesian axes:

€xx=xm
x

r3
+d€xx; €yy=xm

y

r3
+d€yy; €zz=xm

z

r3
+d€zz, (4)

where d€~rr~rr represents the sum of all known perturbing accelerations.
When analytically approached, the solution of the homogeneous part of system (3)

consists in a set of six constants :

pi0(i=1...6)
=fa, e, i, v, V, Mg, (5)

the Keplerian elements, shaping a time-invariable Keplerian orbit of the GPS satellite
at a reference epoch t0, as represented in Figure 1 where:

’ a, semi-major axis of the orbital ellipsis ;
’ e, eccentricity of the orbital ellipsis ;
’ i, inclination of the orbital plan on the Equator plane;
’ V, longitude (or right ascension) of the ascending node of the orbit ;
’ v, argument of the perigee ;
’ n, true anomaly, which may replace M (mean anomaly), as the latter has no

geometrical significance. Sometimes t0 (time of satellite’s passage through the
perigee) is used instead of n and M.
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Any perturbing acceleration added in the right member of Equation (3) will pro-
duce temporal variations ( _ppi0) of the orbital parameters. At a later epoch t, the
parameters pi will describe an osculating orbit, defined by:

pi=pi0+ _ppi0(txt0), [i=1 ... 6] (6)

As a consequence of (6), the position~rr and speed _~rr~rr of a GPS satellite in a perturbed
motion could be written as:

~rr=~rr(t, pi(t))

_~rr~rr= _~rr~rr(t, pi(t))
(7)

Deriving (7) by taking into account (3), will result in:

_~rr~rr=
@~rr

@t
+
X6
i=1

@~rr

@pi
� dpi
dt

� �

€~rr~rr=
@ _~rr~rr

@t
+
X6
i=1

@ _~rr~rr

@pi
� dpi
dt

 !
=xm

~rr

r3
+d€~rr~rr

(8)

Vector Equations (8) correspond to 6 scalar equations, which can be put in a
simplified vector representation (cf. Hofmann-Wellenhof, 1993):

~AA �~uu=~‘‘, (9)
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Figure 1. GPS satellite orbit representation.
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where:

~AA=

@~rr

@a

@~rr

@e

@~rr

@i

@~rr
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@~rr

@v

@~rr

@M

@ _~rr~rr

@a

@ _~rr~rr

@e

@ _~rr~rr

@i

@ _~rr~rr
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@ _~rr~rr
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@ _~rr~rr
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2
664

3
775

~uu= _aa _ee _ii _VV _vv _MM
� �T

~‘‘=
~00

d€~rr~rr

" #

8>>>>>>>>>>><
>>>>>>>>>>>:

(10)

’ ~AA is the Jacobian matrix of the orbital elements (5) and position elements (7),
comprising 36 elements (6 linesr6 columns) when expressed in Cartesian co-
ordinates;

’ ~‘‘ is the matrix of perturbing accelerations;
’ ~uu is the matrix of the 6 osculating elements’ variations under the influence of the

perturbing accelerations.

Inversion of (9) will result in Lagrange Planetary Equations (LPE), which contain
perturbing potentials2 (<) instead of perturbing accelerations (€~rr~rr) :

r<=d€~rr~rr, (11)

where r is the Hamilton operator.

3. PERTURBING POTENTIALS. There are a number of small perturb-
ing influences acting against GPS satellites, significantly smaller than the central at-
tracting acceleration, which produce deviations of the GPS satellite from its
Keplerian orbit. The perturbing influences, shown in Table 1, are significant in GPS
satellite dynamics.

Table 1. Perturbing influences on GPS satellite motion.

PERTURBING INFLUENCES

1 Non-central gravitational field of the Earth

2 Direct gravitational attraction of Sun and Moon

3 Direct solar radiation pressure

4 Indirect effect of Sun-Moon’s gravitational attraction

5 Re-emitted solar radiation pressure (indirect effect or albedo)

6 Relativistic effects

7 Earth’s magnetism

8 Solar wind

9 Poynting-Robertson effect

10 Acceleration due to the atmospheric drag1

1 In GPS case, the atmospheric drag is negligible due to the high flight altitude of the GPS satellites.

2 Also called perturbing force function ; it is a scalar whose derivative is the perturbing acceleration.
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To evaluate the osculating elements (matrix~uu), the system (10) may be approached
either analytically, using the first order perturbation theory, or numerically, using a
numerical integrator. In the analytical solution, all perturbing potentials (matrix ~‘‘
applied to relation 11) must be expressed in terms of osculating elements (5).
However, the numerical solution intended in this paper requires all perturbing ac-
celerations to be expressed in Cartesian elements.

The magnitude of the perturbing acceleration depends on both the natural
phenomenon which produces it and the average orbital elements of the satellite.
Nevertheless, the most important influence on GPS satellite dynamics is represented
by the non-central nature of the Earth’s gravitational field, namely the deviation of
the Earth’s natural shape from the spherical symmetry. In general terms, the effects of
any perturbing acceleration on GPS osculating elements might be:

’ secular : the effect of the perturbation on an osculating element is timely cumu-
lative ;

’ periodic : the effect of the perturbation on an osculating element alternates in
time.

The spectrum of perturbations in GPS orbital elements due to the non-central
gravitational field of the Earth are given in Table 2.

Further, a general overview of the perturbation magnitude produced in the GPS
satellite osculating position (~rr) is given in Table 3 (cf. Seeber 1993, p. 97).

Perturbing potentials with relevance to this study are those produced by the non-
central geopotential, Moon-Sun attraction and the Sun’s radiation pressure. The
perturbing potential created by the non-central part of the Earth’s gravitational field
derives from the general formula of the Earth’s geopotential, in polar coordinates,
given by Heiskanen and Moritz 1967, p. 342:

V=m
r 1x

X1
‘=2

ae
r

� �‘
J‘P‘(sinQ)x

X1
‘=2

X‘
m=1

ae
r

� �‘
C‘m cosml+S‘m sinml½ �P‘m(sinQ)

( )
,

(12)

where the first term m
r =V0

� �
represents the spherical Earth’s potential, whose gradi-

ent grad m
r =xm ~rr

r3

� �
is the central attractive acceleration in the Keplerian motion,

Table 2. Types of perturbations of GPS osculating elements.

Osculating

element

Secular

perturbation

Periodic perturbation

Long period Short period

a No No Yes

e No Yes Yes

i No Yes Yes

v Yes Yes Yes

V Yes Yes Yes

M Yes Yes Yes
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104 times bigger than the sum of all perturbing accelerations. Perturbing potential will
result as the difference:

<T=VxV0=
X1
‘=2

ae
r

� �‘
J‘P‘(sinQ)x

X1
‘=2

X‘
m=1

ae
r

� �‘
[C‘m cosml+S‘m sinml]P‘m(sinQ)

( )

(13)

This difference was first converted in osculating elements by Kaula, 1966, p. 30–37,
being useful to develop the analytical integration of EPL. However, to make use of
the perturbing potential (13) in the numerical integration process in the final part of
our work, we need to transform <T in Cartesian coordinates. The general relationship
between polar and Cartesian coordinates is :

r=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xTð Þ2+ yTð Þ2+ zTð Þ2

q
h=tgx1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xTð Þ2+ yTð Þ2

p
zTð Þ2

� �

l=tgx1 yT

xT

� 	

8>>>>><
>>>>>:

(14)

where h=90xxQ, the satellite co-latitude has been used. The perturbing acceleration
caused by the non-central gravitational field of the Earth is the gradient of the per-
turbing potential (13) in the terms of Cartesian coordinates (14) :

@<T

@xT
=

@<
@r

� @r

@xT
+

@<
@h

� @h

@xT
+

@<
@l

� @l

@xT

@<T

@yT
=

@<
@r

� @r

@yT
+

@<
@h

� @h

@yT
+

@<
@l

� @l

@yT

@<T

@zT
=

@<
@r

� @r

@zT
+

@<
@h

� @h
@zT

+
@<
@l

� @l

@zT

8>>>>>><
>>>>>>:

(15)

Table 3. Generic magnitudes of GPS satellite osculating position.

Perturbing influence

Magnitude

of the perturbing

acceleration [m/s2]

3 hours

orbital arc [m]

2 days

orbital arc [m]

Second (zonal) harmonic of the

geopotential

5.10x5 B 2 km B 14 km

Other harmonics of the geopotential 3.10x7 5}80 100}1500

Moon-Sun attraction 5.10x6 5}150 1000}3000

Continental tides 10x9 — 0.5}1.0
Oceanic tides 10x9 — 0}2

Direct Sun radiation pressure 10x7 5}10 100}800

Re-emitted Sun radiation pressure 10x9 — 1.0}1.5
Relativistic effects 10x10 — —
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while the partial derivatives of this potential are derived from the Kaula’s ex-
pression:

@<T

@r
=x ma‘e

r‘+2(‘+1) C‘m cosml+S‘m sinml½ � �P‘m cos hð Þ,

@<T

@h
= ma‘e

r‘+1 C‘m cosml+S‘m sinml½ � �Pk‘m cos hð Þ � sin h,

@<T

@l
=x ma‘e

r‘+1 �m � xC‘m sinml+S‘m cosml½ � �P‘m cos hð Þ,

8>>>>>>><
>>>>>>>:

(16)

and the rest of terms in the right side of (15) are computable directly. Using a sym-
bolic processor (Maple V in this case), the perturbing acceleration due to the non-
central gravitational field of the Earth, up to the 12th order, in Cartesian coordinates,
will result :

@<T

@x
=xx � ma

2
e

r5
� 3C2P2+4

ma3eC3P3

r
+5

ma4eC4P4

r2
+6

ma5eC5P5

r3
+7

ma6eC6P6

r4

�

+8
ma7eC7P7

r5
+9

ma8eC8P8

r6
+10

ma9eC9P9

r7
+11

ma10e C10P10

r8
+12

ma11e C11P11

r9
x

+13
ma12e C12P12

r10

�
x

ma2ecosQ

r3
C2q2

r3
+

aeC3q3

r4
+

a2eC4q4

r5
+

a3eC5q5

r6

�

+
a4eC6q6

r7
+

a5eC7q7

r8
+

a6eC8q8

r9
+

a7eC9q9

r9
+

a8eC10q10

r11
+

a9eC11q11

r12

+
a10e C12q12

r13

�
� z �xffiffiffiffiffiffiffiffiffiffi

1xz2

r2

q
�r3

0
B@

1
CA

(17)

and analogous for y and z. The following standard notations have been used:

’ Cn is the coefficient of the nth zonal harmonic of the geopotential ;
’ Pn is the nth order Legendre polynomial ;
’ qn is the nth order derivative of Pn with respect to cosQ.

The analogue perturbing potential caused by Moon and Sun’s gravitational at-
traction was treated extensively by Kaula 1962, Giacaglia 1973, et al. In Cartesian
coordinates, the cumulative effect of the two celestial bodies upon a GPS satellite is
approximated by the following potential (Cojocaru 1999, p. 57) :

<LxS=mk
1

Dk
x

xxk+yyk+zzk
rk3

� �
+

1

Da
x

xxa+yya+zza
ra3

� �
, (18)

in which the distance Earth-Moon (Dk) and Earth-Sun (Da) are separately computed
for every integration step.
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The perturbing acceleration caused by the direct solar radiation pressure is mod-
elled by the system (after Ferraz-Mello 1964 and Kozai 1961) :

€xx=xy(l) �kk � S
m

�q � xoxx

xo

� �

€yy=xy(l) �kk � S
m

�q � yoxy

yo

� �

€zz=xy(l) �kk � S
m

�q � zoxz

zo

� �

8>>>>>>><
>>>>>>>:

(19)

(cf. Cojocaru 1999, p. 61) ; where (x,y,z)o are Sun’s rectangular coordinates at the
observation epoch; (x,y,z) are the rectangular coordinates of the GPS satellite ; y(l)
is the shadow function3 (defined by Ferraz-Mello 1964); l is Sun’s ecliptic longitude;
kk is the satellite reflectivity constant4 ; S and m are the satellite’s section and mass
respectively, while q is the solar constant/light speed ratio5.

4. NUMERICAL INTEGRATION. Numerical solution of GPS satellite
osculating orbit is based on the direct numerical integration of the un-
homogeneous, second order differential equation of the perturbed motion:

€xx=x
m

r3
x+ €xxT+€xxM+€xxS+€xxR
� �

€yy=x
m

r3
y+ €yyT+€yyM+€yyS+€yyR
� �

€zz=x
m

r3
z+ €zzT+€zzM+€zzS+€zzR
� �

8>>>><
>>>>:

(20)

where T, M, S and R denote the non-central Terestrial/gravitational field of the
Earth, Moon and Sun’s direct gravitational effect and Radiation pressure (direct
effect) of the Sun respectively, whose expressions were deduced already.

The numerical integration of the system (20) will provide Cartesian coordinates of
the GPS satellite on its perturbed, osculating orbit, at every integration step. The
Cartesian result of the integration algorithm is necessary to obtain the same format
with the real, observed GPS ephemeris6, to open the possibility of evaluating the
differences between the observed and computed positions and velocities. The nu-
merical computed variations of GPS osculating elements can be deduced sub-
sequently by simple, reversed transformations (Cartesian to orbital). The resulting
diagrams expressively represent temporal variations of GPS satellite osculating el-
ements.

A fourth-order Runge-Kutta algorithm has been chosen to integrate the system
(20). Having established the initial conditions in the Cauchy problem, e.g. the initial
coordinates (x0, y0, z0) and velocity components ( _xx0, _yy0, _zz0), at a reference epoch7,
a Keplerian orbit has to be computed as a reference. Subsequently, only small

3 y(l)=1 when the satellite is enlighten by the Sun; y(l)=0 when the satellite is in the Sun’s shadow.

This particular case takes place two times a year and lasts about one hour.
4 k=1.44 for the diffuse illumination.
5 q=4.65.105 dyne/cm2.
6 Cartesian components of position (x,y,z) and speed ( _xx, _yy, _zz) every 15 minutes.
7 Numerical values extracted from an exact GPS ephemeris.
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differences from the real, perturbed orbit and the reference (Keplerian) orbit have to
be integrated8. The integration process will result in the increments (Dx, Dy, Dz)
which, when added to Keplerian elements, will furnish the real, perturbed orbital
elements. To start the integration process, the second order equation (20) is turned
into a system of two first-order differential equations:

_xx(t)= _xx(t0)+
Z t

t0

€xxT(t)+€xxM(t)+€xxS(t)+€xxR(t)x
m

r3(t)
x(t)


 �
dt

x(t)=x(t0)+
Z t

t0

_xx(t)dt

_yy(t)= _yy(t0)+
Z t

t0

€yyT(t)+€yyM(t)+€yyS(t)+€yyR(t)x
m

r3(t)
y(t)


 �
dt

y(t)=y(t0)+
Z t

t0

_yy(t)dt

_zz(t)= _zz(t0)+
Z t

t0

€zzT(t)+€zzM(t)+€zzS(t)+€zzR(t)x
m

r3(t)
z(t)


 �
dt

z(t)=z(t0)+
Z t

t0

_zz(t)dt

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

(21)

If the sum of terms under the integral sign is considered a continuous function
f[t1, t2], then its derivative will be: _ff=df=dt. The general solution of the generic
differential equation _ff= df

dt=fk(f(t), t) is obtained by giving an initial value to the
integration constant, f1=f(t1). Having the integration interval [t1, t2] divided into
n steps, the solution at (i+1)th step will be: fi+1=fi+Df, where the small difference
Df will be computed with the formula (cf. Hofmann-Wellenhof 1993):

Df=
Dt

6
� (k1+2 �k2+2 �k3+k4) (22)

where:

k1=f ti, f(ti)ð Þ,
k2=f ti+Dt

2 , f(ti)+k1
2

� �
k3=f ti+Dt

2 , f(ti)+k2
2

� �
k4=f ti+Dt, f(ti)+k3ð Þ

8>>>><
>>>>:

, (23)

8 This method of orbit determination was put into evidence by Cowell in 1910.
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thus making it possible to compute the values of the generic function for the sub-
sequent moments/steps: t1+Dt, t1+2Dt, t1+3Dt, etc., where t1 is already known from
initial (Cauchy) conditions.

The analytical data flow is represented in Figure 2. The program that implements
the above numerical algorithm, called Inteq.exe, was developed in Borland C++.
Separately from the main program there have been developed functions, called at
every integration step9, that provide Sun and Moon coordinates and perturbing ac-
celerations. The ‘‘Accel ’’ routines in Figure 2 are those described by relations (17),
(18) and (19). Particularly, ‘‘Accel 2’’ interrogates the function ‘‘Lunas ’’ at every
integration step to be provided with Sun and Moon coordinates. The executable
Inteq.exe is fed with the initial conditions10, the range of the integration step and
provides coordinates (x, y, z) and velocity (vx, vy, vz) at every integration step; they
are subsequently re-converted to orbital elements for further analysis. However,
satellite coordinates are saved in separate files on the hard drive every 15 minutes, to
keep the similitude with the observed ephemeris.

5. CONCLUSIONS. To model the perturbations of osculating elements rep-
resents a hugely complex problem and the analytical approach, apart from its dif-
ficulty, cannot give an exact solution. The modern GNSS applications require not
only precision but also rapidity, especially during real time application. More and
more GPS satellite trials, projects, applications etc. require the availability of a sep-
arate and independent computed orbit of the satellites involved. The numerical in-
tegration method has proved its ability to satisfy all these exigencies and this essay
is meant to offer a numerical alternative to achieve this sensitive task.

Clearly, the dominant perturbing force on GPS orbits is due to oblateness of the
Earth. The equatorial eccentricity of the Earth produces a torque which rotates the
GPS satellite’s orbit on equatorial plane, i.e. a regression of the ascending node (dV/
dt). Also, the oblateness of the Earth produces a movement of perigee, i.e. a motion
of the line of apsides (dv/dt) in the sense of a GPS satellite’s movement, as its incli-
nation is less than the critical inclination (iffi55x<63.4x). Both of the above men-
tioned perturbations are secular. The numerical simulation applied for a real GPS
satellite11 reveals the same conclusion, as shown in Figure 3. The second harmonic of

Xo, Yo, Zo
Vxo, Vyo, Vzo

INTEQ.EXE

Accel 1

Accel 2

Accel 3

VzVyVxzyx a e i ω νΩ
Lunas

Figure 2. Analytical data flow.

9 Choosing the integration step proves to be a sensitive issue; its size must be balanced between large

values (recommended to minimize the round-off errors) and small values (recommended to minimize the

truncation errors). A value between 1 and 10 seconds proved to be optimal.
10 Previously interpolated from an observed ephemeris, using a Lagrange polynomial interpolator.
11 An initial epoch was chosen at: 00:00:00, 27-09-1994, for the GPS satellite PRN#4. Cauchy condi-

tions: Xo=2017.873929 km; Yo=x15394.807277 km; Zo=21652.716838 km; Vxo=3.740049 km/s;

Vyo=0.911161 km/s; Vzo=0.306443 km/s.
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the geopotential does not produce secular perturbations in the elements a, e and i; the
result of the numerical integration reveals the same conclusion in Figure 4.

Furthermore, integrating Equation (20) with only (€~rr~rrM+€~rr~rrS) in the right member,
i.e. taking into account only Moon-Sun gravitational perturbing influence upon a
GPS satellite, periodic perturbations in a, e, i, V and v12 can be put into evidence ;
however, a secular component of V and v can be put into evidence, as well – see
Figure 5.

Estimating the effect of solar radiation pressure proved to be a difficult task, due to
the complex structure of the GPS spatial platform. Using average parameters, the
numerical integration clearly indicates slight periodic perturbations (see Figure 6).
For advanced researches, additional accelerations could be added in the right side of
equations (cf. Seeber 1993): friction caused by charged particles in the upper atmos-
phere, thermal radiation of the satellite, shadow boundaries, interaction between the
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Figure 4. Periodic perturbation of a due to the main harmonic (J2) of the geopotential.
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Figure 3. Secular perturbation of V due to the main harmonic (J2) of the geopotential.

12 Numerically speaking, variations of v are very difficult to be highlighted for GPS satellites, as the

orbital eccentricity is very small (ffi0.003x) and the perigee is, consequently, unstable.
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geomagnetic (terrestrial) field and the electromagnetic (satellite) field and interplan-
etary dust/cosmic wind respectively.

Compared to the analytical method, the numerical algorithms are distinguished by
their simplicity and general applicability. Nowadays, having powerful computers at
hand, the computational effort does not count anymore. Cowell’s method offers a
wide flexibility in manoeuvring the perturbing accelerations in the right-hand mem-
ber of the equations of perturbed motion. Thus, new mathematical models for per-
turbing accelerations can be experimented. Also, weak mathematical models, e.g.
those used for the Sun’s radiation pressure, might be optimized by analyzing the
differences between the numerical computed ephemeris and the observed ephemeris
of a GPS satellite. In this case, the convergence coefficient of the two numerical series
can be used as a qualitative indicator of the robustness of the parameters used in the
perturbing acceleration mathematical model.
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Figure 6. Periodic perturbation of orbital inclination due to the Sun’s radiation pressure.
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Figure 5. Secular perturbation of V due to the gravitational attraction of Sun and Moon.
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