
Function- and constraint-based conceptual design
support using easily exchangeable, reusable
principle solution elements

SÖREN WILHELMS
Linköpings Universitet, Department of Mechanical Engineering, Division of Machine Design, Linköping, Sweden

Received May 24, 2004; Accepted December 15, 2004

Abstract

Conceptual design produces a number of functions the designed product is to fulfill, several solution principles ~means!
for each function, and multiple overall principle solutions ~concepts!. Besides concept synthesis, it is important to
determine the ~few! early solution properties that are of interest at the concept stage. Further activities are assessing the
consequences of the chosen means and their instantiation, the effects of changes, and how decisions affect other
elements. Using a quantitative functional representation can facilitate these tasks, but a balance is needed between
product-dependent tools predicting many detailed properties, and product-independent, generally applicable tools with
limited prediction capabilities. A balance between a closed, general set of predefined building blocks and extensibility
by modeling application-specific, individual elements is also necessary. In this paper, a generally applicable conceptual
design model is presented, which has been established by theoretical reasoning applied to a number of products. These
products were the subjects of previous company-ordered student projects. The resulting information model spans
continuously from requirements to concepts and permits modeling desired functionality ~functions!, achieved func-
tionality ~means and their value choices!, and explicit constraints ~internal and external relations between parameters
of requirements, functions and means!. To indicate the suitability in principle, the model has been implemented in an
interactive, incremental prototype for computer support that permits modeling, storage, and reuse in a database. It can
be concluded that the model permits explicit modeling of complex relations, automatic change propagation, and
handling of many concept alternatives. Integrated, bidirectional, and continuous connections from requirements to
concepts facilitate conceptual design, reuse, documentation of the results, and allow changes to be made and their
effects assessed easily. Incremental constraint networks are approved, for example, in configuration design or geom-
etry modelers, and the significance of this article is to enable their use also for quantitative analysis of incomplete,
evolving concepts in original design tasks allowing different principle solutions, and for various products of mechan-
ical design.

Keywords: Concept Synthesis; Constraint Networks; Functional Modeling; Systematic Design

1. INTRODUCTION

Computer-aided functional modeling has been a concern
for researchers since the 1970s ~see Kuttig, 1993, sect. 2,
for four references from 1971 to 1974!. Graphical function
modeling, made possible by progress in computer technol-
ogy, is used in Kuttig ~1993!, where an example of computer-
based functional modeling for conceptual design with a rich
model of flow-based function structures is described. The

transition from a functional description ~which is suitable
during conceptual design! to parametric models ~which are
suitable for embodiment design! has been identified as an
important research question. This problem is stated and
addressed, for example, in Yekula et al. ~2003!, where a
method for the construction of parametric models from func-
tional models is presented. Even the research behind this
article aims at integrating functional models and synthesis
based on these functions with parametric analysis models.
The use of constraints to couple different partial models of
several engineering domains in embodiment design is
described in Kleiner et al. ~2003!, and the feasibility of
such a constraint interlinking approach is shown. Previous

Reprint requests to: Sören Wilhelms, Linköpings Universitet, Depart-
ment of Mechanical Engineering, Division of Machine Design, 58183
Linköping, Sweden. E-mail: sorwi@ikp.liu.se

Artificial Intelligence for Engineering Design, Analysis and Manufacturing ~2005!, 19, 201–219. Printed in the USA.
Copyright © 2005 Cambridge University Press 0890-0604005 $16.00
DOI: 10.10170S0890060405050146

201

https://doi.org/10.1017/S0890060405050146 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060405050146

research on the topic has also suggested the use of function0
means trees ~F0M trees! in a combination with constraint
networks in order to support interactive conceptual design
~O’Sullivan, 2002a, 2002b!. The use of the expert system
shell CLIPS and F0M trees to produce concepts ~schemes!
and simulation models from library elements by linking
them in bond graphs is described in Bracewell and Sharpe
~1996!, but relies on the existence of a closed set of build-
ing blocks from which concepts can be combined and
uses calculation mainly in later phases in the form of
detailed Dymola simulation models. Support using an incre-
mental constraint network, with a focus on structural mod-
eling, is described together with the SyDeR tool in Feldkamp
et al. ~1998!. Constraint networks, spanning continuously
from requirements to the product structure, are used in the
function oriented product model that can be found in
Leemhuis et al. ~2002!. The two latter systems do not
focus on a detailed model for multiple concepts and solu-
tion principles.

The objective of the work described in this paper is to
use incremental constraint networks to quantitatively model
evolving, incomplete concepts during conceptual design.
This is combined with a hierarchical F0M tree ~see Hansen,
1995! for the qualitative aspects. Functions are entities used
to describe a general and intended relation between their
input and output parameters with the aim of fulfilling a task
~Pahl et al., 2003!, and thus express necessary functional-
ity. Means state how ~by which solution principles! this
functionality actually is achieved. The main focus is on
early calculations involving relations on the few param-
eters that are of conceptual significance, rather than on the
deduction of more complete models suitable for detailed
calculations in later phases. The quantities that can be used
in calculations are not limited to energy quantities, but can
be any parameter ~e.g., weight, cost, transmission ratio, etc.!.
The artificial intelligence ~AI! technology of constraint net-
works is not an object of research in this work; it is merely
applied to achieve the actual contribution: a model, work-
ing procedure, and tool constituting more suitable support
for the early phases of engineering design. The tool can be
used to support solving complex engineering problems. By
allowing both qualitative ~e.g., textual descriptions, rela-
tions such as “function is solved by means” or “means needs
specific subfunctions”! and quantitative contents ~e.g.,
parameters such as the size of the solution element “electric
motor”!, traditional design methodology, AI techniques, and
numerical analysis can be combined.

In this article, functional representations are thus used to
do the following:

• describe the interrelationship of functions and
requirements;

• describe the function structure of the product that is to
be designed, that is, desired functionality ~e.g., that a
function “provide torque” must be performed!;

• describe the vertical structure, that is, the functional
decomposition ~e.g., that the stated function is decom-
posed into “create rotational movement” and “multi-
ply torque”!;

• describe the horizontal structure, that is, how different
functions are interrelated by flows ~e.g., output of “cre-
ate rotational movement” is related to input of “multi-
ply torque”! quantify functions to achieve better verified
concepts ~e.g., the size, weight, etc., of the motor to
provide the necessary torque depending on the actual
concept!;

• provide a link between desired and achieved function-
ality ~e.g., which other means could be used, which
one is chosen!; and

• support the storage of principle solution elements in a
design library and their reuse.

2. SUPPORTING CONCEPTUAL DESIGN

This section describes insights from design methodology
related to conceptual design and their implications regard-
ing the intended support.

2.1. Background

According to design methodology ~e.g., VDI, 1997; Pahl
et al., 2003!, the steps carried out during conceptual design
are identification of an overall function, decomposition into
a number of subfunctions and a search for solution princi-
ples. Solution principles are identified for all functions,
according to VDI ~1997! with regard to both effects and
shapes ~see Fig. 1!. The figure shows the steps in concep-
tual design ~shown as rectangles!, the databases that can
provide appropriate input information during the steps ~cyl-
inders!, and the results of the respective steps ~parallelo-
grams!. The arrows on the right indicate that iterations back
to earlier steps are possible; the arrows on the left show that
requirements both affect and can be affected by all steps.

Conceptual design thus progresses from requirements to
functions, from functions to their subfunctions, and from
subfunctions to solution principles ~means!, which then,
after sufficient decomposition, are combined to form over-
all principle solutions ~concepts!. This concept synthesis is
achieved by combining several effects or mechanisms into
an overall principle solution ~cf. the arrow from “effects”0
“kinematic mechanisms” and “3.1”0“3.2” to “principle solu-
tions” in Fig. 1!. The focus in this article is on steps 2.1–3.1.

2.2. Aims

The aim of this work is to provide a model for conceptual
design, constituting a partial model for concept develop-
ment in a larger product model. At present, sophisticated
models and support are available for both earlier and later
stages, that is, requirement handling and embodiment design
@e.g., geometry modeling using commercial computer-

202 S. Wilhelms

https://doi.org/10.1017/S0890060405050146 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060405050146

aided design ~CAD! modelers# . At the transition between
conceptual design and early embodiment design, work has
also been done on engineering design synthesis, for exam-
ple, the tool for compositional synthesis of mechanisms
FuncSION described in Chakrabarti ~2002, chap. 11!. On
the other hand, apart from some academic or special-
purpose systems, no software support is available for inno-
vative conceptual design. In addition, many systems that
might be used for conceptual design ~e.g., computerized
design catalogs as outlined in Birkhofer and Keutger, 1999,
and Franke et al., 2004, Tech Optimizer as assessed in Lin-
demann et al., 1998, etc.! are powerful when providing
solutions, but neither allow the instantiation of suggested
solutions, that is, adaptation to the actual task at hand, nor
support the continuous synthesis of the suggested solutions
into an overall solution inside the system.

Another purpose of this work is to enable a tool that
allows explorative, creative conceptual design even when
carried out with computer support. Using software to assist
with operations such as maintaining information for added
means, selecting0deselecting means in concepts, choosing
values, and evaluating how the chosen values affect require-
ments, the time and effort needed to perform routine tasks
can be reduced, while the designer can simultaneously carry
out creative steps.

One aim of such computer-supported conceptual design
is to be able to handle and compare multiple concept vari-
ants, which is suggested by design methodology ~Pahl et al.,
2003, sect. 2.2.4!. Using computer support, more alterna-
tives can be evaluated in a given time, and quantitative
support permits the degree of requirement fulfilment of sev-
eral concepts to be assessed. Reaching better-verified con-

cepts is facilitated by performing early calculations on a
number of parameters that are of conceptual significance.

Furthermore, a well-defined model and functional repre-
sentation are prerequisites for meaningful reuse, which can
yield additional time benefits.

2.3. Support approach

The basic approach to accomplishing support for concep-
tual design is to apply the well-known F0M tree for quali-
tative modeling and combine it with constraint networks
for quantitative modeling. An overview of the used ele-
ments is given in Figure 2 ~for a more detailed description
of the elements, see Section 3!. The functional decomposi-
tion is modeled using a hierarchy of functions ~cf. 3.2! and
means ~cf. 3.3!. Parameters ~e.g., L and Pi !, accounting for
the quantitative description, can be assigned to both func-
tions and means. Requirements ~cf. 3.1!, grouped in di-
mensioning cases ~cf. 3.7!, are assigned to the relevant
parameters. Relations between parameters are modeled using
constraints, shown as dashed lines ~cf. 3.5!. Operating states
~cf. 3.7! can be used to group several functions that are
active only for certain time periods or under certain condi-
tions. Concepts are obtained by selecting one means for
each function ~cf. 3.6!. For clarity, only two of the “is con-
tained in” relations between concepts and means are shown
~as dotted lines! in Figure 2.

The support is also suitable for innovative original design
problems, which require a broad variety of alternative means.
Both analysis and synthesis steps can be supported. The
support is suitable for problems that are possible to charac-
terize by parameters and algebraic constraints between them,

Fig. 1. The conceptual design and access to knowledge bases. Adapted from VDI ~1997, fig. 3!.

Constraint-based conceptual design support 203

https://doi.org/10.1017/S0890060405050146 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060405050146

that is, static calculations. Tightly coupled systems or
dynamic calculations, which, for example, occur in many
mechatronic systems, are not efficiently supported unless
they can be simplified into static calculations.

By introducing means, modeling using solution elements
and reuse of earlier realized, well-proven solutions is made
possible.

2.4. Requirements on the support

Several requirements with regard to support software, which
have been identified in prior research, are also relevant to
the present work. Kuttig ~1993! mentions the high informa-
tion turnover in conceptual design, and that a tool therefore
must provide abstract visualizations. Shifting between dif-
ferent types of information ~e.g. text, geometry, formulae or
structure! and several methods for modeling are required.
According to Feldkamp et al. ~1998!, there should be no
restriction to a fixed set of components, as technical progress
requires extensibility. A graphical editor and a simple user
interface that can be used by all engineers are needed. Reuse
of larger elements ~over and above simple components!
should be possible. The working procedure should be inter-
active and allow structural decomposition into smaller, more
manageable subproblems. It must be possible to iterate steps
and revoke earlier decisions. In Leemhuis et al. ~2002!,
mentioned requirements are that the tool should reduce costs,
accelerate design, allow modularization and reuse, and that
it covers all phases from requirements to part modeling.
Domain-independent applicability to many products and an
incremental, iterative procedure are required. A clear descrip-

tion of interrelations between requirements, function and
structure, handling of and free choice between alternative
variants, handling of incomplete and inconsistent specifica-
tions, and the availability of abstract views of early designs
are named as issues. Even here, possibilities to revoke deci-
sions and an arbitrary order of steps are called for, as
well as change propagation, decomposition and reuse. In
Bracewell and Sharpe ~1996!, the automatic deduction of
exact simulation models using bond graphs is a require-
ment that was fulfilled, at the cost of functions needing to
be standardized and limited to a predefined library.

In this work, the main requirement is to provide a tool for
innovative concept synthesis that will enable to both work
with principle solution elements and early calculations. The
model must be continuous ~i.e., relations are possible in
several steps from requirements to concepts! and bidirec-
tional ~i.e., qualitative and quantitative descriptions are cou-
pled and updated in both directions!. Qualitative and
quantitative descriptions are integrated: changes in means
modeling are, for example, reflected by adding or removing
constraints and changed values are reflected by updating
properties of means or requirements. The model is sepa-
rated into partial models, that is, one piece of information is
only stored at one location to facilitate modularity and
exchangeability. Additional requirements that are of con-
cern are to offer methods for flexible work with solution
principles in alternative concepts, reuse of solution princi-
ples ~not only components!, explicit storage of principle
variants as concepts, and work with incomplete and incon-
sistent data at any stage. Another requirement is that the
model must be generally applicable to a broad range of

Fig. 2. The elements and relations of the support for conceptual design.

204 S. Wilhelms

https://doi.org/10.1017/S0890060405050146 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060405050146

products. Functions, means, and parameter types are not
limited to a predefined closed set, but can be extended
individually.

2.5. Working procedure

To achieve an efficient tool, the design of the tool and the
working procedures when using it must harmonize with the
users’ mental models. To be suitable for conceptual design,
the working procedure was therefore chosen to be largely
interactive and incremental. The individual steps can be
performed in arbitrary order ~the only deliberately chosen
restriction is that means cannot be added prior to the func-
tion they are to fulfill!. The major steps in the procedure
involve the following:

• task clarification: specification of the task by stating a
number of necessary requirements;

• abstraction: the requirements are translated to desired
functionality by defining a number of functions and
adding them to an initially empty document with only
the root function present;

• incremental realization and decomposition: an F0M tree
is built using appropriate means and subfunctions;

• quantitative information: once the qualitative structure
has been established, quantitative information can be
added at any time and for any hierarchy level by describ-
ing functions and means using parameters;

• relations: adding constraints between parameters will
then enable modeling of the relations and change prop-
agation; and

• concepts: finally, concepts as overall solutions can be
chosen from the set of modeled means, and quantita-
tively detailed by choosing values, which may be con-
cept specific.

These major steps outline an iterative procedure from
requirements to quantitatively verified concepts. Inside the
major steps, there is a succession of specifying, solving,
changing ~including change propagation!, and assessing oper-
ations. It is possible to create, modify, and assess several
variants during each step. The major advantage compared
to traditional configuration design operating on parts is that
even different principle solutions can be modeled by intro-
ducing functions and means.

Regarding the envisaged use of the tool by an engineer, it
can be stated that the system is intended to constitute an
assisting system. The aim is not to provide an automatic
system that would allow the synthesis of complete solu-
tions solely from a specified list of requirements. In Table 1,
the supported steps and the actions performed manually by
the designer as well as the actions automatically performed
by the tool are given.

The tool is thus based on the assumption that the com-
puter is used to assist by automating routine tasks, such as
constraint propagation or activation0deactivation of sub-

functions, depending on the chosen means. The complex
decision steps ~e.g., identification of suitable interelement
constraints! are not automated but carried out by the designer,
although there are opportunities for further automated steps
~e.g., automatic combination and evaluation as outlined in
Wilhelms & Derelöv, 2004!.

3. A PARAMETRIC INFORMATION MODEL
FOR CONCEPTUAL DESIGN

This section describes the information model used to for-
malize conceptual design. Figure 3 shows how the chosen
model objects in the lower part correspond with the phases
and phenomena described in VDI ~1997! in the upper part,
which was chosen as background theory. The models for
requirements, functions, means, and concepts have been
built as partial models without intersections, that is, a con-
cept description contains no functional description; it merely
references the functions it includes.

The constraint network can connect all occurring objects
from requirements to concepts. The dotted objects on the
right-hand side are not yet implemented in the prototype
implementation, but are shown to illustrate that even para-
metric geometry models can be connected in a similar way.

The Unified Modeling Language class diagram in Fig-
ure 4 gives a more detailed overview of the informa-
tion model. The figure contains the classes for modeling the
F0M tree ~Function and Means!, parameters and constraints
~Parameter0Variable; ConstraintNetwork; Constraint; For-
mulaParser, which calculates numerical values during
constraint propagation; and MapleConnect, a link to the
commercial symbolic math software Maple, which is used
to solve equations for the necessary variable!, concepts ~Con-
cept representing one overall principle solution, Real-
ization representing one means choice, and Assignment
representing one value choice!, grouping of functions and
requirements ~OperatingState, DimensioningCase!, and the
possibility to store justifications @Truth Maintenance Sys-
tem ~TMS!, Justification, Node#. All the objects belonging
to the actual design task are stored in a Document object.

Even though the implementation of the justification-
based TMS ~Doyle, 1979! permits a more extensive use,
the TMS is currently only utilized for storing and managing
justification objects. A justification object is automatically
created or updated for each constraint that is added or mod-
ified, with the justifications carrying information about the
reason why the constraint exists. For an equality constraint,
reasons could involve, for example, a reference to the phys-
ical law behind the equation or the way a structure is arranged
~e.g., serial or parallel architecture resulting in an identity
or a sum constraint for a fluid flow rate!. For a value assign-
ment, the justification contains the reason why the specific
value was chosen, for example, a reference to empirical
data for a coefficient of friction. Reasons are stored in the
form of textual information with semantic value only to the
designer. So far, there is no active use of the TMS exceed-

Constraint-based conceptual design support 205

https://doi.org/10.1017/S0890060405050146 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060405050146

ing this recording of justifications. The tool could, how-
ever, be extended to apply justification objects to resolve
inconsistencies with conflicting constraints by dependency
directed backtracking in a similar fashion as described in
Feldkamp et al. ~1998, sect. 7!.

3.1. Requirements

Requirement objects describe functional requirements or
restricting requirements. Functional requirements are
assigned to a function’s parameter, in this way declaring the
function responsible to deliver the required flow, for exam-
ple, to create a certain output torque. Restricting require-
ments limit a parameter value, for example, the largest

possible motor size given by the available space, into which
the mounted motor must fit.

The requirement contains a value for the desired value,
and the design model ~function! provides a value for the
actual value the design in its current state delivers. In this
way, requirement fulfilment can be checked.

Requirements of different types ~exact value, interval!
and strengths ~desire, requirement! can be modeled ~Pahl
et al., 2003, chap. 5!.

3.2. Functions

As widely recognized ~Kuttig, 1993; VDI, 1993; Leemhuis
et al., 2002; Pahl et al., 2003!, functional modeling is an

Table 1. Interplay of the tool and the designer using it

Step
Inputs ~I! and Outputs ~O!

of Step
Actions Manually Performed by Designer ~M!

and Automatically by Tool ~A!

1. Task clarification I: Empty document
O: List of requirements

M: Enter requirements and desired values, decide on strength
~required0desired! and type ~e.g., exact value, interval, min0max!

A: Create and store object for each requirement, set default values,
compare with actual values ~when available!

2. Abstraction to function I: List of requirements
O: Function

M: Enter function, add relevant flow parameters as input and output of
a function, connect requirement to corresponding function parameter

A: Acquire actual values from the design, compare to desired values,
and indicate requirement fulfilment

3. Search for solution principles I: Function without assigned means
O: Function with assigned means

M: Conceive and enter means, initiate database search and accept
database suggestions, store means for future use

A: Store means as belonging to function, render F0M tree automatically,
search means database, present suggestions from database, add reused
means to the current model context, separate means from current
context, and store into database

4. Decomposition I: Functions and means at one
hierarchy level

O: Functions and means on several
hierarchy levels

M: Add subfunctions to a means, move F0M while developing F0M tree
A: Update product model when moving, activate and deactivate

subfunctions specific to a means

5. Adding quantitative information
inside an element

I: F0M without parameters
O: Parametric F0M

M: Identify and add relevant parameters, add internal constraints
representing physical effects

A: Manage parameters, store values, change propagation inside element

6. Connecting different elements I: F0M tree with parameters
O: F0M tree with parameters

connected by interelement
constraints

M: Add external relations ~especially flow connections between different
functions!, explore structural variants ~different combinations or
arrangements of functions’ input and output!

A: Change propagation across element borders

7. Concept synthesis I: Parametric F0M tree
O: Concepts

M: Create concepts by choosing means from the alternatives contained
in the F0M tree, choose parameter values ~which can be concept
specific!, explore alternatives

A: Selection0deselection of subfunctions and constraints depending on
earlier choices, handling of multiple concept alternatives, easy
switching of concepts ~as a single command that includes the update
of the parameter values!

8. Assessing and improving concepts I: Concepts
O: Improved concepts fulfilling

all requirements

M: Refinement by adding or modifying parameters, take actions for
unfulfilled requirements

A: Calculate performance according to the set parameters and constraints
and indicate requirement fulfilment, change propagation

206 S. Wilhelms

https://doi.org/10.1017/S0890060405050146 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060405050146

essential part of conceptual design and is a prerequisite for
modularization, varying the solution principle using more
abstract function information and reuse. The functional
representations used here are both a hierarchic decomposi-
tion and a flow-based function structure. Functions express
purposes of the artefact by stating desired or required
behavior.

According to VDI ~1993!, a function is the relationship
between the input and output flows and the state variables
of a system, described independently of a particular solu-
tion. The quantitative representation here uses a function
object with connected flows. Each flow, either input flow,
output flow, or internal parameter, is represented by a param-
eter object connected to the function. A textual description
of the function by verb and noun is also possible. The qual-
itative representation is achieved by assigning a set of means
capable of fulfilling each function to it.

3.3. Means

A means is here used to model one way of achieving func-
tionality. Means also have assigned parameters, and inter-
nal constraints are used to quantitatively describe the effect
on which a means is based ~e.g., the relation of input and
output torque for a pair of gears!.

As different means may require different subfunctions,
means can contain links to specific subfunctions, that is,
subfunctions that are only active when the means is selected
into the current concept.

The basic idea is that using a division into functions and
means, only those parameters can be modeled that are of
conceptual importance for the actual task. As not all of the
properties of means that might be modeled are equally impor-
tant, the parameters that were chosen when modeling the
functions determine which of the means’ parameters are
exposed to the environment, a selective approach similar to
Langlotz ~2000, pp. 90–91!.

3.4. Parts

Parts are objects that serve as placeholders for externally
modeled geometry, for example, in CAD systems. Even
here, parameters such as geometric dimensions can be con-
nected to the constraint network.

3.5. Constraints

Constraints are applied to model quantitative relations to
enable early calculations. As in Leemhuis et al. ~2002!,
constraints span across different partial models from require-
ments to concepts and geometry. Five different types of
constraints are used to interconnect the elements ~see Fig. 5!.

Value assignments ~constraint type 1! are used to assign
a definitive value to a parameter. These value assignments
are concept specific; the same means can thus have differ-
ent parameter values when they occur in different concepts.
Constraint type 2 connects requirements and function param-
eters. Internal constraints ~type 3! are used to describe the
physical effects a means is based upon. External constraints
model flow between different functions ~type 4a! or collect
properties from a means’ subfunctions ~type 4b!. All these
constraints are added manually and subsequently
activated or deactivated automatically, depending on the
chosen means. In contrast, constraints of type 5 are set auto-
matically and model the identity of a corresponding func-
tion and means parameter.

3.6. Concepts

Leemhuis et al. ~2002! state the need to explicitly document
concepts, and they note that available commercial software
offers no satisfactory support for concept modeling. For
this reason, concepts are a central part of the information
model presented here.

A concept is an object that encapsulates a number of
means choices and a number of value choices. In this way,

Fig. 3. The structure of the information model elements, interconnecting constraint network, and correspondence to VDI 2221.

Constraint-based conceptual design support 207

https://doi.org/10.1017/S0890060405050146 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060405050146

concepts can be used for a parametric description of an
overall principle solution to the design task.

3.7. Operating states and dimensioning cases

The constraint network is used to describe relations between
parameters. To facilitate modeling of products that are more
complex, compound objects can be constructed by group-
ing several objects, which then can be treated as a single
entity. An example of this is to group several functions into
operating states or several requirements into dimensioning
cases ~cf. Fig. 2!. When doing so, a whole group of require-
ments can be activated or deactivated by simply changing
the dimensioning case under consideration.

4. THE CONCEPTUAL DESIGN TOOL

To implement the information model described in Section 3
and to verify its suitability in principle, a software proto-
type has been implemented as an engineering application
of constraint networks for computer-supported conceptual
design.

According to Kuttig ~1993!, computer-aided functional
modeling involves a product model; methods for modeling,
analyzing, selecting and evaluating; design databases; and
communication with the designer. In this section, the prod-
uct model, a computer-internal representation of the infor-
mation model presented earlier, is described in terms of
these aspects.

4.1. General architecture and product model

The general architecture of the prototype is shown in Fig-
ure 6. The product model of the conceptual design modeler
is realized as an object-oriented C��document-object model
in primary memory. It is visualized using the Microsoft
Foundation Class library. Persistent storage of models is
made possible through serialization, and independently of
this, a design library in the form of a relational database
enables storage of means for reuse. The product model can
be exported into and imported from an XML document,
and views of the product model can be saved as bitmap or
vector graphics.

The applied constraint solver is DeltaBlue ~Freeman–
Benson et al., 1990!, an incremental constraint solver well
suited for working with incomplete, possibly contradictory
concepts. Constraints are entered in symbolic, implicit form
~e.g., a � b � c!, and external commercial symbolic algebra
software is used to solve the necessary explicit forms of the
equation for each variable ~e.g., solve for b � a � c!.

The constraint network is used to model the quantitative
relations between parameters. Different strengths are used
to model constraints. The strength “required” is applied to
link a requirement variable to a function variable, for defin-
itive user-made value assignments, user-defined formula
constraints, and automatically set identity constraints
between corresponding parameters of function and the

F
ig

.4
.

T
he

in
fo

rm
at

io
n

m
od

el
as

U
ni

fi
ed

M
od

el
in

g
L

an
gu

ag
e

cl
as

s
di

ag
ra

m
.

208 S. Wilhelms

https://doi.org/10.1017/S0890060405050146 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060405050146

selected means. The strength “preferred” is applied for fac-
ultative user-made value assignments. “Weak default” is
used to set initial values. The structural, qualitative rela-
tions in the model, for example, that a number of means
belong to a specific function, are realized using pointers
between objects.

4.2. Manipulation methods and operations

The C�� objects described offer a number of manipulation
methods for the product model. All objects offer the usual
adding0removing0accessing member routines for their

child objects, for example, accessing the means belonging
to a function.

In addition, concept objects ~cf. Fig. 4! offer a more com-
plex event handler that is called when a concept is to be
activated or deactivated upon user request ~functions On
Activate() and OnDeactivate() in class CCon-
cept!. This routine will activate or deactivate the necessary
means ~by forwarding the call to Select/Deselect()
in the CMeans class! and set or remove the necessary iden-
tity constraints between corresponding function and means
parameters ~using Create/DestroyConnection
Constraints() in the CRealization class!. When a

Fig. 5. The constraint types available in the tool for modeling relations.

Fig. 6. The architecture of the prototype.

Constraint-based conceptual design support 209

https://doi.org/10.1017/S0890060405050146 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060405050146

subfunction during this operation is deactivated, the exter-
nal constraints of the function are moved to a list of inactive
constraints and removed from the constraint network. Upon
reactivation, these constraints are restored from the list and
written back to the constraint network. When a means is
deactivated, its current parameter values are stored in a list
for future reference when it is reactivated ~using Save/
RestoreParameterValues() in class CRealiza-
tion!. In this way, even parameter values that have no
definitive value assignment are preserved. Furthermore, all
means and subfunctions below the actual function are recur-
sively activated or deactivated.

4.3. Storage to database, search, and reuse

Hirtz et al. ~2002, appendix A! provide a taxonomy for
functions and flows. Flows are divided into categories such
as liquid flow, effort flow, or pneumatic air flow caused by
pressure. The design library in the present work is based on
similar thoughts, but for constraint networks to be applica-
ble, the flows are expressed by a set of standardized param-
eters. For this purpose, the 24 IQ quantities from Roth ~1994,
fig. 5.2! were chosen as parameter types ~see Table 2!.

Roth ~1994! defined IQ quantities as the physical quan-
tities that determine power ~denoted as intensity, “I”! or
amount ~quantity, “Q”!. IQ quantities are used as functional
parameters that define the physical facts of the task, that is,
constitute parameters describing input and output of the
desired functions. The desired relation of IQ-quantities on a
function’s input and output is thereafter actually achieved
by choosing suitable design parameters, defined as a real-
ized design solution’s physical quantities that describe the
direct relation between its IQ quantities. For a desired
function “Convert force to linear movement”, with input
IQ-quantity force ~F! and output IQ-quantity displacement
~s!, the principle solution “linear material elasticity” could
be chosen, with the material stiffness ~c! as the design param-
eter that connects force and displacement, giving rise to the
internal constraint F � c { s.

For this notation and the case that one of the 24 IQ quan-
tities is converted to another, a matrix of physical effects
known to perform these conversions is available in Roth
~1994, sect. 5.5.2!, and VDI ~1997, sect. 4.2.2; see Fig. 7!.
Effect is hereby defined as physical, chemical, or biological
law, relation or phenomenon with which a desired function
can be performed. The effects in the matrix constitute an
initial basis for the design library. The IQ quantities are
intended for use when connecting functions’ input and out-
put flows, but do not constitute a complete set that is able to
express all necessary parameters. For internal parameters
describing the design quantities, additional types may be
used by adding user-specific types, for example, the trans-
mission ratio for a gearbox.

The design library is structured as a relational database
with seven tables ~see Fig. 8!. T

ab
le

2.
IQ

qu
an

ti
ti

es

S
ys

te
m

M
ec

ha
ni

ca
l

T
ra

ns
la

ti
on

R
ot

at
io

n
F

lu
id

M
ec

ha
ni

ca
l

E
le

ct
ri

ca
l

T
he

rm
od

yn
am

ic
D

is
si

pa
ti

on
T

he
rm

od
yn

am
ic

N
o

D
is

si
pa

ti
on

P
I

T
Q

P
I

T
Q

P
I

T
Q

P
I

T
Q

P
I

T
Q

P
I

T
Q

F
or

ce
~F
!

D
is

pl
ac

em
en

t
~s
!

To
rq

ue
~M
!

A
ng

ul
ar

di
sp

l.
~w
!

V
ol

um
e

fl
ow
~u
!

P
re

ss
ur

e
im

pu
ls

e
~p
!

C
ur

re
nt
~I
!

In
du

ct
io

n
fl

ux
~F
!

E
nt

ro
py

fl
ow
~d

S0
dt
!

H
ea

t
fl

ux
~d

Q
W
0d

t!

P
Q

T
I

P
Q

T
I

P
Q

T
I

P
Q

T
I

P
Q

T
I

P
Q

T
I

Im
pu

ls
e
~p

i!
V

el
oc

it
y
~v
!

A
ng

ul
ar

m
om

en
tu

m
~L
!

A
ng

ul
ar

ve
lo

ci
ty
~v
!

V
ol

um
e
~V
!

P
re

ss
ur

e
~p

d
!

C
ha

rg
e
~Q
!

V
ol

ta
ge
~U
!

E
nt

ro
py
~S
!

Te
m

p.
~T
!

H
ea

t
am

ou
nt

~Q
W
!

Te
m

p.
~T
!

R
ot

h
~1

99
4!

de
fi

ne
d

IQ
qu

an
ti

ti
es

as
th

e
ph

ys
ic

al
qu

an
ti

ti
es

th
at

de
te

rm
in

e
po

w
er
~d

en
ot

ed
as

in
te

ns
it

y,
I!

or
am

ou
nt
~d

en
ot

ed
as

qu
an

ti
ty

,Q
!,

w
hi

ch
ar

e
m

ea
su

re
d

as
si

ng
le

-p
oi

nt
qu

an
ti

ty
~P
!

or
tw

o-
po

in
t

qu
an

ti
ty
~T
!.

A
da

pt
ed

fr
om

R
ot

h
~1

99
4!

.

210 S. Wilhelms

https://doi.org/10.1017/S0890060405050146 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060405050146

Storage to the database is performed by issuing a “store
in database for reuse” command on a means after it has
been modeled in the graphical environment. When process-

ing the command, the modeled functions and means will be
entered into the database together with their parameters.
Internal constraints and external constraints within the scope
of reuse ~i.e., from means to subfunctions and between sub-
functions! will be added to the database. Identifiers and
pointers will be translated to the database keys. The chosen
method of data collection thus corresponds to online knowl-
edge capturing as described by Jensen ~1999, p. 192!, but
with the advantage that the stored models conserve their
functionality ~constraints continue to operate even in reused
models! and also allow reasoning to some extent ~even if
directly creative steps are not supported!.

Upon later reuse, which is initiated by issuing a “search
means” command on a function, a search for suitable means
will be specified using the input and output flows of that
desired function. For a function “multiply torque,” a search
could, for example, be specified by stating that the desired
function has a torque both as its input and its output; a free
text search for the word “torque” could also be specified.
This query is entered interactively in a dialog box and then
automatically translated to the Structured Query Language
~SQL! statement shown in Figure 9. The resulting means
are then presented to the designer as a list of suggestions.
The corresponding F0M tree segment that includes the
assigned constraints can be opened and viewed for each
suggestion.

4.4. User interface

As already stated, functional modeling and computer sup-
ported conceptual design have been a research concern for

Fig. 7. The functional parameter matrix ~above! and excerpt of the solu-
tion database for field 1.2 converting force to displacement ~below!.

Fig. 8. The database schema as Unified Modeling Language class diagram.

Constraint-based conceptual design support 211

https://doi.org/10.1017/S0890060405050146 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060405050146

a long time. As pointed out in Kuttig ~1993!, because of the
progress in technical development, the provided computer
support evolved from alphanumeric, difficult to handle sys-
tems to more suitable interactive modeling with graphical
user interfaces. This prototype also uses abstract graphical
views to let the designer interact with the underlying prod-
uct model.

The user interface was implemented using a splitter win-
dow, divided horizontally into three areas. In the section on
the left ~see Fig. 10, left, which shows the example described
in more detail in Section 5!, requirements are listed with
desired and actual values. The section to the right gives
access to a list of suggestions for reuse from the design
library. In the middle section, one of several views can be
chosen to visualize and modify the product model. At present,
two views are available: a flow-based function structure
view ~see Fig. 10! and a hierarchical F0M tree view ~see
Fig. 11!. The function structure view contains functions
and the flows interconnecting them. The functions and con-
straints are drawn automatically, whereas the designer is
free to place the functions at the desired positions. The F0M
tree view is rendered fully automatically. In this view, drag
and drop operations are used to move functions and means.
When moved in this way, the model relations are updated
accordingly, for example, that a means receives another
function as its parent function. Both views provide access
to the methods of the individual functions or means using a
context menu with different menu entries depending on the
actual object ~e.g., reuse only for functions!.

Concepts can be generated flexibly by double clicking
on means in the tree view; the selected means will then be
displayed with a red border. If means have specific subfunc-
tions ~i.e., subfunctions that are only active for a particular
means!, then the tree will be redrawn to show these sub-
functions. With the combo-box element in the toolbox at
the top, the designer can easily change between a set of
alternative concepts. Here, too, the tree will be redrawn to
reflect the selections of another concept.

If the constraint network is affected by any of the oper-
ations, it will be updated. As means are selected or deselected,
internal constraints will thus be activated or deactivated
and identity constraints be set or removed. Value assign-
ments will be set or removed depending on the chosen con-
cept. Requirement fulfilment is checked by comparing
required value ~stored in the requirement! and achieved value
~provided by the function in the design! and will be dis-
played using a color code ~green for fulfilled requirements0
wishes, yellow for violated wishes, or red for violated
requirements!. During all steps, constraint propagation will
be performed to forward any changes.

Requirements and parameters are displayed as lines in grid
controls ~cf. Fig. 10, left!. For parameters, values can simply
be changed by entering a new value, which will then be kept
as a weak default ~and may change until the designer chooses
to constrain it with a definitive value assignment!. Even here,
color coding is used: values that are determined by other con-
straints and are not editable are displayed in grey. Fulfilled
constraints are shown in green, violated ones in red.

Fig. 9. The generated SQL statement querying the design library.

212 S. Wilhelms

https://doi.org/10.1017/S0890060405050146 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060405050146

Fig. 10. A screen layout of the prototype with requirements ~left! and function structure view activated ~middle!.

C
onstraint-based

conceptual
design

support
213

https://doi.org/10.1017/S0890060405050146 Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0890060405050146

Fig. 11. A screen layout with function0means tree view activated ~middle!.

214
S.W

ilhelm
s

https://doi.org/10.1017/S0890060405050146 Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0890060405050146

5. EXAMPLE

As an example, a water hydraulic rock drill was modeled in
the prototype. This design example was taken from a live,
company-ordered design project ~Adolfsson et al., 2002!,
which was previously carried out by fourth-year mechani-
cal engineering students and supervised by the author. The
conceptual design task was to redesign an existing drill, so
that it supported the reactive force and torque from drilling
inside the drilled hole instead of outside. Several principle
solution alternatives were suggested by the students in their
project work, in which they used a traditional F0M tree and
separate paper-based calculations. This design project has
been used both for developing the presented information
model and tool, suitable for the needs discovered during the
project, and for providing an application example.

Using the prototype described in this article, an F0M tree
with integrated early calculations was modeled for the drill
example. The F0M tree, as it is automatically rendered by
the prototype, is shown in Figure 12. The letter S to the left
of a function indicates that the function in question is a
specific subfunction, that is, it is active only as long as the
means that it belongs to ~indicated by a minus sign inside
a small function symbol! remains selected ~indicated by a

thick border; red on screen display! and is part of the cur-
rent concept. Functions without an S are active independent
of the chosen means ~i.e., are common to all means!.

The functions of the F0M tree are interconnected by flows,
each of which is represented by an external constraint
~type 4a!. Parameters in the model are uniquely identified by
their function name, followed by a dot and the parameter name,
for example, “Supply water.Q” for parameter Q representing
the output flow in function “Supply water” or “Drill.M” denot-
ing the output torque M of function “Drill”. The constraints
are then entered using the text strings given below. Figure 13
shows the type 4a constraints for the first decomposition level
related to water flow and rotation. These constraints express
the balance of input volume flows ~Supply water.Q�Remove
mud.Q � Drill by rotation.Qin � Feed.Q! and output volume
flows ~Carry off water.Q�Remove mud.Qout �Feed.Qout �
Drill by rotation.Qout! and that connected functions have the
same parameter values regarding torque and penetration speed
~Drill by rotation.M � Support reactive torque.M, Drill by
rotation.v� Feed.v!.

An important issue that can be covered is the concurrent
development of hierarchical function structures and the
F0M tree. The functions “Drill by rotation” and “Feed” are
for example decomposed into four subfunctions each in the

Fig. 12. A function0means tree of a rock drill rendered by the prototype.

Constraint-based conceptual design support 215

https://doi.org/10.1017/S0890060405050146 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060405050146

F0M tree ~cf. Fig. 12!. The same subfunctions can be found
in the function structure, located inside the boxes of the two
parent functions. In Figure 14, these subfunctions are shown,
and detailed by giving their constraints:

• type 4b constraint that connects the parameter Qin in
means “Rotating drilling head” belonging to function
“Drill by rotation” of level 2 to the function “Create
rotation” of level 3 ~Qin � Create rotation.Q! and in
this way enables hierarchical function structures by
collecting the properties from subfunctions;

• type 4a constraints on decomposition level 3 indicat-
ing, for example, that the weight on bit applied onto
the drilling head is the same as the force produced by
the corresponding function ~Create drilling normal
force.F � Drill.F!; and

• type 5 constraints, for example, connecting the param-
eter v of the means “Rotating drilling head” for func-
tion “Drill by rotation” to the parameter v of the function
“Drill by rotation,” in this way connecting the subfunc-
tions’ model to the level above.

In Figure 14, the corresponding screenshot of the proto-
type is given. It shows how an underdefined function struc-
ture ~the functions “Steer,” “Feed continuously,” or “Climb
across gaps” have not yet been quantified! already can be
used for quantitative modeling in some parts ~in function
“Drill by rotation”!. Functions are shown as rectangles with
input flows on their left edge, output flows on their right
edge, and internal parameters at the bottom. The number
left to the function name indicates the function’s level of
decomposition in the F0M tree. Connecting lines represent
the constraints.

The function structure is automatically rendered from the
F0M tree and constraint network information. The designer
is free to move the functions from their initial positions at
wish, and, if applicable, subfunctions will be moved together
with their parent functions. Upon changes in the F0M tree,

the function structure will be updated, for example, by auto-
matically replacing the subfunctions if a means with differ-
ent specific subfunctions is chosen. The connecting lines
representing the constraints are drawn by the prototype
automatically.

Internal constraints ~type 3! describe how the chosen
means achieve the interconnection of input and output param-
eters. Internal constraints are, for example, F � m { FN for
the means “friction” or p � F0A for “cylinder.” For the
means “Rotating abrasive diamond bit” associated with func-
tion “Drill,” internal constraints indicate the following:

• a recommended penetration rate n0v ~rotations0cm!,
interlinking rotational speed n and rate of penetration
v, and

• the amount of created drilling dust Qd as a function of
the rate of penetration v ~Qd � v { pD 204!

Value assignment constraints ~type 1! are used to set val-
ues of variables, for example, the necessary feeding force
or weight on bit ~F � 30 kN, steered by the drilling head
data!, the estimated friction coefficient ~m � 0.2! or the
recommended rotations per cm of the drilling head ~n0v�
80 cm�1!.

Requirement constraints ~type 2! are used to relate require-
ments ~e.g., the necessary rate of penetration of v� 3 m0min!
to the corresponding function parameter ~Drill.v!, which
allows actual values to propagate to the requirement and
enables to check the requirement fulfilment by comparing
actual and required value. By these constraints, the connec-
tion between requirements and design parameters is achieved.
In a similar way, the other requirements on rotational speed
~n!, diameter ~D!, flow ~Q!, steering radius ~R!, gap length
~L!, and water pressure ~ p! are connected to Drill.n, Drill.D,
Remove mud.Q, Steer.R, Climb across gaps.L, and Provide
normal force.p.

Identity constraints ~type 5! are set automatically as soon
as concepts are created by choosing means. These con-

Fig. 13. A function structure with interlinking flows ~each represented by one external constraint!.

216 S. Wilhelms

https://doi.org/10.1017/S0890060405050146 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060405050146

Fig. 14. A snapshot of the function structure in the prototype.

https://doi.org/10.1017/S0890060405050146 Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0890060405050146

straints bind the corresponding parameters of function and
means, for example, “Create drilling normal force.F � Cyl-
inder.F,” and in this way connect the two separate networks
of external and internal constraints.

The rock drill proved to be an example of a design task
that is well suited for support using the described methods
and tool. Using this model, easy conceptual decisions can
be modeled and assessed, for example, which consequences
a different drilling head requiring other water flows or speeds
has for the other functions. However, it can also be seen
that conceptual modeling quickly become extremely com-
plex when different solution principles are involved, and a
restriction is therefore necessary on few parameters to avoid
that concept modeling requires more effort than it saves.

6. CONCLUSIONS

This article presents a way of supporting conceptual design
with regard to both concept synthesis and quantitative ver-
ification of concepts using a hierarchical F0M tree decom-
position and integrated constraint networks. This work
extends previous research on computer-supported concep-
tual design and the use of constraint networks from other
researchers ~Feldkamp et al., 1998; Leemhuis et al., 2002;
O’Sullivan, 2002b!.

The original contribution of the underlying research in
this project is to provide an information model for concep-
tual design that permits parametric, constraint-based mod-
eling of concept synthesis from solution elements that are
based on solution principles, not only on components, sub-
assemblies or parts. Specifically, in this article, the original
contribution is a method for using a database to store pre-
vious principle solution elements for future reuse, where
the separation from the old context and the insertion into a
new context is achieved by a division into external con-
straints ~type 4a, not reused, except for subfunctions! and
internal constraints ~type 3, reused! and the use of special
identity constraints between corresponding function and
means parameters ~type 5! that are easy to remove and
reinsert. A whole tree segment including subfunctions
and parametric model can in this way be detached, stored
and reused, and in this way, reuse of larger principle solu-
tion elements is made possible in a more flexible manner,
and the library becomes extensible. The basic ideas behind
the prototype and a relational database with SQL state-
ments implementing the mentioned reuse are also described.

The presented information model and the tool incorpo-
rating it constitute an aid for supporting a discursive pro-
cedure for obtaining verified quantitative concepts. In this
way, support of early conceptual design, taking into account
different principle variants and alternative concepts, is made
accessible to computer support, and more concepts can be
evaluated and verified in the same time. Concept synthesis
and early calculations are integrated, and bidirectional prop-
agation in change operations is provided.

The tool supports incremental work, where all elements
such as means or concepts can be added and modified at
any time. The elements do not have to be fully defined from
the beginning and can be individual, that is, also not pre-
defined. Parameters, constraints, and value assignments can
likewise be flexibly added, changed, or removed at any
time to enable an incremental, interactive and explorative
way of working, which is believed to be suitable for con-
ceptual design.

During development of the tool, several realistic design
problems from prior company-ordered student projects in a
fourth-year mechanical engineering master’s course ~Engi-
neering Design–Product Development! have been used, and
the model was designed to be able to express them. The
suitability of the model has thus been shown by theoretic
reasoning and self-observation while modeling the exam-
ples. The practical applicability has not yet been further
verified in setup empirical tests on any realistically sized
projects in companies. To reach results beyond trivial obser-
vations and not to be too hampered by prototype instabili-
ties, this requires a fairly stable and implemented prototype,
which has not been available until recently.

It should also be noted that the supported part of concep-
tual design, yet doubtlessly important, is only a small part
of product design. There are numerous other important activ-
ities beyond the scope of this tool, for example, shape design
and layout, aesthetic properties, or customer perception that
cannot easily be expressed by simple parameters, more com-
plex relations that cannot be expressed by simple algorith-
mic relations, and so forth.

REFERENCES

Adolfsson, A., Carlson, N., Falk, K., & Habteab, S. ~2002!. Självdrivande
Bergborr. Linköping, Sweden: Linköpings Universitet.

Birkhofer, H., & Keutgen, I. ~1999!. Vom Konstruktionskatalog zum agen-
tengestützten Online-Informationssystem. In Konstruktionsmethodik—
Quo Vadis ~Franke, H.-J., Krusche, T., & Mette, M., Eds.!, pp. 43–52.
Aachen, Germany: Shaker.

Bracewell, R.H., & Sharpe, J.E.E. ~1996!. Functional descriptions used in
computer support for qualitative scheme generation—Schemebuilder.
Artificial Intelligence for Engineering Design, Analysis and Manufac-
turing 10(4), 333–346.

Chakrabarti, A. ~2002!. Engineering Design Synthesis: Understanding,
Approaches and Tools. London: Springer–Verlag.

Doyle, J. ~1979!. A truth maintenance system. Artificial Intelligence 12(3),
231–272.

Feldkamp, F., Heinrich, M., & Meyer–Gramann, K.D. ~1998!. SyDeR—
System design for reusability. Artificial Intelligence for Engineering
Design, Analysis and Manufacturing 12(4), 373–382.

Franke, H.-J., Löffler, S., & Deimel, M. ~2004!. Increasing the efficiency
of design catalogues by using modern data processing technologies.
Proc. 8th Int. Design Conf. Design 2004, pp. 853–858.

Freeman–Benson, B., Maloney, J., & Borning, A. ~1990!. An incremental
constraint solver. Communications of the ACM 33(1), 54– 62.

Hansen, C.T. ~1995!. An approach to simultaneous synthesis and optimi-
sation of composite mechanical systems. Journal of Engineering Design
6(3), 249–266.

Hirtz, J., Stone, R.B., & McAdams, D.A. ~2002!. A functional basis for
engineering design: Reconciling and evolving previous efforts. Research
in Engineering Design 13(2), 65–82.

Jensen, T. ~1999!. Functional Modeling in a Design Support System. Lyngby,
Denmark: Technical University of Denmark.

218 S. Wilhelms

https://doi.org/10.1017/S0890060405050146 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060405050146

Kleiner, S., Anderl, R., & Gräb, R. ~2003!. A collaborative system for
product data integration. Journal of Engineering Design 14(4), 421–428.

Kuttig, D. ~1993!. Potential and limits of functional modeling in the CAD
process. Research in Engineering Design 5(1), 40– 48.

Langlotz, G. ~2000!. Ein Beitrag zur Funktionsstrukturentwicklung inno-
vativer Produkte. Karlsruhe, Germany: Karlsruhe University.

Leemhuis, H., Baumann, R., Kaufmann, U., Swoboda, F., Kühn, T., &
Zbigniew, R. ~2002!. Function oriented product modeling based on
feature technology and integrated constraint management. Proc. 11th
Symp. Product Data Technology. Sandhurst, UK: Quality Marketing
Services.

Lindemann, U., Amft, M., Aßmann, G., Wulf, J., Birkhofer, H., & Wall-
meier, S. ~1998!. Computer support for the early stages of develop-
ment. F � M, Feinwerktechnik, Mikrotechnik, Mikroelektronik 106(3),
123–127.

O’Sullivan, B. ~2002a!. Interactive constraint-aided conceptual design.
Artificial Intelligence for Engineering Design, Analysis and Manufac-
turing 16(4), 303–328.

O’Sullivan, B. ~2002b!. Constraint-Aided Conceptual Design. London:
Professional Engineering Publishing0Wiley.

Pahl, G., Beitz, W., Feldhusen, J., & Grote, K.H. ~2003!. Konstruktions-
lehre. Berlin: Springer–Verlag.

Roth, K. ~1994!. Konstruieren mit Konstruktionskatalogen, Vol. 1. Berlin:
Springer–Verlag.

VDI. ~1993!. Guideline 2221 : Systematic Approach to the Development
and Design of Technical Systems and Products. Düsseldorf, Germany:
Verein Deutscher Ingenieure.

VDI. ~1997!. Guideline 2222, Sheet 1: Methodic Development of Solution
Principles. Düsseldorf, Germany: Verein Deutscher Ingenieure.

Wilhelms, S., & Derelöv, M. ~2004!. Supporting concept synthesis by use
of genetic algorithms. Proc. 5th Int. Symp. Tools and Methods of Com-
petitive Engineering TMCE2004, pp. 255–266.

Yekula, R.K., McAdams, D.A., & Stone, R.B. ~2003!. Functional and
mathematical equivalence of mechanisms: A novel approach to inte-
grating synthesis and design analysis. Proc. ASME 2003 Design Engi-
neering Technical Conf., Paper No. DETC20030DTM-48663, Chicago.

Sören Wilhelms has worked as a doctoral candidate at the
University of Linköping, Sweden, in the area of machine
design since 2000. He received a DiplIng degree in mechan-
ical engineering from the technical University of Braunsch-
weig, Germany, and holds a TeknLic degree from the
University of Linköping. Dr. Wilhelms’ research interest is
design methodology, more specifically, how the early phases
and conceptual design can be computer supported for inno-
vative design solutions.

Constraint-based conceptual design support 219

https://doi.org/10.1017/S0890060405050146 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060405050146

