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Abstract

The scattering of the H-polarized plane electromagnetic wave by a finite multilayer graphene
strip grating is considered. The properties of the whole structure are obtained from the set of
integral equations, which are written in the operator form. The scattering operators of a single
layer are used and supposed to be known. Scattering and absorption characteristics as well as
diffraction patterns are presented.

Introduction

Multilayer graphene structures have promising applications in antennas, sensors, and absor-
bers [1–5]. Chemical potential of graphene can be tuned through electrostatic doping.
Thus, graphene can become a basic element in the creation of tunable devices.

Photonic crystal based on multilayer graphene structure at terahertz frequencies have been
proposed in [6, 7]. Few-layer graphene flakes with <10 layers each show a distinctive band
structure in 0.9–1.3 THz [8].

In a large number of papers, graphene strips are analyzed with the use of the finite-
difference method [9, 10]. However, such a method has significant restrictions on the size
of the structure under study. The approximate radiation conditions bound the accessible
accuracy.

Graphene layer can be considered as a dielectric with certain permittivity and thickness.
Still the accuracy of such a model degrades as Δ/λ increases, where Δ is the thickness of the
graphene layer and λ is the wavelength [11]. In [12], a dispersive time-domain method is
used to study properties of graphene arrays. Based on the time-domain volume integral equa-
tion method, the volume integrals are converted into surface integrals. Drude formula is used
to model the conductivity of graphene and as a consequence to model its permittivity. The
discrepancy between graphene dielectric function extracted from Kubo formulism and
Drude model is demonstrated, for example, in [13].

Method of moments [14], finite element method [15], discontinuous Galerkin time-
domain method [16] also can be applied to study the graphene gratings. In [17], a customized
efficient circuit model is employed to study a single unpatterned graphene sheet placed inside
a grounded dielectric multilayer. In [18], infinite periodic graphene grating placed into dielec-
tric slab is studied with the use of the regularizing method of moments. Three types of reso-
nances are identified: the resonance on the localized surface-plasmon modes, the grating
modes, and the slab modes.

In [19], finite system of layers is analyzed with the use of the singular integral equations
method. With the number of scatterers increases, the dimension of the matrix is also increased.
It leads to significant increase of calculations time. Thus it makes sense to divide complex
structure into several similar substructures and to analyze every substructure separately.
Contrary to the methods when the structure is analyzed as a whole, such approach allows
to reduce the dimension of the resulting system of lineal algebraic equations and decrease
the computation time. The method of S-matrix allows to obtain the scattering matrix of a sys-
tem which consists of a finite number of layers if the properties of a single layer are known. In
[20], finite number of bi-periodic graphene layers is cascaded with the use of the S-matrix
approach. In [21], absorbing structure which consists of a two-period dielectric Salisbury
screen backed with a perfect electric conducting (PEC) metal plate is considered with the simi-
lar approach. The first lossy sheet is an undoped graphene monolayer, the second lossy sheet is
made by a graphene/dielectric laminate. S-matrix approach can be efficiently applied to the
scattering by infinite gratings. Obtained equations are the matrix ones. Far less frequently
such approach is used to the structures with finite dimensions. Here, the obtained equations
are the integral ones.

In [22, 23], multilayer structures of PEC planar scatterers are considered. The properties of
the whole structure are obtained from equations, which are written in the operator form. These
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equations use the scattering operators of a single layer. In this
paper, we are going to use the same approach to analyze multi-
layer system of identical graphene planar strip gratings. To
describe the graphene, we use the model of zero-thickness imped-
ance sheet, characterized with surface conductivity via the Kubo
formalism.

Solution of the problem

Basic notations

Consider graphene grating represented in Fig. 1. The geometry of
the structure is characterized with the following parameters: per-
iod l, strip width 2d, distance between layers h, number of strips in
every layer N, and number of layers M. The strips are infinite
along the x-axis and are placed in the free space. Graphene
strip can be characterized with chemical potential μc, relaxation
time τ, and temperature T. The surface conductivity of graphene
σ is obtained using the Kubo formalism [24, 25]. Note that for the
parameters of graphene considered in this paper for the consid-
ered frequency band, the intraband contributions dominate and
interband transitions is small [18].

We describe the incident H-polarized field as a Fourier integral
(a spectrum of plane waves) with spectral function q(ξ),

Hi
x(y, z) =

∫1

−1
q(j) exp(ik(jy − g(j)z))dj, (1)

where g(j) =
�������
1− j2

√
, Reg ≥ 0, Img ≥ 0, and k = 2π/λ is the

wavenumber, q(ξ) is known amplitude. If only a single plane
wave is incident under the angle w0 then q(ξ) = δ(ξ− cosw0),
where δ(ξ) is the Dirac delta function. The total field we represent
as a superposition of the incident and scattered fields. It should
satisfy the Helmholtz equation, the following boundary
conditions:

E+
y = E−

y , (2)

1
2
(E+

y + E−
y ) =

1
s
(H+

x −H−
x ). (3)

Also the radiation and the edge conditions should be satisfied.
We present the scattered field as Fourier integral with spectral

functions A(ξ), Cm(ξ), Bm(ξ), and D(ξ), m = 1, 2, …, M− 1
(directions of wave propagation are shown in Fig. 1).

Single layer of graphene strips

In this section, we describe briefly the method of singular integral
equations for a single layer placed in the z = 0 plane [26]. Denote
the set of strips as L = ⋃N

n=1 (−d + l · n; d + l · n). Incident field
is described by (1). Scattered field we seek as

Hs
x(y, z) = sgn(z)

∫1

−1
C(j) exp(ikjy + ikg(j)|z|)dj, (4)

where C(ξ) is unknown spectral function. It satisfies the
Helmholtz equation, the radiation condition, and (2). From (2)

and (3) we may obtain following dual integral equations:

∫1

−1
C(j) exp(ikjy)dj = 0, y � L, (5)

2ik
sZ

∫1

−1
C(j) exp(ikjy)dj+ ik

∫1

−1
g(j)C(j) exp(ikjy)dj

= − ∂

∂z
Hi

x(y, 0), y [ L.

(6)

Introduce function F(y) = ik
�1
−1 jC(j) exp(ikjy)dj = 0.

From (4) it follows that F( y) is up to a constant factor the deriv-
ation of the current density on the strips. Then

C(j) = 1
2p ij

∫
L

F(y)(exp(ikyj) − 1)dy. (7)

In (6), let us represent function g(j) =
�������
1− j2

√
� i|j|+

O(1/j), ξ→∞, as a sum of vanishing and non-vanishing
terms, γ(ξ) = (γ(ξ)− i|ξ|) + i|ξ| and use the Hilbert transform to
the non-vanishing term. The Hilbert transform is

PG(y) = 1
p
PV

∫1

−1

G(j)
j− y

dj,

P exp(ikzy) = isgn(kz) exp(ikzy),

where G(ξ) is an arbitrary function. As a result after transforma-
tions singular integral equation can be obtained

1
p
PV

∫
L

F(j)
j− y

dj+ 1
p

∫
L

K(y, j)F(j)dj = − ∂

∂z
Hi

x(y, 0),

y [ L.

(8)

Fig. 1. Structure geometry.
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The additional conditions follow from (5)

1
p

∫d+l·n

−d+l·n

F(j)dj = 0, n = 1, 2, . . . ,N, (9)

where PV means Cauchy principal value integral, the kernel func-
tion is

K(y, j) = k
∫1

0

sin(kz(y − j))
z

(z+ ig(z))dz+ q(y, j), (10)

q(y, j) =
2ikp
sZ

, j ≤ y,

0, j . y.

⎧⎨
⎩

The numerical solution of (8) and (9) with (10) can be
obtained using the Nystrom-type method of discrete singularities
[27].

Let us introduce the transmission t and reflection r integral
operators of a single layer of graphene strips,

(tq)(j) =
∫+1

−1
t(j, z)q(z)dz, (11)

(rq)(j) =
∫+1

−1
r(j, z)q(z)dz,

where t(ξ, ζ) and r(ξ, ζ) are the kernel functions. These operators
connect the Fourier amplitude of incident field (as functions of ζ)
with the Fourier amplitude of the scattered field (as functions of
ξ). In case if solution of (8) and (9) is known, then C(ξ) can be
obtained from (7). Then, for the incident field (1) it follows:

(rq)(j) = C(j). (12)

In the H-polarization case, one can write the following relation
which connects the kernel functions of the transmission and
reflection operators

t(j, z) = d(j− z) − r(j, z). (13)

From the edge condition it follows that Hs
x(y, 0) �����������������������������������(y − (−d + l · n))(d + l · n− y)√

, when y approaches the edges
of the nth strip. Then, the function C(ξ) as a Fourier transform
of Hs

x(y, 0) satisfies the relation |C(j)| � |j|−3/2, when ξ→∞.
From (12) and reciprocity principle it follows that

r(j, z) � |j|−3/2 and r(j, z) � |z|−3/2. (14)

Let us consider a finite system of layers.

Multilayer grating

We represent integral equations relatively unknown spectral func-
tions (Fourier amplitudes) of the scattered field in the operator
form. The spectral functions of the scattered field are connected
as follows:

A = rq− reB1 + eB1, (15)

B1 = q− rq+ reC1, (16)

C1 = reB1, (17)

Bm = eBm+1 − reBm+1 + reCm, (18)

Cm = reBm − reCm−1 + eCm−1, m = 2, 3, . . . ,M − 2, (19)

BM−1 = reCM−1, (20)

CM−1 = reBM−1 − reCM−2 + eCM−2, (21)

D = eCM−1 − reCM−1, (22)

where the operator e, eg = exp (ikγ(ξ)h)g(ξ), defines the trans-
formation of plane waves on their way through the gap h between
the layers. Equation (15) means that reflected field can be repre-
sented as a superposition of two fields with amplitude rq and −
reB1 + eB1. The first one is the field with amplitude q reflected
from a single isolated layer of graphene strips. As a result the
field with amplitude rq is obtained. Another one is the field
with amplitude eB1 transmitted through the first isolated layer.
Taking into account relation between transmission and reflection
operators (13) the field with amplitude − reB1 + eB1 is obtained.
Using the same considerations, one can write (16)–(22).

From (14), it follows that r‖ ‖2, 1, where ·‖ ‖2 is the norm in
L2. Thus r is the Fredholm operator and equations (15)–(22) are
the set of the Fredholm integral equations of the second kind.
Notice however, that the convergence of (15)–(22) depends on
the convergence of numerical method for the operator r.
Reflection operator r is obtained from the singular integral equation
with additional conditions but not the Fredholm one. Equations (9)
and (10) are solved using the Nystrom-type interpolation algo-
rithm. It guarantees the convergence thanks to the theorems on
approximation of singular integrals with quadratures [27].

Using (11), operator equations (15)–(22) can be rewritten in
the form of integral equations. The interval of integration is infin-
ite. Taking into account exponentially decaying term exp (ikγ(ζ)
h), if |ζ| >1, we can truncate the infinite interval of integration
changing it to (− a;a). After that the compound Gaussian quad-
rature is applied.

Numerical results

As a rule, to characterize the scattering and absorption by a finite
graphene grating, the total scattering cross-section (TSCS) and the
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absorption cross-section (ASC) are introduced. Suppose that
plane wave with unit amplitude is incident on the grating at the
angle of incidence w0 = 900. The parameters of graphene are μc
= 0.3 eV, τ = 1 ps, T = 300 K. Let us study the convergence. As a
reference solution we use the solution from [19].

Introduce relative error of TSCS as follows: ε = |TSCS−
TSCSSIE|/|TSCSSIE|, where TSCS is obtained from (15)–(22), and
TSCSSIE is obtained from [19]. Notation SIE means singular inte-
gral equations. The error of the solution mainly depends on the
length of the truncated finite interval of integration 2a and on
the total number of nodes in the quadrature rule Q. Figure 2
shows dependences of relative error ε versus a and Q. It is obvious
that with the parameter a increase we should take larger Q. Thus
we consider the number of nodes per length, Q/a, in Fig. 2(b).
Since the term exp (ikγ(ζ)h) mainly affects the integrands behav-
ior at infinity, ζ→∞, we can decrease a exponentially when kh is
increased, but a >1. Since the method has guaranteed conver-
gence, the accuracy can archive the level of machine precision.
Note that the method used in our paper has been validated in
[26] for a planar graphene strip grating by comparison with
numerical results obtained using a different algorithm in [28].

The structure under study can support various resonances. In
particular, we study the surface plasmon resonances which
depend on the parameters of individual strip such as conductivity
and width, the resonances near the Rayleigh anomaly caused by
the planar grating periodicity, and resonances of a layered grating.
First, let us study dependences of the scattering and absorption
characteristics as functions of frequency. Then, we consider the
influence of the resonances on the far field. Finally, we present

dependences of TSCS and ACS as functions of the distance
between layers near several resonances.

Figures 3–5 show dependences of the normalized TSCS and
ACS versus frequency for different number of layers M and differ-
ent number of strips N in every layer. Frames show zoomed area
near the first plasmon resonance. In the case of a single graphene
strip or planar grating of graphene strips, the rapid growth of the
TSCS and ASC is observed near the plasmon resonances [26, 28].
In the case of a layered graphene structure, another situation can
be observed. As one can see from Fig. 5, with the increase of the
number of layers, the value of the scattering coefficient per layer
(TSCS/M) decreases near frequency of the first plasmon reson-
ance, f = 2.25 THz. Here TSCS is partially suppressed by the inter-
action between the layers.

As one can know, in layered periodic structures the resonances
may arise with period kh≈ π. The first resonance of the graphene
layered structure under study is observed near f≈ 3.8 THz, the
second one is near f≈ 7.6 THz. Notice that the frequency of the
second resonance is close to the Rayleigh anomaly. Also f≈
7.6 THz is near the second plasmon resonance. Thus near f≈
7.6 THz three different types of resonances appear in sum. As a
result, TSCS does not demonstrate asymmetric Fano shape here
contrary to the single-layer structure. As visible, almost in the
whole band of frequencies under consideration even five strips
provide normalized reflectance and absorbance values very close
to the gratings with 20 and 40 strips. Noticeable difference in

Fig. 3. Dependences of (a) TSCS and (b) ACS on the frequency for M = 2 layers, N = 5
(solid curves), N = 20 (dashed curves), and N = 40 (dotted curves), μc = 0.3 eV, τ = 1 ps,
T = 300 K, d = 10 μm, h = l = 40 μm. Note the resonances on the surface-plasmon
modes of each graphene strip.

Fig. 2. Relative error versus (a) a and (b) Q/a.
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Table 1. Comparison of computation time

Number of
layers M

Number of strips
in every layer N

Operator
method, s.

Method
from [19], s.

2 5 5.3 3.5

20 16 29

40 86 223

4 5 26 37

20 47 519

40 245 4843

Fig. 4. Same study as in Fig. 3 but for M = 4 layers.

Fig. 6. Diffraction patterns for (a) N = 5, (b) N = 20, and (c) N = 40, f = 2.25 THz (solid
curves), f = 3.8 THz (dashed curves), and f = 7.6 THz (dotted curves), M = 4 layers,
μc = 0.3 eV, τ = 1 ps, T = 300 K, d = 10 μm, h = l = 40 μm.

Fig. 5. Same study as in Figs 3 and 4 but for N = 20 strips in every layer and different
number of layers: M = 1 (solid lines), M = 2 (dashed lines), and M = 4 (dotted lines).
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the scattering and absorption per strip, TSCS/N and ACS/N, is
observed only near the resonances of the layered structure.

Comparison of computation time of the presented method and
method from [19] is given in Table 1. Remarkable efficiency of the
proposed method can be seen in the small computation time that
is measured in few minutes. As we expected, with the number of
scatterers increased, the operator method becomes more efficient.
We also compare computation time with HFSS. Since for struc-
tures in Figs 3–5 it requires prohibitively large simulation times,
we take two strips placed in parallel planes, M = 2, N = 1. HFSS
requires about 20 hours.

Figures 6 and 7 show the normalized scattering patterns of the
far-field for three values of frequency: near the first plasmon

resonance, f = 2.25 THz, and near the first and the second reso-
nances of a layered structure, f≈ 3.8 THz, and f≈ 7.6 THz. As it
is usual for strip gratings, if the number of strips increases, the
number of side lobes increases, the main lobe level increases,
and its width decreases. The levels of the main lobes of the
reflected and transmitted fields are almost the same except for
the first plasmon resonance frequency, f = 2.25 THz. Figure 7 is
plotted to compare scattering patterns for different number of
layers. Insignificant difference in the magnitude of the field
reflected back to the source is observed for the structures which
consist of one, two, and four layers only near the first plasmon

Fig. 9. Same study as in Fig. 8 but for f = 3.8 THz.

Fig. 8. Dependences of (a) TSCS and (b) ACS on the distance between layers h for
f = 2.25 THz, M = 4, N = 20, μc = 0.3 eV, τ = 1 ps, T = 300 K, d = 10 μm, l = 40 μm. Note
the resonances related to the natural modes excited between the layers.

Fig. 7. Diffraction patterns for (a) f = 2.25 THz, (b) f = 3.8 THz, and (c) f = 7.6 THz, M = 1
(dotted curves), M = 2 (dashed curves), and M = 4 (solid curves), N = 5, μc = 0.3 eV, τ =
1 ps, T = 300 K, d = 10 μm, h = l = 40 μm.
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resonance (Fig. 7(a)). For other frequencies, if the number of
layers increases, the level of main lobe also increases.

Figures 8–10 show dependences of TSCS and ACS versus dis-
tance between the layers. As we expected, the dependences are
almost periodic with period kh ≈ 2π. Significant difference in
dependences is observed for kh≪ 1. It is explained by the strong
interaction between the layers and partially reveals the influence
of the evanescent waves.

Conclusion

We have presented efficient and rigorous analysis of the
H-polarized wave diffraction by a finite multilayer graphene
strip grating. Proposed approach allows to obtain the solution
in several steps. At the first step, the scattering operators of a sin-
gle layer should be determined. Then, the properties of the whole
structure are obtained from the operator equations, which are
equivalent to the Fredholm integral equations of the second
kind. Such procedure allows to reduce the dimension of the
matrix of the resulting system of equations.

We have studied TSCS, ACS, and far-field scattering patterns.
Presented dependences demonstrate the resonances of a layered
structure besides the plasmon resonances and Rayleigh anomalies.
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