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Abstract. The lower-hybrid drift instability of a plasma driven by relative ion–
electron motion is analyzed in the framework of the modified magnetohydrody-
namic equations. The Hall contribution is expressed in terms that offer a simple
physical interpretation of the process and allow a comprehensive study of various
features and limits of instability. It is shown that in the chosen terms there are
clear-cut ranges of magnetosonic drift, lower-hybrid drift, and kinetic versions of
instability that have different properties. It is shown for the first time that the
instability may have, besides a flute-like structure, a cell-like one as well. On the
basis of the performed analysis, a new classification of the phenomenon is offered.

1. Introduction
Of the numerous plasma instabilities, the one that manifests itself in a pronounced
flute-like structuring of the plasma surface along magnetic field lines has a long-
standing history of research, starting with theta-pinch experiments in the early
1970s. Later, it was observed in the active magnetospheric missions (AMPTE) and
laser-produced plasma experiments of the 1980s. One of the distinguishing features
of this instability is that it operates on spatial and inverse time scales smaller than
the ion gyroradius and cyclotron frequency on the one hand, and larger than the
electron gyroradius and cyclotron frequency on the other. This scaling, as well as
a broad range of physical conditions under which the instability was observed, led
to a certain dualism in theoretical approaches – kinetic and magnetohydrodynamic
(MHD). In the ensuing discussion, it was established that all of these phenomena
have a common origin – the lower-hybrid drift instability (LHDI) driven by relative
electron–ion drift. Winske (1988) proposed that all the cases can be understood
either as density drift or effective gravity drift LHDI, and described by the same
dispersion equation. In later work, usually (see e.g. Huba et al. 1990) the most
general kinetic-based dispersion equations were used to analyze those features of
the instability (wavelength structure, saturation, and trends of nonlinear evolution)
that are still not clearly understood and show significant discrepancies between
theory and experiment.

The purpose of this work is to analyze the properties of various versions of the
instability in the framework of the simplest and thus more tractable MHD equa-
tions. Rather then generalize, we shall try to point out essential differences between
these versions and to find out the ranges where one or other works. Primarily, the
MHD instability will be investigated (as opposed to the ion-kinetic one); this is the
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instability that is likely to have the greatest effects on the plasma. In contrast to
earlier work, the problem will be studied in terms of coupling between the drift
wave due to current and magnetosonic or lower-hybrid waves – instead of effective
gravity, density and gravity drift terms. Instead of the previously proposed MHD
ordering based on the ion Larmor radius, the ion plasma length will be used as
the basic spatial scale. It will be shown that the main parameter that governs the
Hall-modified MHD equations is the relation between this length and the magnetic
field gradient scale, and also that the relation between the magnetic field gradient
scale and the density gradient scale determines the structure of the instability and
the effect of thermal pressure. Also, it will be shown that the instability may or
may not have a long-wavelength limit – a feature that can be quite important from
the point of view of long-time evolution. The possibility of the instability having
a cell-like structure (as opposed to the usually considered flute-like structure) will
be considered for the first time. It will be argued that high above the instabil-
ity threshold, the cell-like structure may be dominant, and that in an expanding
plasma, the counterstreaming ion flows at the front may account for the usually
observed well-pronounced flutes.

The paper is organized as follows. In Sec. 2, the MHD equations including the
Hall term are derived in appropriate limits and geometry. A physical interpretation
of the instability is also presented. In Sec. 3, the effects of thermal pressure are
investigated, as well as the ranges of ion-kinetic instability. In Secs. 4 and 5, the
short-wavelength limit and the spatial structure of instability are discussed. A new
classification of the phenomenon is then presented and discussed in Sec. 6, followed
by conclusions in Sec. 7.

2. Modified MHD equations
We start with the two-fluid MHD equations for ions and massless electrons:

∂ne
∂t

+∇ · (Vene) = 0, (2.1a)

∂ni
∂t

+∇ · (Vini) = 0, (2.1b)

M
dVi
dt

= eE +
e

c
Vi × B− 1

ni
∇pi, (2.1c)

E +
1
c

Ve × B +
1
ene
∇pe = 0. (2.1d)

We make the further approximation of quasineutrality (ne = ni = n) and ignore
electromagnetic effects. Then, after combining with the Maxwell equations, the
modified MHD equations (Krall and Trivelpiece 1973) follows as

∂B
∂t

=∇× (V× B)−∇×
(

J× B
nc

)
+∇×

(
c

ne
∇p
)
, (2.2a)

nM
dV
dt

=
J× B
c
−∇(pe + pi), (2.2b)

∂n

∂t
+∇ · (Vn) = 0. (2.2c)
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Figure 1. Geometry of the problem. The initial profiles of the density and magnetic field
are shown.

We restrict the problem to two dimensions (x, y), with only one magnetic field
component B = Bhz (Fig. 1). The equations are simplified further to

∂B

∂t
+∇ · (VB) =

cB

4πne
∇n× hz

n
·∇B, (2.3a)

nM
dV
dt

= − B
4π
∇B −∇p, (2.3b)

∂n

∂t
+∇ · (Vn) = 0. (2.3c)

Here we have made use of the total plasma pressure p = pi + pe and have neglected
the term∇× [(c/ne)∇pe], which is small if the electron beta is small and is exactly
zero in the isothermal case. Equations (2.3) differ from the classic MHD ones only
by the presence of the Hall term. The problem will be treated in slab geometry,
assuming that initial gradients exist only along the x coordinate. Then we consider
small perturbations∝ exp(−k·r) with wavevector k in a strong local approximation.
This means that all terms of order (kL)−1 and higher are ignored (here L is a
characteristic gradient scale). For the normalized perturbations ρ = δn/n0 and
b = δB/B0, it follows from (2.3) that

∂b

∂t
− ∂ρ

∂t
= −Vj

(
∂ρ

∂y
+ ε

∂b

∂y

)
, (2.4a)

∂2ρ

∂t2
= V 2

a∇2b + C2
s∇2ρ, (2.4b)

where Va is the Alfvén velocity, Cs = (γp/n)1/2 is the thermal sound speed, ε =
−Lb/Ln, and Ln and Lb are the gradient scales of the density and magnetic field.
The relative speed between ions and electrons is given by

Vj =
c

4πn0e

dB0

dx
.

Usually, this is called the drift speed. However, one should remember that the drift
velocity usually refers to the motion of the center of the particles’ Larmor orbit,
while here we have the total fluid velocity. The term ∂ρ/∂t in (2.4a) appeared from
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Figure 2. Electron motion in a perturbation.

substitution of ∇ · V by −n−1
0 ∂n/∂t. Note that a specification of the wave vector

components kx and ky has not been made yet, since this is not necessary so far.
It should be mentioned that the equations are written in the ion frame Vi0 = 0.
The final set of equations is strikingly simple. Without the term proportional to
the drift speed, it describes a magnetosonic wave. In the chosen terms, the density
drift speed is

Vn ≡ hz ×∇pi
nωci

= Vj
2
γ
c2
sε.

Here −c2
s = (Cs/Va)2 = 1

2γβ is the square of the normalized sound speed, and we
have assumed for simplicity that LTi = Ln and pi = p. The gravity drift speed can
be expressed as

Vg ≡ 1
ωci

hz × dVi
dt

= Vj − Vn = Vj

(
1− 2

γ
c2
sε

)
.

Note that the vector Vj points in the −y direction.
Before performing dispersion analyses, let us draw a physical picture of the pro-

cess. Imagine that there appear ripples of density along the y axis (Fig. 2). Electrons
have velocity Ve0 relative to ions along the y axis and try to separate from them. If
the magnetosonic speed is sufficiently small then the ions cannot catch up. In this
case, the electric field Ey that builds up from charge separation induces electrons
to move along the x axis in such a way as to compensate for the rapidly changing
electron density. Then the ions start to move under the pressure of the ripples in
the magnetic field that are generated by the component Vex of the electron veloc-
ity. The time scale of their response is determined by the magnetosonic speed. If
the magnetic field ripples compress ions further then a feedback of instability is
established. Quantitatively, this line of reasoning is supported as follows. Compen-
sating for the rapid change of electron density means that in the electron continuity
equation the term

∇ · (neVe) = n0Ve0
∂ρe
∂y

+ Vex
∂n0

∂x
+ n0∇ · Ve

should be zero. One can see that the main term n0 Ve0 ∂ρe/∂y can be balanced either
by n0∇ · Ve or by Vex∂n0/∂x if the density gradient is large enough. Both terms
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can be expressed through the magnetic field perturbation – the first from Ampère’s
law

Vex = − cB0

4πn0e

∂b

∂y

and the second from the equation of magnetic field evolution:

∂b

∂t
+ (Ve ·∇)b +∇ · Ve =

∂b

∂t
+ (Vi ·∇)b +∇ · Ve = 0, ∇ · Ve ≈ −∂b

∂t
.

Let us consider the first possibility:

n0Ve0
∂ρe
∂y

+ n0∇ · Ve ≈ 0.

Using Ampère’s law, once again

Ve0 ≈ c

4πn0e

∂B0

∂x
=

cB0

4πn0eLb

and the equation

∂2ρ

∂t2
= V 2

a∇2
b

with the thermal pressure ignored, we obtain

ω = Vaky

(
Ve0

Va

)1/3 1 + i
√

3
2

, ρ = −
(
Va
Ve0

)2/3 1 + i
√

3
2

b. (2.5)

In the other case,

n0Ve0
∂ρe
∂y

+ Vex
∂n0

∂x
≈ 0,

it follows that

ω = Vaky

(
Ln
Lb

)1/2

, b =
Ln
Lb
ρ. (2.6)

It is evident that the first case (2.5) is dominant when the magnetic field gradient
prevails, and is characterized by the relatively large magnetic field disturbance (b�
ρ) and phase velocity (ωr ≈ γ). In contrast, the second case (2.6) is dominant when
the density gradient prevails. This wave is unstable only if the density and magnetic
field gradients are opposite to each other, and is characterized by a relatively large
density disturbance (ρ� b) and vanishing phase velocity (ωr � γ). The first case
was recognized in Huba et al. (1990) as a new version of LHDI, while the second
was termed by Hassam and Huba (1987) a modified Rayleigh–Taylor instability.
According to the classification of Winske (1988), both cases are effective gravity
drift instability (density gradient drift is ignored). In both cases, instability is driven
by sufficiently large relative ion–electron velocity. As the current is supported by
electromagnetic induction, so the energy for instability is derived from the magnetic
energy. It is also clear that the instability can be interpreted as a coupling between
the drift wave ω = −kVj and the magnetosonic wave ω = −kVa. Therefore, there
should be a threshold of the form Vj > Va that is independent of magnetic field
strength – a feature pointed out for the first time in Hassam and Huba (1988).

The physical reasoning given above is supported by more rigorous analysis of
(2.4). Let us consider first the simplest case of a cold plasma and a wave vector
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Figure 3. Critical value of α = Vj/Va above which instability occurs, as a function of
ε = −Lb/Ln.

having only a y component. The dispersion relation is then

x3 − αεx2 − x− α = 0, (2.7)

where

x =
ω

kyVa
, α =

Vj
Va
.

The imaginary root appears when α is sufficiently large, and has two distinct limits.
Either ε� 1, x ≈ (−α)1/3 or ε� 1, x ≈ (−ε)−1/2. The critical value αcr above which
the system is unstable is shown in Fig. 3 as a function of ε. Actually, the threshold
drift speed is only a relatively small fraction of the Alfvén velocity. Interestingly,
the parameter α can be expressed not only in terms of velocities, but also in terms
of spatial scales:

α =
Vj
Va

=
λi
Lb
,

where λi = c/ωpi is the ion plasma length.

3. Thermal pressure effects
In the framework of MHD, it is intuitively obvious that the thermal pressure should
have a stabilizing effect. Indeed, it resists density clumping and, if large enough,
it can balance the pressure of the magnetic field. The corresponding dispersion
relation is

x3 − αεx2 − (1 + c2
s)x− α(1− c2

sε) = 0. (3.1)

It follows that in the case of a small density gradient (ε = 0), the only effect of
the thermal pressure is to increase the instability threshold because of the increase
in the magnetosonic speed. On the other hand, it has a quite dramatic effect on
the Rayleigh–Taylor type of instability (ε > 1), because in this case, the density
perturbation prevails and the thermal pressure may effectively resist the magnetic
pressure. In Fig. 4, the critical value αcr is shown as a function of ε at c2

s = 0.5.
As one can see from (3.1), the wave becomes stable at c2

s ≈ ε−1. It should be
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Figure 4. Thresholds of MHD (dashed curve) and kinetic (solid curve) instabilities as
functions of ε for a given value of the thermal sound speed (c2

s = 0.5).

noted that this criterion nearly coincides (although not exactly) with the condi-
tion of large density drift – that is, when the plasma deceleration is small or is
accelerated by thermal pressure overbalance (Vg/Vn < 1). However, in this case,
the physics of instability quenching involves the thermal pressure, not the density
drift.

The stabilizing effect of thermal pressure has been pointed out by many authors.
Nevertheless, the general conclusion is that the plasma still remains unstable. The
reason is that at finite temperature, inverse Landau damping becomes possible.
Although to describe this effect, the ion response should be treated kinetically, its
ranges still can be found in the framework of MHD. Inverse Landau damping occurs
when there is a wave in the system that moves in the same direction as the ions but
slower. The mean fluid velocity of ions in the laboratory frame is the diamagnetic
velocity, which is the density drift: Vi0 = Vn. Let Vph be the phase velocity of the
wave of (3.1). As this was obtained in the ion reference frame, it is Vph + Vn in the
laboratory frame. Inverse Landau damping is possible if Vn < Vph + Vn < 0. Note
that in the chosen coordinate system, Vn < 0. It follows that a pair of conjugate
roots of (3.1) are subject to instability – either MHD or kinetic (Fig. 5). In Fig. 4, the
critical value αcr above which inverse Landau damping works is shown along with
the range of MHD instability. As εc2

s� 1 (Vg/Vn � 1, strong deceleration) MHD
instability prevails, while at εc2

s > 1 (Vg/Vn < 1, near equilibrium or plasma being
accelerated), there is only kinetic instability. Besides this, when the density drift
is smaller than but comparable to the gravity drift (Vn/Vg < 1; (0.4 < εc2

s < 1, the
left bound is approximate), kinetic instability is generated even at infinitely small
α→ 0. The same feature was also derived in kinetic analyses in the warm-ion limit
(see e.g. Huba et al. 1990).

Kinetic instability derives energy from the thermal energy of ions, and in that
respect it differs fundamentally from MHD instability. Also, the saturation mecha-
nisms are physically different – nonlinear effects in the MHD case and modification
of the ion distribution function in the kinetic case.
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Figure 5. Diagram illustrating inverse Landau damping for a = 1 and ε = 1. The solid/dotted
curve shows the phase velocity of the wave in the laboratory frame. The wave is kinetically
unstable in the range Vn < ω

k
< 0 (solid) and stable otherwise (dotted). The dashed curves

show the density drift Vn and the MHD growth rate of the wave.

4. Short-wavelength limit
As is well known, the magnetosonic wave transforms at k > λ−1

e ≡ ωpe/c into lower-
hybrid oscillations: ω = ωH + kCs. Thus, one may expect that in MHD, the maxi-
mum grows rate is also restricted by km ≈ ωpe/c because of the weakening of the
coupling between drift and magnetosonic waves. On the other hand, if the drift
wave is relatively slow (Vj < Va) and stable in the long-wavelength limit, then at
large k (Vj > Va/kλe), effective coupling with the lower-hybrid wave is possible.
A physically simple way to include lower-hybrid effects is the following. At large
ky, the electron velocity Vex becomes so large that the electron energy equals the
ion energy. Therefore, one should reinstate the term mdVex/dt� 0 in the electron
momentum equation. It is easy to see that this modifies the magnetic field equation
(2.4a) in such a way that the time derivative ∂b/∂t should be replaced by

∂b

∂t
−
(
∂

∂t
− Vj ∂

∂y

)
λ2
e∇2b.

Then the dispersion equation in the cold-plasma limit becomes

x3(1 + k2λ2
e)− αx2(ε− k2λ2

e)− x− α = 0. (4.1)

This is exactly the same as derived for example in Winske (1988), in the limit of
quasineutrality, and differs only in the definition of the terms. The dependence of
the growth rate and real frequency of the wave on wavelength for various α > 1
and ε is shown in Fig. 6. As one can see, at the maximum growth rate (which is
of the order of the lower-hybrid frequency), the real frequency is always large. At
sufficiently large ky, unstable magnetosonic wave transforms to the stable lower-
hybrid oscillations. The wavenumber at the maximum growth rate scales as kmλe ≈
1 for ε < 1 and kmλe ≈ ε1/2 for ε > 1.

Now, at sufficiently large kλe� 1, there appears an unstable wave even at very
small α. For ε = 0, the maximum growth rate and corresponding wavenumber scale
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Figure 6. Growth rate (solid curves) and real frequency (dashed curves) of the wave as
functions of wavelength for various α (a) and ε (b). The dotted curves show the root of the
magnetosonic/lower-hybrid wave.

as γm ≈ 0.7αωH , kmλe ≈ α−1, while the real frequency is nearly equal to the
lower-hybrid one ω ≈ ωH . This is evidently an instability caused by the drift wave
coupling with the lower-hybrid wave.

With the thermal pressure included, the dispersion equation is

x3(1 + k2λ2
e)− αx2(ε− k2λ2

e)− x[1 + c2
s(1 + k2λ2

e)]− α[1− c2
s(ε− k2λ2

e)] = 0. (4.2)

The first thing to point out here is that the wave stabilized by thermal pressure in
the long-wavelength limit (εc2

s > 1) becomes unstable once again at kλe ≈ ε1/2. The
corresponding root x ≈ [−α/(1+ε)]1/3 is quite similar to that obtained earlier. The
physical reason for this can once again be understood through picturing the elec-
tron motion. At large kλe, the equation used in the previous qualitative analyses,
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Figure 7. Plot illustrating a wave that is unstable only in the short-wavelength limit. The
growth rate (solid curve) and real frequency (dashed curve) are shown. α = 3, ε = 3, and
c2
s = 0.5.

∇ · Ve ≈ −∂b/∂t, should be replaced by

∇ · Ve ≈ −∂b
∂t

+
(
∂

∂t
− Vj ∂

∂y

)
λ2
e

∂2b

∂y2 .

Then, taking into account all terms in the equation

n0Ve0
∂ρe
∂y

+ Vex
∂n0

∂x
+ n0∇ · Ve ≈ 0,

one can obtain the relation

ρ ≈ b(k2λ2
e − ε)− b

ω

kVe0
(1 + k2λ2

e) ≈ −b
ω

kVe0
(1 + ε).

This means that as kλe → ε1/2, the density perturbation decreases relative to mag-
netic field perturbation, and the thermal pressure is no longer able to stabilize the
magnetic pressure. In Fig. 7, the growth rate and real frequency of this wave are
shown. For a plasma near equilibrium (εc2

s ≈ 1), the maximum wavenumber scaling
kmλe ≈ ε1/2 can be expressed as kmrLe ≈ (Ti/Te)1/2, typical of the LHDI.

The second thing to note is that the coupling with the lower-hybrid wave occurs
only if the drift wave is slow, but not very slow: Cs < Vj < Va. The physical reason
for this is quite simple – the lower-hybrid wave cannot move slower than the thermal
sound speed, so the drift wave should be at least faster than this limit. Thus, MHD
instability exists only in the cold-ion limit, which can be expressed as Vj > Cs
rather than ω/k > Cs. In the warm-ion limit (more accurately, in the warm-plasma
limit, because electrons also contribute to the thermal sound speed), only kinetic
instability is possible.

Short wavelengths broaden the range of inverse Landau damping as well. At
sufficiently large kλe, kinetic instability is possible for infinitely small α → 0 also
at εc2

s > 1 (Fig. 4).
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Figure 8. The ranges where cell-like (kx > 0) or flute-like (kx = 0) waves dominate for the
case of strong temperature anisotropy (Ty = 0). ε = 3.

5. Spatial structure of the instability
Finally, we consider a topic that has not been discussed in the literature so far. It
follows from (2.4) that an unstable wave may have a component kx of the wavevector
as well. Indeed, the phase velocity of the magnetosonic wave remains the same,
while the drift speed viewed along the wavevector k slows to Vjky/k. Instability
holds as long as Vjky/k > Va. The dispersion equation in the long-wavelength and
cold-plasma limits is

x3 − αky
k
εx2 − x− αky

k
= 0, (5.1)

where x = ω/kVa. Thus, the effect of the component kx can be interpreted precisely
as a decrease in drift speed. The increment is x̃(αky/k)kVa, where x̃(α) is the imag-
inary root of the already-discussed euqation (2.7). It follows that for a given ky, a
wave with larger kx grows faster if d ln(x̃)/d ln(α) < 1. The function x̃(α) grows
rapidly near the critical value of α and slowly at α > 1. Far from the threshold,
at any ε (either ε� 1, γ = 1

2 i
√

3(αky/k)1/2kVa or ε� 1, γ = (−ε)−1/2kVa), a wave
with larger kx grows faster. The range of α where unstable waves with only a com-
ponent ky dominate is quite small: 0.385 < α < 0.7. For the unstable wave that
results from coupling with the lower-hybrid wave (α� 1), the maximum growth
rate γ ≈ αωHky is independent of kx. This means that for a given ky, waves with
different kx component may grow equally well.

The issue of wave structure has been mentioned by Winske (1988) while com-
paring results of fluid and particle numerical simulations. In general, some simula-
tions show a cell-like structure (kx ≈ ky) while others show a flute-like structure
(kx � ky). The above analysis supports the first case. However, there is another
possibility of practical importance. Let us consider the case of strong temperature
anisotropy, Ty� Tx. The corresponding dispersion relation is

x3 − αky
k
εx2 −

(
1 + c2

sx

k2
x

k2

)
x− αky

k

(
1− c2

sx

k2
x

k2 ε

)
= 0. (5.2)

The effect of anisotropy is most pronounced at εc2
sx > 1 (Fig. 8), where the flute-
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like structure dominates over a large range of α. Note that this is not the cut-off
of instability discussed earlier, because csy = 0.

At first glance, significant temperature anisotropy may seem unrealistic for the
physical conditions for which the instability under consideration occurs. However, it
may be relevant for plasma expanding into magnetic field (such as a laser-produced
plasma (see e.g. Zakharov et al. 1999) or artificial releases in the Earth’s magneto-
sphere). Typically, ions move radially with high velocity, with the thermal velocity
being small in the initial stage of expansion. At later stages, when deceleration by
magnetic field becomes significant, the plasma front moves slower than the ions.
Thus, at the front, ions surge towards it, are reflected, and move back. The to-and-
back velocity of ions at the front is roughly the local Alfvén velocity. The effective
thermal sound speed Csx ≈ Va can be ascribed to this structure. Evidently, there
is not an effective temperature Ty. Thus, the reflection of ions at the decelerating
front can support a flute structure of developing instability.

It is interesting to note that the flute structure tends to be seen mainly in particle
simulations. One explanation for this may be that, in this approach, counterstream-
ing ion flows at the front of an expanding plasma are a frequent feature, but are
totally absent in the fluid approach.

6. Discussion
In view of the above analysis, the following classification seems appropriate.
Instability generated by coupling of the drift wave with the magnetosonic wave
extends down to the longest possible wavelengths kL ≈ 1, while that with the
lower-hybrid wave exists only in the short wavelength range kλe > 1, having a
cut-off at the long-wavelength limit. This is a fundamental difference in view of
the long-time evolution of the system, which tends to evolve from short- to long-
wavelength structures. Therefore, it is proposed in this work to make a distinc-
tion between lower-hybrid drift instability (LHDI, as this instability is usually
called) and magnetosonic drift instability (MSDI). There is also a kinetic type of
instability that, in turn, differs from MHD instability in terms of its free-energy
source and probable saturation mechanism. The main parameter that separates
them, as well as the main driving force of instability, is the value of the drift
speed compared with the Alfvén velocity α. The plasma temperature defines the
boundary above which MHD instability may exist (Vj > Cs or α > cs) and below
which only kinetic instability is possible. Finally, the combination of parameters
εc2
s determines the stabilizing effect of the thermal pressure on MHD instability

that quenches MSDI, so that only LHDI remains. This line of reasoning is illus-
trated in Fig. 9. In the case of a small density gradient (ε = 0), there is no kinetic
instability. The range of LHDI is quite small, and MSDI clearly dominates. In
the case of a substantial density gradient, there appears a range of LHDI domi-
nance at εc2

s > 1. At α < cs (warm plasma), only kinetic instability is possible.
The range of MHD instability is indicated by straight line shading, while the range
where there is only kinetic instability is indicated by dashed line shading. Closer
spacing of shading lines indicates the ranges where instability exists only in the
short-wavelength limit. It is suggested that the instability under consideration
be interpreted as a current-driven instability of the plasma wave that is mag-
netosonic in the long-wavelength limit and lower-hybrid in the short-wavelength
limit.
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Figure 9. The ranges of lower-hybrid drift (LHDI), magnetosonic drift (MSDI), and kin-
etic instabilities for the cases of (a) small (ε = 0) and (b) substantial (ε = 3) density gradi-
ent. Closer spacing of the shading indicates the regions where instability exists only in the
short-wavelength limit.

The line that roughly divides MSDI and LHDI (εc2
s ≈ 1) nearly coincides with

the condition of the plasma being in equilibrium (with accuracy 1
2γ − 1). This

means that MSDI dominates in strongly decelerating plasmas, and LHDI in ac-
celerating or near-equilibrium plasmas. In this sense, the proposed classification
repeats that of Winske (1988): effective gravity drift or density drift LHDI. How-
ever, the notion of density drift is physically appropriate only for kinetic insta-
bility. For MHD instability, it only coincides (with accuracy 1

2γ − 1) with the
condition of strong influence of thermal pressure. Besides, in Winske (1988), the
distinction between the long- and short-wavelength limits was not made. To stress
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the similarity with conventional Rayleigh–Taylor instability on the one hand and
to differentiate between conventional and modified MHD equations on the other,
Hassam and Huba (1987) introduced the term ‘effective gravity’ and ordering
by the parameter ρi/Ln, where ρi is the ion Larmor radius. However, one can-
not recover exact conventional MHD in either of the limits ρi → 0 or Ln →∞.
It follows from (2.4) that the parameter α = Vj/Va = λi/Lb is responsible for
the difference between conventional and Hall-modified MHD. Thus, the intrinsic
spatial dimension of the problem is the ion plasma length λi = c/ωpi. The assump-
tion that the ion Larmor radius should be larger than characteristic length is not
necessary from this point of view, although it is satisfied. Indeed, in the case of
strong plasma deceleration (cold ions), the Larmor radius should be calculated us-
ing the expansion velocity of the ions. To expand (with deceleration), the plasma
should have a kinetic pressure greater than the magnetic pressure, which yields
ρi/λi > 1. In the case of near-equilibrium or acceleration (εc2

s > 1), it follows that
ρi/Lb > ε1/2.

There is one important common feature that combines all of the considered in-
stabilities, however different they are in other respects: the maximum growth rate
is always of the order of the lower-hybrid frequency. Thus, in this sense, the abbre-
viation LHDI is certainly most general.

7. Conclusions
In this work, we have given the modified MHD equations that describe the ion–
electron drift instability of plasma a form that accentuates the basic parameters
of the problem – the relation of the current speed to the Alfvén velocity and the
relation of the magnetic field gradient scale to the density gradient scale. On the
basis of these parameters, various features of the instability have been analyzed:
physical structure, thermal pressure influence, long- and short-wavelength limits,
and wavelength structure. It has been argued that the interpretation of the in-
stability as a coupling of the drift wave with magnetosonic or lower-hybrid waves
means that one should discriminate between MSDI (which has a long-wavelength
limit) and LHDI (which exists only at short wavelengths), and that the cold- and
warm-plasma limits that divide MHD instability from kinetic instability can be
expressed in terms of plasma parameters (drift and thermal sound speeds) rather
than the priori unknown wave velocity. It has been shown that long-wavelength
perturbations are unstable mainly in strongly decelerating plasma, while short-
wavelength perturbations are unstable in near-equilibrium or accelerating plasmas,
and that the thermal pressure combined with the density gradient has a strongly
stabilizing influence on long-wavelength perturbations. It has been pointed out that
the instability may have a cell-like structure as well as a flute-like one, and that
an effective temperature anisotropy may account for the flutes usually observed in
expanding plasmas.
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