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Abstract
Political districtsmay be drawn to favor one group or political party over another, or gerrymandered . A num-

ber of measurements have been suggested as ways to detect and prevent such behavior. These measures

give concrete axes along which districts and districting plans can be compared. However, measurement

values are affected by both noise and the compounding effects of seemingly innocuous implementation

decisions. Such issues will arise for any measure. As a case study demonstrating the effect, we show that

commonly used measures of geometric compactness for district boundaries are affected by several factors

irrelevant to fairness or compliancewith civil rights law.We further show that an adversary couldmanipulate

measurements to affect the assessment of a given plan. This instability complicates using these measure-

ments as legislative or judicial standards to counteract unfair redistricting practices. This paper accompanies

the release of packages in C++, Python, and R that correctly, efficiently, and reproducibly calculate a variety

of compactness scores.

Keywords: spatial analysis, geographic information systems, numerical methods

Gerrymandering is the practice of designing political districts whose shapes serve some agenda,

o�en the consolidation of power by a political party or the disenfranchisement of a group such

as a minority population. In 2018, litigation relating to gerrymandering was underway in at least

twelveU.S. states,with several cases reaching theU.S. SupremeCourt. In the same year, Colorado,

Michigan, Missouri, Ohio, and Utah approved referendums intended to limit gerrymandering

through the use of independent commissions. In 2019, cases from Maryland and North Carolina

reached the Supreme Court, which ultimately rejected the federal judiciary’s role in districting.

With this decision, both major political parties have begun to focus on state-level legislation and

legal proceedings. The high-profile nature of these cases and citizens’ demands for solutions has

led to interest in developing ways to measure district fairness.

Suchmeasures give concrete axes alongwhich districts and districting plans can be compared.

However, the data used to measure a district may have noise or errors. The choices surrounding

how a measurement is made also interact with each other to form a “garden of forking paths”

(Gelman and Loken 2013) in which each choice affects the outcome of the others. This compound-

ing can have a significant effect on certain scores that appear mathematically reasonable. We

demonstrate this issue in a case study by showing that common ways of measuring the shape, or

compactness, of districts are affected by several factors irrelevant to fairness or compliance with

civil rights law.We further show that an adversary could activelymanipulate these scores to affect

the assessment of a given plan.

The U.S. Supreme Court has considered the shape of electoral districts in a number of cases

including Reynolds v. Sims (1964), Gaffney v. Cummings (1973), Thornburg v. Gingles (1986), Shaw

v. Reno (1993), Bush v. Vera (1996), Karcher v. Daggett (1983), and Cooper v. Harris (2017). Aside
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from legal precedents, 37 states require that their state legislative districts be compact and 18

explicitly require compactness of their congressional districts.

Mathematically, the compactness of a district is a geometric quantity intended to capture

how “contorted” or “oddly shaped” a district is. Although compact districts can also be gerry-

mandered and contorted shapes can arise from geographic or legal necessity, such as rivers or

municipal boundaries, poor geometry is o�en understood as a signal of gerrymandering. For

instance, in Bush v. Vera (1996), the Supreme Court condemned districts that were “bizarrely

shaped and far from compact.” For these reasons, compactness is quantified during redistricting,

though Thornburg v. Gingles (1986) demonstrates that many other considerations must also

be made.

Many measures of compactness exist (Niemi et al. 1990; Altman 1998; Chambers and Miller

2010), and mathematicians and legislators continue to debate their relative merits in promoting

desirabledistrict shapes. Therehasbeen lessdiscussion, however, abouthowcompactness scores

should be implemented in practice.

Here, we use theUSCensus Bureau’s 2015 Cartographic Boundary and TIGER/Line data (United

States Census Bureau 2016) to show how the variables used to calculate compactness are compli-

catedby reality andhow, evenoncequantitative scores aredefined, confounding factors including

geography, topography, cartographic projections, and resolution complicate implementation.

Together, the ambiguities we expose provide a high degree of flexibility. We show that this flexi-

bility can be exploited to engineer compactness scores that allow convoluted and gerrymandered

districts to meet quantitative standards designed to prevent such abuse.

If policymakers are unaware that quantitative measures of electoral district fairness may be

both intentionally and unintentionally manipulated to give a variety of outcomes, they may push

to enact standards that are either insufficient or that can be gamed. This problem arose as

litigants sought to use the efficiency gap (Stephanopoulos and McGhee 2014) to detect gerry-

mandering even as it was shown that the measure was problematic (Alexeev and Mixon 2017;

Bernstein and Duchin 2017; Chambers, Miller, and Sobel 2017; Veomett 2018). Here, we show

that similar problems exist for compactness. We also suggest that implementation flexibility

and the accompanying potential for abuse is a general property of trying to quantify electoral

fairness.

Section 1 is technical and exposes the full complexity and consequences of themany consider-

ations thatmust go into calculating aspects of a compactnessmeasurement. Section 2 provides a

nontechnical summary of the results and shows how themethodswe discuss here can be abused.

Section 3 concludes with recommendations for the development and fair characterization of

compactness scores.We additionally provide amodel so�ware implementation intended to avoid

the pitfalls we highlight. All of the examples presented and some of the terminology used stem

from United States geopolitics, but our ideas are applicable to districts in any context. Although

we focus on compactness, our work provides a cautionary case study revealing challenges in

quantifying any measure of gerrymandering.

1 Technical Considerations

In this section, we determine how compactness is affected by (1) the choice of mathematical

definition, (2) contiguity, (3) topological holes, (4) the boundaries of political superunits, (5) map

projection, (6) topography, (7) data resolution, (8) floating-point calculations, and (9) whether

alternative choices were possible in drawing a district’s boundaries. We determine how o�en

issues arise and quantify the impact of each of these considerations onmeasures of compactness.

InSection2,wewill quantify thenet impactwhenall of these considerationsare combined, finding

that eachmakes at least some contribution to affecting the quality of the measurements.
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ReockPT=0.26 CvxHullPT=0.44

ReockPS=0.26 CvxHullPS=0.58

Figure 1. Reock and Convex Hull scores for Louisiana 01 shown with both the PS and PT interpretation
depicted. It is coincidental that ReockPT and ReockPS are the same here. Note that for both the ReockPT
and CvxHullPT scores the hull polygons overlap; this overlap is potentially problematic since it could be
considered double-counting.

1.1 Definitions of Compactness
We identifiedover 24differentmeasuresof compactness in the literature (Niemi et al. 1990; Altman

1998). Of these, we consider three of themost widely used and their variants. These are illustrated

in Figure 1 and are as follows:

1. Polsby–Popper (Polsby and Popper 1991): Given as 4πA/P 2, where A is the area of a district

and P its perimeter. This score is also known as the “isoperimetric ratio” (DeFord et al. 2018).

2. Reock (Reock 1961): the ratio of a district’s area to the area of its minimum bounding circle.

Finding this circle is nontrivial; an efficient algorithm and associated implementation is

given by Gärtner (1999).

3. Convex Hull (Niemi et al. 1990): the ratio of a district’s area to the area of its convex hull, the

minimum convex shape that completely contains the district.

All of the above scores are in the range [0,1] with higher values indicating greater compactness.

Low values may indicate potential gerrymandering.

These scores are purely geometric. It may be that scores incorporating population densities or

other demographic data provide a bettermeans ofmeasuring gerrymandering (Eig and Seitzinger

1981; Niemi et al. 1990), but they are outside the scope of our experiments. Regardless, all scores

are subject to implementation flexibility of some sort. In fact, incorporating additional datamight

even exacerbate the issues we discuss, since doing so would create additional opportunities for

implementation flexibility.

1.2 Data
In our experiments, we draw geographic information from the US Census Bureau’s 2015 Carto-

graphic Boundary and TIGER/Line data (United States Census Bureau 2016) and use it to explore

how implementation choices affect the measurement of the electoral districts of the 114th U.S.

Congress. The Bureau’s data comes in several different scales or resolutions: 1:500,000 (500k),

1:5,000,000 (5m), and 1:20,000,000 (20m). Figure 11 depicts data at these different resolutions.

High-resolution data (e.g., 500k) capture greater geographic detail at the expense of higher

collection, storage, and computation costs whereas lower-resolution data (e.g., 20m) capture less

geographic detail while reducing costs.
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Figure 2.Wisconsin’s 61st Assembly District showing noncontiguous regions. See text for discussion. Figure
drawn from (Legislative Technology Services Bureau 2017).

1.3 Nomenclature
All of the measures we consider assume that an electoral district is described by a single planar

polygon, without any holes. This assumption is problematic and leaves the measures under-

specified. In reality, districts, such as thosewith islands (see Figure 1), are o�en comprisedofmany

polygons. While holes in districts are rarer, they also can occur. We have to modify the scores so

they can cope with reality, but there are many ways we can do this.

Wewill indicatewhetherornot contiguity is accounted for ina scoreby the suffixesPT (polygons

together) and PS (polygons separate). Whether or not holes are accounted for will be indicated by

the suffixes AH (add holes) and SH (subtract holes). If there is ambiguity regarding whether area,

perimeter, or someother quantity is being treated in thisway, then terms suchasPTaSHp (treat the

area of the polygons together, subtract the perimeter of holes) may be used. The suffix B indicates

that a score accounts for constraints imposed by the boundaries of political superunits.

1.4 Noncontiguous Districts
There is no federal requirement that districts must be contiguous andmany states do not require

it. Yet, most compactness measures assume contiguity. There are many ways of incorporating

noncontiguity into compactness sores and each has a large effect. Avoiding the issue by requiring

contiguity is likely impossible. Islands, such as Hawaii, make districts noncontiguous unless large

bodies of water are included in the district, as discussed below. Disconnected districts may also

arise in other ways. Civil rights considerations have given Louisiana 01, depicted in Figure 1, two

large portions separated by Louisiana 02; Louisiana 02 was drawn as a majority–minority district

following the passage of the Voting Rights Act of 1965.Wisconsin’s 61st Assembly District (Figure 2)

exemplifies a different situation. The city of Racine, WI, became noncontiguous by annexing a

nearbyparcel, but bothpieces of the citywere included in the samedistrict (AltmanandMcDonald

2011). For the 114th Congress 1:500,000 resolution data, 85 of 441 districts are not contiguous. Of

the noncontiguous districts, the largest numbers of subdivisions were 580 (Alaska), 134 (Maine

02), 103 (Michigan 01), and 92 (Florida 26); the median was 5. Seventeen of the noncontiguous

districts have portions that are separated by land; these include Kentucky 01 and Louisiana 01

(see Figure 1).

The way we treat noncontiguous districts has significant effects on many proposed ways of

measuring gerrymandering, including compactness scores. Treating thedistrict as a single unit by,

for example, enclosing it in a single convex hull, will tend to result in lower compactness scores.

Treating the district as separate units and summing the areas of the units′ enclosing hulls will

result in higher compactness scores.
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Figure 3. Absolute value of differences in definitions of scores for districts of the 114th Congress. Shown are
CvxHullPT vs. CvxHullPS and ReockPT vs. ReockPS. Districts are only shown if their score changed between
definitions and they were part of amultidistrict state, giving 47 data points for CvxHull and 38 for Reock. The
data resolution was 1:500,000.

Mathematically speaking, although Polsby–Popper is usually calculated as 4π A

P 2 , there are

several possibilities for extending this formula to noncontiguous districts, in particular 4π
∑

n

i

Ai

P
2
i

,

4π
∑

n

i
Ai

(
∑

n

i
Pi )2

, and 4π
∑

n

i
Ai

∑
n

i
P
2
i

, where i indexes the n noncontiguous subregions of the district. Although

the original Polsby–Popper score is bound to the range [0,1], this is not true of the first of these

alternatives. For a district with n noncontiguous regions, the second alternative has a range of

[ 1
n
,1]; this variant of the score penalizes districts for being noncontiguous. The final variant,which

weuse to calculate scores in thispaper, yields a valueofone if eachnoncontiguous region is a circle

thereby acknowledging that noncontiguity may arise while encouraging each region of a district

to be compact.

Special attention should be given to noncontiguous districts to determine whether they result

from natural features, legal requirements, or electoral engineering. In Figure 3, we calculate both

the Convex Hull and Reock compactness scores for instances in which the polygons comprising a

district are scored together versus separately, per Figure 1. Although the scores are nominally the

same, a wide gap in values results from using the differing interpretations. This gap supports the

need for precision in both language and implementation.

1.5 Holes
Holes are relatively rare in districts, butmany of the same considerations apply. The city of Racine,

WI is noncontiguous due to annexations, as mentioned earlier. Placing the city within a single

voting district required Wisconsin′s legislature to draw the 61st State Assembly District in a way

that createsbothnoncontiguity andholes (Figure 2). Texas 18 verynearly surrounds theurban core

of Houston and could, in a low-resolution dataset, contain a hole. Holes also appear as artifacts

of the digitization process (Figure 4). For the 114th Congress 1:500,000 resolution data, four of 441

districts have holes as artifacts.

1.6 Boundaries
Districts are constrained by borders imposed by higher geopolitical units as well as by nature.

Compactness scores that do not account for such constraints may assign low scores to a district

that are not meaningful. The panhandles of Florida and Oklahoma, as well as Kentucky′s border

with the Ohio River (see Figure 11), contain electoral districts whose shape, at least in part,

cannot be dictated by politics. The same is true of almost any coastal district since islands and

peninsulas with their long perimeters must be included. Louisiana (Figure 11) exemplifies this

challenge.

Some scores can bemodified to account for this issue (Azavea 2006; Ansolabehere and Palmer

2016). These can be marked with the suffix B (borders accounted for). For example, in the case
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Figure 4.Holes, islands, and narrow regions. The region shown is drawn fromWisconsin′s Assembly Districts
(Legislative Technology Services Bureau 2017) and shows howpoor digitization or subsequent simplification
can lead to subtle data issues that are not visually apparent without significant magnification. Many borders
are axis-aligned. Such alignment may reflect reality, but may also be an artifact arising from discretization
of input data, demarcation choices, simplification algorithms, or even the visualization so�ware. Regardless,
axis alignment causes numerical issues in many simple geometric algorithms.
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Figure 5. Effects of constraining compactness measures using the boundaries of political superunits for the
144th Congress. The convex hull and, for the Reock score, the minimum bounding circle were cropped to
state borders before being used to calculate scores. Only districts which were part of multidistrict states and
whose scores changed are shown: 215 for the convex hull and 320 for the Reock, of 441 total. District and state
data were at 1:500,000 resolution.

of the convex hull and Reock scores, if the hull or minimum bounding circle is intersected with a

state polygon, the result is a better representation of what was possible and, therefore, a better

indicator of whether gerrymandering took place. Taking boundaries into account in this way can

have a considerable effect on compactness scores (Figure 5).

The boundaries of electoral districts, states, and countriesmay include largemaritime regions,

as shown in Figure 6. These regions are difficult or impossible to populate, except near shores, so

their inclusion in compactness calculations may hide the effects of gerrymandering. Input data

should be cropped to major coastlines to account for this, though doing so is not a panacea.

Coastlines tend to be fractal and need to be measured in a way which is insensitive to this effect,

as shown in Figure 14.

As Figure 7 shows, boundary data, especially when drawn from disparate sources, may not

always co-align. We attempted to quantify this effect by overlaying high-resolution district data

with medium-resolution state data and found that the impact was usually small (see Figure 8

for details). Problems can be avoided entirely by using data that are co-aligned, such as the data

available from the U.S. Census.

1.7 Projections
Although scores are o�en defined as though districts exist on a plane, in reality they are wrapped

around the curvature of the Earth and local topographical features. Several interpretations of
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Figure 6. Electoral districts of the 114th Congress including maritime regions. Two datasets of electoral
districts are overlaid. The gray area depicts electoral district boundaries cropped to coastlines whereas
the dashed red line indicates the full extent of the electoral districts. Note the growth of the district′s
areas and the relative smoothness of the perimeters. Data were drawn from the US Census Bureau
(United States Census Bureau 2016); cropped data is from the Cartographic Boundaries dataset, for
example, cb_2015_us_cd114_rr.zip, whereas uncropped data are from the TIGER/Line dataset, for example,
tl_2015_us_cd114.shp.

Figure 7. Misaligned boundaries. Different sources of data place state and district boundaries in different
places. The border shown here lies betweenMaryland 06 andWest Virginia 01. The “true boundary” is drawn
from data at 1:500,000 resolution and is shown by the transition between solid colors, while the black line
shows the same boundary using 1:5,000,000 data. Differing data resolutions is only one instance in which
a mismatch might occur: Shi�s in data (as from projections), differing collection procedures, or deliberate
manipulation are all possible as well.

scores are possible: Districts could be mapped to the plane using a projection designed to

minimize distortion across an entire country, a subdivision of a country such as a state, or even

the district itself. Alternatively, scores could be calculated on the sphere, WGS84 ellipsoid, or a

similar body;wedonot investigate this possibility here since it is used rarely inpractice. As Figure9

shows, despite all the possibilities, compactness measures appear to be stable to reasonable

choices among localized (country-scale) map projections used in practice. Alaska demonstrates

what happens when an unreasonable choice is made: its score in a projection suitable for the

conterminous United States differs from that of an Alaska-specific projection by up to 20%.

Global projections, such as the standard Mercator, produce scores that differ markedly from

local projections; therefore, global projections should not be used for calculating compactness

scores—this includes the Web Mercator (EPSG:3857) projection, despite its ubiquitous use on

the internet. Across all districts, scores, and projections, the absolute score difference between

a district as measured in a locally optimal projection versus a conterminous projection was less

than 0.009 in 99% of cases. The other 1% of cases comprise districts such as Alaska and American

Somoa, which are outside the region of interest for the conterminous projections. Given this
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Figure 8. Approximate percent uncertainty in area introduced by bordermisalignment. Areaswith especially
highuncertaintyareusually coastalwhere the lower resolutiondata introduce significant areasofwater intoa
district. Using thedata fromFigure 7, an exclusive-or on eachdistrict and state yieldedareas ofmisalignment.
Districts and states were shrunk and expanded to form border outlines which were intersected with the
exclusive-or thereby limitingmisalignment to border areas. The remaining area divided by the original, high-
resolutionareas gives thepercentage. A fewespecially small districts (<10 km 2)were culled from theanalysis
as this methodmade the entirety of the districts uncertain.
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Figure 9. Change in score between a locally optimized projection and nationally and globally optimized
projections for all electoral districts of the 114th Congress. Each district was projected into locally fitted Lam-
bert Conformal Conic and Albers Equal Area Conic projections; into conterminous US (CONUS)-fitted Albers
Equal Area (EPSG:102003), Lambert Conformal Conic (EPSG:102004), and Equidistant Conic (EPSG:102005)
projections; and into globally fitted Mercator, Robinson, Molleweide, and Gall stereographic projections. For
each district, the maximum range between any value in the local group and any value in the conterminous
and global groups was calculated. For the conterminous projections, boxplot bodies appear as thin black
lines indicating the bulk of districts experienced negligible change under different projections; in fact, the
99th quantile score across all districts was 0.009. The outlier is Alaska, for which a conterminous projection
should never be used due to excessive distortion. If the entire United States, including Hawaii and Alaska,
needs to be processed at once, Snyder′s GS50 projection (Snyder 1984) is a good choice as it provides <2 %
scale distortion throughout this region. Data were at 1:500,000 resolution.

observation, nation-sized projections—excluding outlying states and territories—are likely rea-

sonable choices.Quantitatively, the conterminousAlbers Equal Area (EPSG:102003)projectionhas

a maximum scale distortion of 1.25% (Deetz and Adams 1934); this value can reasonably be taken

as an upper limit on the acceptable distortion for any projection used to measure compactness.
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Figure 10. Difference in Polsby–Popper scores when calculated on the plane versus with topography.
Topography-inclusive area of districts was calculated using the 30m USGS National Elevation Dataset (U.S.
Geological Survey (USGS) 2016). Districts were cropped using 1:500,000 resolution boundaries from the US
Census Bureau for the 114th Congress (United States Census Bureau 2016). Surface area was calculated using
RichDEM’s implementation (R. Barnes 2016) of an algorithm by Jenness (2004). Perimeter was taken as
the summed length of all the cells at the edge of a district and was constant with respect to topographic
considerations.
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Figure 11. Effect of polygon simplification on districts and their compactness scores. Districts from the 114th
Congress are shown at 1:500,000 (500k), 1:5,000,000 (5m), and 1:20,000,000 (20m) resolution. Simplification
was performed by the US Census Bureau using in-house algorithms that ensure border alignment. Here,
PP stands for PolsbyPTAH while CH stands for CvxHullPT; note how these scores change with resolution.
Kentucky 03 encompasses metropolitan Louisville and is bounded on the north by Kentucky’s state border
and the Ohio River. Louisiana 01 is bounded by the Mississippi Delta, divided by Louisiana 02, and includes
unexpectedparts of NewOrleans. A�er simplification, the rough edges of Kentucky 03disappear, as do entire
bays and islands in Louisiana 01.

1.8 Topography
A different effect of mapping electoral districts to a plane is that topography, such as mountains,

is le� out of quantities such as area and perimeter. As a result, the true land area and overland

distance between points is underestimated. Using the 30m USGS National Elevation Dataset

(U.S. Geological Survey (USGS) 2016), we calculated the surface area of districts using RichDEM’s

implementation (R. Barnes 2016) of an algorithm by Jenness (2004) and modeled perimeter as

the summed length of all the raster elevation cells at the edge of a district. The difference in

Polsby–Popper scores between the topographic and nontopographic data was less than 0.03 for

all districts, with 75% of districts having deviations less than 0.005 (Figure 10).

1.9 Resolution
Resolution can be thought of as the density of points describing a boundary. Figure 11 shows

the same district at several resolutions. Lower resolutions obtained using standard simplification

tools lead to simpler shapes o�en with shorter perimeters. The U.S. Census Bureau releases

boundary data of Congressional Districts in four resolutions: full, 1:500k, 1:5m, and 1:20m (United

States Census Bureau 2016). The full-resolution data are available as “TIGER/Line” data whereas
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Figure 12. Effect of resolution on compactness scores. Scores were calculated for districts from the 114th
Congress at resolutions 1:500,000 (500k), 1:5,000,000 (5m), and 1:20,000,000 (20m). Score differences versus
the 1:500,000 values are shown for those districts whose scores changed. Area and perimeter values are log-
transformed.

the other resolutions are available as “Cartographic Boundary Shapefiles.” At these resolutions,

the perimeters of the districts of the 114th Congress are defined by an average of 8914, 1531, 322,

and 70 points, respectively.

We find that thechoiceof resolutionhasa substantial impactoncompactness scores (Figures 12

and 13), with the popular Polsby–Popper score especially affected. This instability adds to a

growing list of challenges for using thePolsby–Popper score inpractice (Chambers andMiller 2010;

Alexeev and Mixon 2017; DeFord et al. 2018). This suggests that lower-resolution data should be

avoided, even if it could otherwise accelerate web and high-performance applications (Tam Cho

and Liu 2016).

Since data may be supplied to users by outside sources, adversarial inputs are possible. Such

inputs manipulate the data in ways which are sometimes hard to discern to alter measurement

outcomes (Goodfellow, Shlens, and Szegedy 2014). A high-frequency wave applied to the bound-

ary of a district may be visually imperceptible while introducing substantial alterations to a

district’s score. TheKochsnowflake is anexampleofwhatanadversarial inputmight look: It hasan

arbitrarily long perimeter surrounding a finite area (Figure 14). More practically, data may contain

digitization or simplification artifacts that only become apparent under significant magnification,

as shown in Figure 4.
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Figure 13. Effect of polygon simplification on compactness scores. Districts from the 114th Congress were
simplified by Shapely (Gillies et al. 2007) using a topology-preserving algorithm from GEOS (OSGeo 2017)
with the indicated tolerances.

1.10 Choice
If only one possible plan exists for a jurisdiction, that jurisdiction cannot be gerrymandered and

should be excluded from analysis. In the Census Bureau data used here (United States Census

Bureau2016), 13 states and territories, includingAlaska,Delaware, andVermont, hadonlyone con-

gressional district. Nomatter how oddly shaped these districts are, they are not gerrymandered.

1.11 Floating-Point Issues
Computers generally store fractional values based on the IEEE754 specification using either the

32-bit single-precision type, which gives about 7 decimal places of precision, or the 64-bit double-

precision type, which gives about 15 decimal places of precision. If geographic boundary data is

in the form of decimal degrees of latitude and longitude, as is o�en the case, then storing such

data in a 32-bit type is sufficient to resolve centimeter-scale features; storing such data in a 64-bit

type provides nanometer-scale resolution. Thus, 32-bit single-precision types might be sufficient

for storing geographic coordinates. However, performing mathematics on fractional numbers,

especially 32-bit types, gives potentially erroneous results thanks to rounding and other effects

(Goldberg 1991).

We tested for floating-point instabilitybycomputingall of the scoresmentionedhereusingboth

32-bit and 64-bit IEE754 compliant types, with the latter taken as the “true” value. Compactness

measured in these two systems differed by nomore than 0.027%.

1.12 Ordering
The foregoing considerations change not only the values of calculated scores, but also their

relative ordering (Figure 15). If ordering is quantified using Spearman’s rank correlation coefficient

(Figure 16), it is apparent that different scores givemarkedly different rankings. Thus, any ranking

of districts by compactness is thoroughly tied to and arises from choices made in developing the

scores. Figure 17 explores this issue further, as described below.
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PolsbyPopp 0.45345 0.28341 0.16650 0.09543 0.05412 0.03056 0.01722 0.00969

Schwartzbe 0.67339 0.53236 0.40805 0.30892 0.23264 0.17480 0.13121 0.09845

CvxHullPS 0.66667 0.74074 0.77366 0.78829 0.79480 0.79769 0.79897 0.79954

ReockPS 0.55133 0.61259 0.63981 0.65191 0.65729 0.65968 0.66074 0.66122

Figure 14. The Koch Snowflake (Von Koch 1904) shown for its first eight levels of resolution (the 0th level is
omitted). At each resolution both the shape and boundary of the snowflake are visually similar, especially
at higher resolutions; however, the levels havemarkedly different scores. For each increase in resolution the
Polsby–Popper scoredecreasesby77%and theSchwartzberg scoreby33%.A�er initial increases, theConvex
Hull and Reock scores stabilize.
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Figure 15. Implementation affects ranking. Here, the compactness scores for the 114th Congress at 1:500,000
resolutionareplotted for twodifferent interpretationsof theconvexhull score.Only the 136outof 441districts
whose score changed as a result of the differing interpretations are shown.

This section listed many of the major decisions that must be made to measure compactness.

These decisions may be made in good faith by people making measurements without awareness

of their implications. They may also be made by adversarial actors seeking to affect the outcome

of political decisions. The decisions are not independent of each other. In combination they

provide more flexibility in outcomes than any one decision does by itself. We explore this below,

in Section 2.

2 Results

A number of choices must be made to compute a compactness score. In addition to the choice of

(1) compactness definition, we have shown that it is also important to consider how to handle

(2) noncontiguous districts, (3) districts with holes, (4) political superunit boundaries, (5) map

projections, (6) topography, (7) data resolution, (8) floating-point uncertainty, and (9) whether

alternative choices were possible in drawing a district’s boundaries.

In combination, these choices provide unanticipated and undesirable flexibility. This flexibility

can be abused. Different implementation choices applied towhat is nominally the same score can

lead to very different conclusions about the fairness of a districting plan.
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Figure 16. Correlations of rankings. Rankings of compactness scores for the 114th Congress at 1:500,000
resolution are compared against each other using Spearman’s rank correlation coefficient. A value of one
indicates perfect agreement of relative rankings while a value of zero indicates no correlation.

To demonstrate this effect, we have selected tenU.S. Congressional Districts widely considered

to be gerrymandered. For each district, we performed a grid search over a range of values for each

implementation choice, thereby applying the full flexibility detailed in this paper. Similarly to elec-

toral outlier analysis (Ramachandran and Gold 2018), wewere able to find sets of implementation

decisions for which these districts’ compactness scores are outliers when compared against the

full distribution of district scores. We were also able to find sets of decisions which make these

districts appear reasonable by locating them near the mean of the distribution. That is, we can

exploit implementation flexibility to build seemingly reasonable arguments that these districts

are not gerrymandered, as well as to build arguments that they are.

Figure 17 shows the effects of such adversarial choices of parameters. Considered against all

districts nation-wide, in the case of NC01, IL04, andPA07, it was possible tomove the districts from

being obvious outliers to having middle-of-the-pack status. In other cases, such as NC12, NC04,

and TX35, it was not possible to move the districts to the mean of the distribution, but they could

still bemoved considerably closer, potentially obfuscating their outlier status. Similar effectswere

true when districts were compared only against other districts in their states.

As Table 1 shows, the optimizer does not need to use extreme settings to produce the desired

results. For example, TX33 appears most gerrymandered using the CvxHullPTB score at a 500m

simplification tolerance ina locally optimizedLambert conformal conicprojectionwithall districts

included in the distribution; it appears least gerrymandered using the ReockPT scorewith a 500m

tolerance in a Gall projection with districts comprising an entire state excluded. A sensitivity

analysis of the optimizer shows that the choice of score (e.g., Polsby–Popper, Reock) makes the

greatest difference in the results, while the other choices all have similar effect sizes.
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Figure 17. Applied gerrymandering: abusing implementation flexibility. This figure shows several districts
from the 114th Congress that appear incontrovertibly gerrymandered.We compare their compactness versus
otherdistricts in their stateandnationally. Thecompactness scoresof all thedistricts are shown inhistograms
with a black line indicating where the focal district falls in each distribution. Compactness ranges from 0 on
the le�-hand side of each histogram to 1 on the right. Scores for districts were generated by performing a grid
search over a range of values for each implementation choice and choosing those values which minimized
and maximized the difference between a districts’ compactness score and the mean compactness score
across all districts; that is, we found the choiceswhichmade each district look both themost gerrymandered
as well as the most reasonable. Further details for the figure are in Table 1.

2.1 Open Source Tools
Of the many compactness scores discussed in the literature, some are better able to cope with

the complexities discussed here than others. Many of the more robust metrics, however, are also

difficult or impossible to calculate using commonly available so�ware. For instance, QGIS (QGIS

DevelopmentTeam2017) includes theareaofmultipolygonsasabuilt-indisplay field, convexhulls

as a function threemenu levels deep, andhasno functionality to calculate theminimumbounding

circles needed for Reock scores.

Toaddress this situation,wehave releaseda familyofopensourcepackageswhich shareacom-

mon library designed to efficiently, reproducibly, and correctly calculate a variety of compactness

scores. The basis of this ecosystem is compactnesslib,1 a C++ library and associated command-

line interface which ingests bulk or single data in a variety of formats and calculates compactness

1 https://github.com/gerrymandr/compactnesslib
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Table 1. Applied gerrymandering: abusing implementation flexibility. This table shows the choices made
to produce the histograms shown in Figure 17. Recall that each of district which appeared incontrovertibly
gerrymandered was paired with two histograms, one of which made the district’s compactness score seem
like anoutlier and theother ofwhichmade it seem reasonable. Thedistricts’ scores are listedhere, alongwith
the absolute value of their difference from the mean of the distribution. The set of implementation choices
made for each distribution is also shown: the compactness score, the simplification tolerance of the data,
the map projection, and whether or not districts which comprised the entirety of their political superunit
(districts in which a choice of boundaries was not possible) were included.

District Score value Diff frommean Score name Tolerance Projection Choice

Optimized against national distribution

MD03 0.28 0.48 Mercator 5000 CvxHullPTB nochoice

MD03 0.58 0.09 Local LCC 500 ReockPTB nochoice

NC12 0.29 0.5 Local AEA 5000 CvxHullPTB nochoice

NC12 0.03 0.17 Mollweide 0 PolsbyPopp choice

MD02 0.42 0.35 Robinson 5000 CvxHullPTB nochoice

MD02 0.49 0 Local LCC 1000 ReockPTB nochoice

FL05 1 0.52 Local AEA 5000 ReockPTB choice

FL05 0.04 0.16 Mollweide 0 PolsbyPopp choice

NC01 0.26 0.32 EPSG:102003 5000 Schwartzbe nochoice

NC01 0.37 0 Gall 100 ReockPS choice

PA07 0.47 0.31 Local LCC 5000 CvxHullPTB nochoice

PA07 0.35 0.02 Gall 500 ReockPT choice

TX33 0.43 0.33 Local LCC 500 CvxHullPTB nochoice

TX33 0.25 0.12 Gall 500 ReockPT choice

NC04 0.34 0.43 Gall 5000 CvxHullPTB nochoice

NC04 0.15 0.14 Mollweide 50 ReockPT nochoice

IL04 0.42 0.34 Local LCC 50 CvxHullPTB nochoice

IL04 0.27 0.06 Robinson 1000 ReockPT nochoice

TX35 0.36 0.41 Mollweide 5000 CvxHullPTB nochoice

TX35 0.05 0.15 Mollweide 0 PolsbyPopp choice

Optimized against state distribution

MD03 0.28 0.34 Mercator 5000 CvxHullPTB nochoice

MD03 1 0.01 Local AEA 1000 CvxHullPTB nochoice

NC12 0.27 0.39 Local LCC 0 CvxHullPTB nochoice

NC12 0.03 0.08 Mollweide 0 PolsbyPopp nochoice

MD02 0.15 0.26 Robinson 5000 ReockPTB nochoice

MD02 1 0.01 Local AEA 1000 CvxHullPTB nochoice

FL05 0.27 0.52 Mollweide 5000 CvxHullPTB nochoice

FL05 1 0 Local AEA 0 CvxHullPTB nochoice

NC01 0.26 0.15 EPSG:102003 5000 Schwartzbe nochoice

NC01 0.29 0 EPSG:102005 50 ReockPT nochoice

PA07 0.3 0.22 Gall 5000 Schwartzbe nochoice

PA07 0.34 0 Gall 50 ReockPS nochoice

TX33 0.43 0.27 Mercator 500 CvxHullPTB nochoice

TX33 0.25 0.11 Gall 500 ReockPT nochoice

NC04 0.34 0.29 Gall 5000 CvxHullPTB nochoice

NC04 0.05 0.06 Mollweide 0 PolsbyPopp nochoice

IL04 0.42 0.21 Robinson 100 CvxHullPTB nochoice

IL04 0.3 0.02 Gall 500 ReockPS nochoice

TX35 0.36 0.36 Mollweide 5000 CvxHullPTB nochoice

TX35 0.05 0.13 Mollweide 0 PolsbyPopp nochoice
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scores. The python-mander Python package2 (available via pip3) and the mandeR R package4

provide high-level interfaces to this library. In addition, a QGIS plugin5 provides GIS users an

easy means of calculating scores (Archambault and M’ndange-Pfupfu 2017; R. Barnes 2018;

Barnes and Connors 2018; Metric Geometry and Gerrymandering Group 2018). This stack was

utilized to produce the calculations in this paper: The complete source code for generating all the

diagrams presented here is available at https://github.com/r-barnes/Barnes2018-compactness-

implementation, as well as in a fully reproducible form on Code Ocean (Barnes and Solomon

2020a) and archived on the Harvard Dataverse (Barnes and Solomon 2020b).

Though this so�warehas thepotential to improve themeasurementof compactnessasembod-

iedby thescoresweconsiderhere, it cannot solvegerrymanderingon itsown: therearemanyways

to engineer districts each of which has its own flexibility. In this sense the so�ware represents a

model of the specificity, accessibility, and transparency necessary for any method of measuring

gerrymandering or drawing districts.

3 Discussion

3.1 Best Practices
Our results showthe importanceof clarity and transparency in themeasurementsused toevaluate

potential voting districts. In general, a mathematical definition alone is not sufficient. Attention

must be paid to data and algorithmic quality. As a model for the level of specificity needed to

describe quantitative measures of districting plans, we suggest best practices for the calculation

of compactness scores. These guidelines are the minimal set any expert would need to explicitly

consider when evaluating compactness.

• Scores. Be explicit about what each variable in a compactness score means. Does area
include holes? Is it constrainedbypolitical superunits?How should noncontiguous districts
be handled? Score names should be distinct and informative. Appending a clarifying suffix
to the name of a score (e.g., PTSHp) informs readers about algorithmic details. See above
for examples.

• Projections. Scale distortion should be limited to only a fewpercent throughout the region
of interest. Reasonable choices of national or local projections usually suffice.

• Resolution. Use the best-available resolution from a trusted source. Simplified or down-
scaled data give altered results. Alternatively, choose a score that is robust to changes in
resolution, like hull-based scores or recent multiresolution measures (DeFord et al. 2018).
TheU.S. CensusBureauproduces reasonabledatadesigned such that all borders that are at
the same resolution align. Ideally, districting data should be drawn froma common, public,
trusted, nonpartisan source.

• Border constraints. Scores that do not explicitly account for constraints imposed by
superunit boundaries leave out valuable information aboutwhatwas possible in drawing a
district. That is, theymay unfairly penalize a district for having an odd shapewhen no other
shape was possible. Use a score that accounts for superunit borders. Be sure that borders
are cropped to features such as major coastlines.

• Choice. Before doing statistics on a set of district plans, eliminate those districts that
encompass an entire political superunit, as no other choices of shape were possible.

• Topography. We have not found including topography in the calculation of area to be a
significant source of variation, assuming the use of low-distortion map projections.

• Border coalignment. Coalignment of borders is a concern, although the effect was small
in our data. To avoid problems, datasets used in an analysis should always be at the same
resolution and carefully coaligned during their creation. In the U.S., Census data satisfy
these requirements.

2 https://github.com/gerrymandr/python-mander
3 https://pypi.python.org/pypi/mander
4 https://github.com/gerrymandr/mandeR
5 https://github.com/gerrymandr/qgis-compactness
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• Floating-point considerations. We have not found the choice of single- or double-
precision floating-point representations to be a significant source of variation in our
calculations.

• Transparency. A compactness score should not be accepted and cannot be interpreted
without knowing the steps that went into its creation. From a scientific standpoint,
this consideration relates strongly to reproducibility: We cannot trust what we cannot
reproduce. Therefore, documentation isneededdown to theequation level, and the release
of source code and data is critical (N. Barnes 2010; Merali 2010; Ince, Hatton, and Graham-
Cumming 2012). FAIR principles should be adhered to (Wilkinson et al. 2016).

More broadly, while compactness measures are attractive as quantitative means for analyzing

districts, they are just a fewof themany tools used to combat gerrymandering.Many other quanti-

tative techniques and statisticalmeasures are appearing in theacademic literature and inpractice.

These can measure not only geometry, but also the effects of demography, voting patterns,

and other relevant information. Used together, these scores provide a more complete picture

of the consequences of choosing one plan over another. However, they are subject to the same

instabilities andpotential for abuse identified above. That is, the need for clearly defined andwell-

understood quantitative criteria for assessing districts and plans extends far beyond geographical

issues and should be a central point of discussionwhile considering new standards or legislation.

3.2 Policy Implications
While the U.S. court system has declared that egregious gerrymandering is unconstitutional

(Supreme Court of the United States 1986; United States Federal Courts 2016; Supreme Court

of Pennsylvania 2018), they have not yet adopted a quantitative standard by which districts

can be judged. In Vieth v. Jubelirer (2004), the Supreme Court le� open the possibility that a

“workable standard” might exist (Supreme Court of the United States 2004), but more recently

the Court has shown skepticism saying that, “partisan gerrymandering claims present political

questions beyond the reach of the federal courts” (Rucho v. Common Cause, 2019). This paper

demonstrates that any standard must be specified precisely and carefully, since differences in

interpretation can have large effects on scores. Furthermore, our work demonstrates that even

a well-specified standard may judge unreasonable districts as being reasonable (see Figure 17).

Therefore, any legally mandated standard of compactness should leave open the possibility of

challenges. Moreover, given the implementation flexibility discussed here and its potential for

abuse, courts should not accept quantitative arguments unless the code used to build those

arguments is made publicly accessible and inspected by experts.

4 Coda

Geometric compactness can be used as a tool to help detect and quantify gerrymandering.

However, numerous engineering and implementation decisions must be made to calculate this

quantity. The same is true of other such measurements. Whether used unintentionally or mali-

ciously, this flexibility has strong bearing on the quality of measurements and can be leveraged

to shape conclusions about the suitability of a districting plan. A measurement cannot be trusted

unless complete information about its implementation is available.

Implementation flexibility, such as that discussed in this paper, has the potential to affect any

method ofmeasurement (Ioannidis 2005; Gelman and Loken 2013). Alternativeways ofmeasuring

the shapes of districts such as discrete geometries (Duchin andTenner 2018) ormultivalued scores

(DeFord et al. 2018)may bemore resistant to such problems, but further investigations are needed

to ensure that these methods are stable while still providing meaningful measurements.

Beyond providing “best practices” for implementing compactness standards, we intend the

open source so�ware accompanying this paper as a first step toward fair and accurate com-

pactness measurement, allowing scientists, politicians, and the public to evaluate plans using

reproducible, mathematically well-founded, and computationally stable tools.
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