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This paper re-examines the problem of the flow of a fluid of finite depth over two Gaussian-

shaped obstructions on the stream bed. A weakly nonlinear analysis in the form of the

Korteweg–de Vries equation is used to compare with the results of the fully nonlinear

problem. The main focus is to find waveless subcritical solutions, and contours showing

the obstruction height and separation values that result in waveless solutions are found for

different Froude numbers and different obstruction widths.

Key words: Stream flow, free-surface flow, water waves, potential flow

1 Introduction

The problem to be considered is the steady flow of an ideal fluid passing over an

obstruction on the base of a stream of finite depth. The fluid is of uniform depth and

speed upstream of the obstruction, with a disturbance to the free surface occurring as the

fluid hits the obstruction. The main interest in this work is in those solutions for which

the fluid returns to uniform flow downstream of the obstruction.

Two Gaussian-shaped obstructions on the stream bed are considered, where waveless

solutions occur when waves from the second obstruction cancel the waves from the first

obstruction. Cases involving obstructions of both positive and negative heights will be

examined. In an earlier paper [12], the authors considered the fully nonlinear problem, and

contours in parameter space representing waveless solutions were found. Here, the problem

is revisited using a weakly nonlinear analysis in the form of the Korteweg–de Vries (KdV)

equation, and comparisons are made with the results of the fully nonlinear problem.

Subcritical solutions with no downstream waves have been calculated by Forbes [8],

for the fully nonlinear problem of flow over a semi-elliptical obstruction. Lustri et al. [14]

considered the flow past submerged bumps and trenches with inclined sides in the

asymptotic limit of small Froude number. A number of solutions were computed with

trapped waves above the bump or trench and no waves downstream.

Waveless solutions to the weakly nonlinear problem have been found by Dias and

Vanden-Broeck [5,7] who, after calculating critical solutions over a single obstruction that

had waves upstream, introduced a second obstruction that trapped the waves between

the two obstructions. Binder et al. [1, 2] used both nonlinear methods and KdV theory

to examine the flow over two types of stream bed topography, the first type being two
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triangular obstructions on the stream bed and the second type being a single rectangular

obstruction. The comment was made that for subcritical flow, the downstream waves could

be eliminated by adjusting the obstruction separation in the case of the two triangles, or

the length in the case of the rectangular obstruction. In each case, however, the parameter

values that result in these waveless solutions were not investigated further.

Shen [16] examined the accuracy of the stationary forced KdV equation for supercritical

flow over a bump by comparing with the experimental results of Sivakumaran et al. [17]

and the computational results of Dias and Vanden-Broeck [4]. It was concluded that

the stationary forced KdV equation was a good model for bumps of small to moderate

height with a short base.

A popular method, when solving the forced KdV equation for flow over a small bump,

is to approximate the obstruction with an appropriate delta function. The shape of the

bump can then be essentially neglected as only the area of the bump is required in order to

calculate solutions. See, for example, Binder et al. [1,2], Dias and Vanden-Broeck [5,7] and

Shen [16]. This paper briefly examines the basis of this method by comparing solutions

for flow over bumps that have the same area but are of different widths and heights.

This paper follows the work of Forbes [8] and Hocking et al. [11], who found solutions

to the nonlinear problem of subcritical flow over a semi-elliptical obstruction on the stream

bed with no downstream waves, and Holmes et al. [12], who found waveless nonlinear

solutions for subcritical flow over two Gaussian obstructions. Forbes [8] calculated the

ellipse height and length values that would produce waveless solutions at a Froude number

of F = 0.5, with these results presented as contours in parameter space. Four contours

were plotted, with the first two contours merging to form a loop shape at the limiting

value of the ellipse height. Hocking et al. [11] reproduced and extended these results,

showing that subsequent pairs of contours also merged, and this behaviour was shown to

occur for a range of Froude numbers from F = 0.4 to 0.8.

Holmes et al. [12] found the Gaussian obstruction height and separation values that

resulted in waveless solutions for a range of Froude numbers from F = 0.5 to 0.7.

Contours in parameter space representing waveless solutions were found for obstructions

of positive and negative heights. Although the contours for obstructions of positive height

did not exhibit the merging behaviour as found by Forbes [8] and Hocking et al. [11],

those for obstructions of negative height did form an interesting pattern in parameter

space, with a number of ‘zig-zag’ and loop shapes observed.

Waveless subcritical solutions are of particular interest and will be the main focus of

this paper. As an extension to the work presented by Holmes et al. [12], the suitability

of the KdV equation for this problem is investigated by computing waveless solutions for

flow over two Gaussian obstructions and comparing with the fully nonlinear solutions.

Comparisons are made at different values of the Froude number starting with Froude

numbers close to F = 1, before examining the effect of obstruction width.

2 Problem formulation

The problem to be considered is that of Holmes et al. [12], the two-dimensional steady

flow of an ideal fluid in a stream of finite depth, disturbed by some bottom topography

ŷ = B̂(x̂). Upstream of the disturbance, the flow has uniform depth and speed. The free

surface of the fluid ŷ = η̂(x̂) is initially unknown and computed as part of the solution.
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Figure 1. Diagram of the non-dimensionalised problem. Upstream of the obstruction, the flow

is uniform with unit depth and speed. The obstruction on the stream bed is given by y = B(x)

and the unknown free surface by y = η(x). The free surface profile and corresponding bottom

topography shown here are a solution to the fully nonlinear problem, with obstruction height

ε = 0.09, obstruction separation b ≈ 4.002, obstruction width coefficient w = 1 and Froude number

F = 0.6

The assumption of a steady, two-dimensional flow of an ideal fluid allows a velocity

potential φ to be defined and requires that Laplace’s equation,

∇2φ = 0, (2.1)

be solved subject to boundary conditions on the free surface and the stream bed.

The problem is then non-dimensionalised with respect to the upstream speed c and

undisturbed fluid depth h, so that the undisturbed free surface is located at y = 1 and

the unobstructed stream bed at y = 0 with unit speed upstream, as shown in Figure 1.

The parameters of the non-dimensionalised problem are then the obstruction size and

separation along with the dimensionless flow rate, or Froude number,

F =

(
c2

gh

) 1
2

. (2.2)

There can be no flow normal to the surface of the fluid and also no flow normal to the

stream bed, giving the conditions,

η′(x) =
v

u
on y = η(x), (2.3)

B′(x) =
v

u
on y = B(x), (2.4)
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where u and v are the horizontal and vertical components of the fluid velocity, respectively.

We also have the condition of constant pressure on the free surface that gives, from the

Bernoulli equation,

1

2
F2(u2 + v2 − 1) + η = 1 on y = η(x). (2.5)

The bottom topography that we will consider consists of two Gaussian obstructions of

height ε and separation b, defined by

B(x) = εe−(w(x−b/2))2 + εe−(w(x+b/2))2 . (2.6)

The coefficient w allows us to vary the width of the obstructions, with w = 1 producing

the bottom topography as considered by Holmes et al. [12].

3 Nonlinear problem and numerical method

The numerical method used in this paper is as described by Holmes et al. [12], where

the nonlinear problem was formulated in the physical plane and the resultant nonlinear

integral equation was solved numerically using a damped Newton’s method. We force the

free surface to be symmetric about x = 0 and allow the obstruction separation value b to

be an initial unknown so that it can be computed as part of the solution. The equations

are included below, but for a full description of the method, refer to Holmes et al. [12].

We define a complex potential f(z) = φ+ iψ, where ψ(x, y) is the stream function, and

apply Cauchy’s integral formula for any fixed point on the boundary contour, z0. We take

the real part, remove the singularity in the integral and discretise the problem. We obtain

an integral equation for the stream bed,

uBj = −1

π

∫ xL

−xL

(uB − uBj )(ΔB − B′Δx) + (vB − vBj )(Δx+ B′ΔB)

Δx2 + ΔB2
dx

+

[
uBj
π

arctan
ΔB

Δx

]xL
−xL

−
[vBj

2π
log[Δx2 + ΔB2]

]xL
−xL

−1

π

∫ −xL

xL

uT ((η − Bj) − η′Δx) + vT (Δx+ η′(η − Bj))

Δx2 + (η − Bj)2
dx, (3.1)

and an integral equation for the free surface,

uTj = −1

π

∫ xL

−xL

uB((B − ηj) − B′Δx) + vB(Δx+ B′(B − ηj))

Δx2 + (B − ηj)2
dx

−1

π

∫ −xL

xL

(uT − uTj )(Δη − η′Δx) + (vT − vTj )(Δx+ η′Δη)

Δx2 + Δη2
dx

+

[
uTj
π

arctan
Δη

Δx

]−xL

xL

−
[vTj

2π
log[Δx2 + Δη2]

]−xL
xL

, (3.2)

where Δx = x− xj , ΔB = B − Bj and Δη = η − ηj .

In order to find the Gaussian separation distances that result in zero waves downstream,

we discretise the domain by xj = −xL+(j−1) 2xL
2N−1

, j = 1, 2, . . . , 2N and specify symmetry,
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i.e., η(x) = η(−x). We make an initial guess for ηj , uTj , uBj , j = 1, 2, . . . , 2N, as well as the

obstruction separation b, and then fix η1, hence, we have 3N equations in 3N unknowns.

We find the error in the integral equations (3.1) and (3.2) along with the error in the

Bernoulli equation (2.5) and iterate on the first N points using Newton’s method to find

the free surface elevation y = η(x) at j = 1, 2, . . . , 2N, forcing symmetry about x = 0

at the beginning of each iteration. The bottom surface B(x) and its derivative B′(x) are

specified in advance, whereas the remaining derivatives are approximated using centred

finite differences and the integrals approximated using the trapezoidal rule.

The problem was programmed in Fortran and, in general, waveless solutions were

graphically reproducible with N = 400 points across the free surface from −xL to xL
with a truncation of xL = 20, as this corresponded to 2N = 800 points across the full

length of the free surface. Increased accuracy could be achieved by decreasing xL when

obtaining solutions for obstructions with shorter separation.

4 Weakly nonlinear problem

This section includes a brief description of the KdV equation for the problem of waveless

subcritical flow over topography. The KdV equation is a form of weakly nonlinear analysis

and is regularly used in various problems in free surface fluid dynamics. The assumptions

made in deriving the KdV equation imply that the results for the problem of flow over

topography are valid for Froude numbers close to F = 1.

We take the problem as defined in Section 2, but before we non-dimensionalise, we

assume that the wavelength L is much greater than the upstream depth h and define

a small parameter ε =
(
h
L

)2 � 1. We then non-dimensionalise and expand the velocity

potential, free surface and stream bed in powers of ε. Full derivations of the KdV equation

can be found in several papers, see, for example, [3, 10, 15].

We write the stationary forced KdV equation

1

6
ηxxx +

3

2
ηηx − (F − 1)ηx = −1

2
Bx, (4.1)

and integrate

ηxx +
9

2
η2 − 6(F − 1)η = −3B. (4.2)

Here, the Froude number is defined as before, F =
(
c2

gh

) 1
2

, and B(x) is the bottom

topography.

Normally, a phase plane analysis is used when studying the KdV equation in relation

to this type of problem. See, for example, Binder et al. [1, 2], Pratt [15], Forbes and

Hocking [10] and Dias and Vanden-Broeck [5–7]. Often, the obstruction is approximated

with an appropriate delta function, meaning that the shape of the obstruction has no

effect on the resulting solutions, only the size.

We wish to examine one of the underlying principles of this method by looking at

the effect of the obstruction width on the solutions for Froude numbers close to F = 1.

Consequently, for the purposes of this research, we use an equation solver in MATLAB
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Figure 2. Weakly nonlinear free surface profiles for F = 0.9 and ε = 0.01 with separations b = 14.9,

14.95, 15, 15.05 and 15.1. We observe a change of phase in the waves as b increases, with a waveless

solution occurring at b = 15.

based on a fourth- and fifth-order Runge–Kutta method to solve the forced KdV equation

for a given bottom topography B(x).

5 Results

5.1 A comparison with KdV theory

Contours were plotted showing the obstruction height and separation required for waveless

solutions for different width obstructions. This was done for different values of the Froude

number, F = 0.9, 0.8 and 0.6. The theory used in weakly nonlinear analysis suggests that

the size of the obstruction alone can be used to calculate the shape of the free surface,

and since this theory is valid for Froude numbers close to F = 1, we start by examining

the F = 0.9 case.

In order to find the waveless solutions to the weakly nonlinear problem, we start

with a fixed Froude number F , low obstruction height ε and the obstruction separation

b that results in waveless solutions in the nonlinear case. We then slowly increase or

decrease this separation b until we find the point at which the waves change phase. An

example of this phase change is included in Figure 2, where we observe five free surface

profiles for fixed Froude number F and obstruction height ε with increasing separation

b. We can then increase the obstruction height, using the waveless separation value from

the previous height as our new starting guess. Repeating this process we can track the

waveless contours in parameter space and plot these alongside the linear and nonlinear

contours. As the KdV equation is valid for Froude numbers close to F = 1, we start by
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Figure 3. Contour plot showing the values of obstruction height ε and separation b that result in

waveless solutions for F = 0.9.

comparing the contours for the F = 0.9 case, before comparing the contours for lower

Froude numbers.

In Figure 3, we have contours in parameter space showing the obstruction height and

separation values at which waveless solutions exist for a Froude number of F = 0.9.

The first two contours for the linear, weakly nonlinear and fully nonlinear solutions

are included for obstructions of both positive and negative heights. The linear solutions

are obtained using a method based on that of Lamb [13], which is given in detail by

Holmes et al. [12]. The linearised problem produces waveless solutions when the separation

between the obstructions is b = (2k+1)π
κ

, k = 0, 1, 2, . . ., where κ is the positive real root of

the transcendental equation tanh κ
κ

= F2. The vertical dashed lines represent the solutions

to the linearised problem and are independent of the obstruction height. Each of the

circles represents a solution to the full nonlinear problem and each of the stars represents

a waveless solution to the KdV equation. At this high Froude number, the nonlinear

effects are very strong and the nonlinear contours quickly deviate from the linear values.

We observe that the first of the positive contours curves away from b = 0, before following

a continuous horizontal path at the maximum height. The second positive contour also

curls away from b = 0 and follows the horizontal path of the first contour, almost joining

up. The first negative contour continues from the first positive contour, but does not

deviate from the linear values as quickly and has a fairly straight section in the middle

with a slight curve towards b = 0 just before terminating. The second negative contour

continues from the second positive contour, but turns abruptly and follows a horizontal

path. This contour behaviour is quite different to the lower Froude number cases examined

by Holmes et al. [12].
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The KdV contours follow the same general shape as the nonlinear contours, but

are slightly offset. We also observe that the KdV curves do not approach the linear

values as the obstruction height approaches zero, as the nonlinear curves do. The KdV

contours for obstructions of positive height do, however, provide good agreement with

the nonlinear contours as they level off, suggesting that the KdV equation would give

a good approximation to this maximum height for waveless solutions at this value of

Froude number.

The solutions for the free surface on the first of the positive contours have a dip above

the obstruction that increases in depth as the obstruction increases in height. The solutions

on the remaining contours have two dips, one above each obstruction, with a number of

trapped waves in between. The solutions on the second positive contour have one half

wave trapped between the obstructions, those on the third contour have one and a half

trapped waves, those on the fourth have two and a half trapped waves and so on. This

behaviour is consistent with the results of Holmes et al. [12].

Some interesting behaviour was observed, however, where the contours almost link up.

The solutions on the first contour have a single trough above a single obstruction, but

as the contour becomes horizontal and the obstructions separate, this trough in the free

surface becomes broad and flat. The solutions from the second contour have one half wave

trapped between two troughs, and as this contour becomes horizontal these solutions also

widen, so that two wide troughs are observed with a broad half wave trapped in between.

These solutions occur at almost the same obstruction height, with the height values

differing only at the fourth decimal place at a separation of b = 17. Some of the solutions

from each contour are included in Figure 4 for the same range of separation values. The

solutions shown in Figure 4(a) are from the horizontal section of the first positive contour

and those in Figure 4(b) are from the horizontal section of the second positive contour.

A comparison of weakly nonlinear and fully nonlinear waveless solutions is included

in Figure 5. Each solution is taken from the respective contour for Froude number

F = 0.9 and obstruction height ε = 0.01. In Figure 5(a), we compare solutions from the

first contour, with the weakly nonlinear waveless solution occurring at an obstruction

separation of b = 5.755 and the fully nonlinear solution occurring at a separation of

b = 4.9626. Solutions from the second contour are compared in Figure 5(b), where the

weakly nonlinear waveless solution corresponds to an obstruction separation of b = 15

and the fully nonlinear solution corresponds to a separation of b = 13.042. In each case

the weakly nonlinear solution is of a similar shape to the fully nonlinear solution, with

wider and deeper troughs. This can be partly attributed to the difference in separation

values between the weakly nonlinear and fully nonlinear cases.

A comparison of the first two waveless contours for the F = 0.8 case is included in

Figure 6. The contours for the F = 0.8 case are of a similar general shape to those for

the F = 0.9 case, with the exception of the second negative contour, which continues

downwards from the corresponding positive contour rather than abruptly turning and

becoming horizontal. It is possible that the negative contours for the F = 0.8 case may

exhibit some of the ‘zig-zag’ pattern behaviour shown by Holmes et al. [12] that occurs

at lower Froude numbers, but this has not been fully investigated.

The F = 0.6 case is included in Figure 7. This case was examined in detail by Holmes

et al. [12], who produced the first five contours for positive and negative obstruction
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Figure 4. Nonlinear solutions from the horizontal sections of the positive contours from Figure 3.

The solutions shown are for a Froude number of F = 0.9, with separation values b = 14, 15,

16, 17, 18, 19 and 20. (a) Solutions from the first contour, with obstruction height ε = 0.0137

and (b) solutions from the second contour, with obstruction heights increasing from ε = 0.0114 to

ε = 0.0135.

heights as well as looped contours that originated from the ε-axis, but here we include

only the first two contours and the upper looped contour in order to make a clearer

comparison.

We observe that for these lower Froude numbers, F = 0.8 and 0.6, the KdV equation

does not provide a good agreement with the nonlinear results and does not agree with

the linear results in the limit as the obstruction height approaches zero. In the F = 0.6

case as shown in Figure 7, we note that the second KdV contour crosses the axis where

the third linear and nonlinear curves would be (though not included). We also note that

the nonlinear contours exhibit changing behaviour over the three cases, F = 0.9, 0.8 and

0.6, but the KdV contours all exhibit the same qualitative behaviour as the F = 0.9 case

and do not follow the shape of the nonlinear contours for lower F values. These results

are as expected, as the linear approximation is valid in the limit as the obstruction height

ε tends to zero and the KdV approximation is valid in the limit as the Froude number F

tends to one.

5.2 The effect of obstruction width

When solving the forced KdV equation for flow over a small bump with a narrow base,

it is common to approximate the bump with a delta function, see, for example, Binder
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Figure 5. A comparison of weakly nonlinear and fully nonlinear waveless solutions for F = 0.9

and ε = 0.01. (a) Solutions from the first contour, with the weakly nonlinear solution occurring at

the separation b = 5.755 and the fully nonlinear solution occurring at b = 4.9626. (b) Solutions

from the second contour, where the weakly nonlinear solution occurs at the separation b = 15 and

the fully nonlinear solution occurs at b = 13.042.

et al. [1, 2], Dias and Vanden-Broeck [5, 7] and Shen [16]. The area of the bump is used

in the approximation, with the shape essentially neglected. We briefly examine part of

the theory behind this method by looking at the effect of the obstruction width on the

waveless solutions for our current problem, and compare results for obstructions of the

same area but different widths and heights.

In Figure 8(a), we have contours that show the obstruction height and separation that

result in waveless solutions for different width obstructions at a Froude number of F = 0.9.

The contours in Figure 8(b) show the obstruction area and separation that result in the

same waveless solutions. In each of these contour plots, four different width obstructions

are considered, with the ‘standard width’ obstruction having a width coefficient of w = 1.

We then have ‘half width’ obstructions with w = 2, ‘quarter width’ obstructions with w = 4

and ‘double width’ obstructions with w = 0.5. In the figure, solutions obtained using the

numerical method for the fully nonlinear problem are represented by the shapes and the

solutions obtained using the KdV equation are represented by the lines. We observe that

obstructions of the same height with different widths produce quite different solutions,

with a narrower obstruction capable of producing a waveless solution at a larger height.

We also observe that obstructions of the same area with different widths produce more

similar solutions, with the waveless contours appearing to approach some asymptotic limit
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Figure 6. Contour plot showing the values of obstruction height ε and separation b that result in

waveless solutions for F = 0.8.
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Figure 7. Contour plot showing the values of obstruction height ε and separation b that result in

waveless solutions for F = 0.6.
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Figure 8. Contour plots showing the parameters that result in waveless solutions for different

width obstructions for F = 0.9. The shapes indicate solutions to the nonlinear problem and the

lines represent solutions to the KdV equation. We note that a larger w value represents a narrower

obstruction.

as the obstruction width decreases. The KdV equation also appears to provide a more

accurate comparison with the nonlinear solutions for narrower obstructions.

These results support the idea that for obstructions of small area and narrow base, the

shape of the obstruction does not affect the parameters required for waveless solutions.

6 Conclusion

We have calculated waveless subcritical solutions for flow over Gaussian obstructions of

both positive and negative heights, as an extension to the work of Forbes [8] and Holmes
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et al. [12]. The fully nonlinear and weakly nonlinear problems were solved numerically,

and contours were plotted showing the values of obstruction height and separation at

which waveless solutions exist. The contours for obstructions of positive height did not

have any pairs that merged to form loops as was the case for the semi-ellipse considered

by Forbes [8] and Hocking et al. [11]; however, in the higher Froude number cases, the

positive contours followed a similar horizontal path through parameter space, almost

linking up. Different free surface shapes were observed on each branch, suggesting the

possibility of non-unique solutions.

Our interest in this problem of flow over topography is to find the parameter values

that result in waveless solutions for a range of Froude numbers. The KdV equation does

not offer the required level of accuracy in these parameters for Froude numbers lower

than F � 0.9. However, it does provide some qualitative properties of the wave behaviour.

The effect of width was also examined, with results suggesting that small, narrow

obstructions of different height and width but the same area would produce similar

solutions, as expected. Also, as the obstructions become narrower, the area approximation

becomes more accurate.

Future work would involve developing a method to use the forced KdV equation to

automatically find the parameters that result in waveless solutions. We would use it to

calculate the waveless contours and analyse solution behaviour for Froude numbers close

to F = 1. This way we could extend the contours for the F = 0.9 case and closely examine

the apparent linking of contours without the restriction of the long computation times

that come with the numerical method for the fully nonlinear problem.
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