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Summary

ncRNAs are involved in numerous biological processes by regulating gene expression and cell
stability. Studies have shown that ncRNAs also contribute to spermatogenesis. Leydig cells
(LCs) and Sertoli cells (SCs) are somatic cells of the testis that support spermatogenesis and
are vital to male fertility. In this review, we summarized the findings from studies on
ncRNAs in SCs and LCs. In SCs, ncRNAs play key roles in phagocytosis, immunoprotection
and development of SCs. In LCs, ncRNAs are involved in steroidogenesis, in particular produc-
tion of testosterone as well as development of LCs. Here, we discuss the possible target genes and
functions of ncRNAs in both types of cells. These ncRNAs regulate the expression of target
genes or mRNA coding sequence regions, resulting in a chain reaction that influences cell
function. In addition, microRNAs, lncRNAs, piRNA-like RNAs (pilRNAs) and natural
antisense transcripts (NATs) are discussed in this review. In summary, we suggest that these
ncRNAsmight act in coordination to control spermatogenesis andmaintain the environmental
homeostasis of the testis.

Introduction

Because of the work of the Encyclopedia of DNA Elements (ENCODE) Project Consortium, we
have a comprehensive understanding of DNA sequences in the human genome (The ENCODE
Project Consortium, 2004, 2012; Birney et al., 2007). Eighty per cent of the genome is transcribed
into RNA, while only a small proportion encodes proteins (The ENCODE Project Consortium,
2012). Noncoding RNAs, formerly called ‘junk’, have been proven to conduct ‘pervasive tran-
scription’ and contain a great deal of functional regulatory elements (Ohno, 1972; Kapranov
et al., 2007; Neph et al., 2012). According to the length of noncoding RNA, they are divided
into long noncoding RNAs (lncRNAs; >200 nt) and small noncoding RNAs. Small noncoding
RNAs include microRNAs (miRNAs), endogenous small interfering RNAs (endosiRNAs) and
PIWI-interacting RNAs (piRNAs) (Lucas and Raikhel, 2013). Noncoding RNAs (ncRNAs) play
important roles in gene expression and stability in processes from embryonic development to
adult homeostasis (Geisler and Coller, 2013; Patil et al., 2014). According to their functional
features, ncRNAs are divided into housekeeping ncRNAs and regulatory ncRNAs. The regula-
tory ncRNAs comprise miRNAs, siRNAs, lncRNAs, piRNAs and intermediate ncRNAs such as
small nucleolar RNAs. They are expressed in specific cells or a specific stage during cell develop-
ment and differentiation or in response to environmental stimuli (Brosnan and Voinnet, 2009;
Guan et al., 2013). Increasing evidence shows that ncRNAs are involved in spermatogenesis and
maintenance of male fertility in germ cells (de Mateo and Sassone-Corsi, 2014; Salviano-Silva
et al., 2018). Here we summarize the findings of studies on the noncoding RNAs involved in
male fertility in somatic cells.

Sertoli cells

Niche cells, which are devoted to subtle coordination of the testicular microenvironment, are
mostly composed of SCs. SCs, which are proximal to spermatogonial stem cells (SSCs), play
auxiliary roles in spermatogenesis as ‘mother’ or ‘nurse’ cells for SSCs by supplying structural,
immunological and nutritional support (Oatley and Brinster, 2012; Hai et al., 2014). As sup-
portive cells, SCs also produce a great number of growth factors and define the fate of SSCs,
as stem cell factors (SCFs), bonemorphogenetic proteins (BMPs) or glial cell line-derived neuro-
trophic factors (GDNFs) (Jan et al., 2012; Hai et al., 2014). Moreover, SCs are important
constituents of the blood–testis barrier, which is an essential ultrastructure for male fertility
(Setchell, 2008; McCabe et al., 2016). The biological functions of SCs have been summarized
as follows: they expand SSCs as feeder cells and activate SSC differentiation, phagocytosis
and immunoprotection (Zhang et al., 2007; Hai et al., 2014). In 2013, a study using
computer-assisted annotation of the small RNA transcriptome in murine SCs was completed
(Ortogero et al., 2013). Large numbers of studies have also shown that the disruption in the
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expression of noncoding RNAs in SCs might effect male fertility
and these studies also made efforts to determine the functions
of SCs in spermatogenesis and male fertility.

microRNAs in Sertoli cells

A microRNA is a small RNA of approximately 22 nucleotides in
length (Kim, 2005). Growing evidence has shown that microRNAs
regulatemany biological processes by influencing post-transcriptional
gene expression, such asmRNAdegradation, translational repression,
DNA methylation and chromatin modification (Krol et al., 2010).
MicroRNAs target specific mRNAs and stimulate the degeneration
or inhibition of translated mRNAs (Tay et al., 2008). Recently, some
studies have shown that miRNAs are also involved in modulating
many functions in SCs.

Apoptosis and phagocytosis
Phagocytosis is indispensable for the maintenance of tissue homeo-
stasis. Sufficient evidence has shown that phagocytosis by SCs plays
an essential role in the development and differentiation of germ cells.
More than one-half of spermatogenic stem cells was cleared and
degraded by SCs (Wang et al., 2006). Several miRNAs have been
reported to be involved in conventional phagocytosis or LC3-
associated phagocytosis (LAP) or cell apoptosis (Jovanovic and
Hengartner, 2006; Niu et al., 2011). miR-471-5p regulates the level
of Dock180, which interacts with autophagy-related proteins and
make up LC3-dependent phagocytic complexes. It has been proven
that SCs recruit autophagy-related proteins via LAP and that these
proteins play crucial roles in the clearance of apoptotic germ cells.
Overexpression of miR-471-5p in SCs from transgenic mice
increased the number of apoptotic germ cells and damagedmale fer-
tility as miR-471-5p targets Dock180, LC3, Atg12, Rab5, Rubicon
and Becn1 and represses their expression. This evidence suggested
that SC phagocytosis and the clearance of apoptotic germ cells are
regulated by miR-471-5p and its target proteins (Panneerdoss
et al., 2017).

miR-758 and miR-98-5p were predicted to be participants in
germ cell apoptosis by binding to the 3 0UTR of mitogen-activated
protein kinase 11 (MAPK11, p38 β isoform) gene. The expression of
MAPK11 in SCs could induce the expression of tumour necrosis
factor α (TNF-α), which interacts with TNF receptor 1 (TNFR1)
and leads to germ cell apoptosis (Chen et al., 2016). In the SCs
of underfed sheep, the lack of let-7/miR-98 increased the expres-
sion of Fas mRNA and Fas protein and the presence of let-7/
miR-98 reduced cell sensitivity to Fas-induced apoptosis (Wang
et al., 2011). Overexpressed miR-202-3p increased the number
of apoptotic SCs and inhibited the proliferation and synthesis
function of SCs by targeting LRP6 and cyclin D1 (Yang C et al.,
2019). In addition, miR-125a-3p, miR-872 and miR-24 possibly
induced cell apoptosis by targeting SOD-1, a Cu/Zn superoxide
dismutase in SCs (Papaioannou et al., 2011).

Proliferation and development:
Dicer, an RNaseIII endonuclease, has been deemed crucial for
miRNA production (Bernstein et al., 2001). Studies have shown
that it is highly correlated with maturation and survival of SCs,
which suggests that the development, survival and function of
SCs might be regulated by miRNAs related to Dicer
(Papaioannou et al., 2009, 2011). Dicer is critical to SCs as well
as to spermatogenesis. The absence of Dicer leads to infertility.
Several miRNAs (miR-299, miR-381, miR-409-5p, miR-376a
and miR-674) in SCs were suppressed in Dicer ablated mice,

indicating that these RNAs may take part in the development
and function of SCs (Papaioannou et al., 2009).

miR-34c has been proved to be involved in the development of
male germ cells (Lian et al., 2012). In fact, the development of semi-
niferous tubules also requires the participation of miR-34c.
Platelet-derived growth factor receptor alpha (PDGFRA), which
is mainly expressed in support cells such as SCs, has been identified
as one target gene of miR-34c in swine. In addition, the expression
level of PDGFRA in 2 days was much higher than it was in
5 months, indicating that PDGFRA may be involved in the early
stages of SC development (Zhang X et al., 2015). miR-762 also
played an important role in pig testis. miR-762 promoted imma-
ture SC proliferation and controlled apoptosis by targeting the
3 0UTR of ring finger protein 4 (RNF4), thereby decreasing AR pro-
tein expression and the transcriptional regulatory AR activity in
SCs (Ma C et al., 2016). In addition, miR-762 could also promote
DNA damage repair in SCs (Ma C et al., 2016). As mentioned
above, miR-202-3p also inhibited the proliferation and synthesis
functions of SCs (Yang C et al., 2019).

Compared with those of patients with obstructive azoospermia
(OA), the SCs of patients with Sertoli-cell-only syndrome (SCOS)
expressed higher levels of miRNA-133b. Studies have shown that
miR-133b promotes SC proliferation in humans by targeting GLI3
and activating cyclin B1 and cyclin D1 (Yao et al., 2016). In addi-
tion, the level of miR-375 expression is negatively correlated with
the mRNA levels of rearranged L-myc fusion (RLF) and hypoxia-
induced gene domain protein 1A (HIGD1A) in pig SCs. MTS
analysis showed that miR-375 might inhibit SC proliferation
(Guo et al., 2018).

Junction of the blood–testis barrier
The BTB is one of the most impermeable blood–tissue barriers in
the living body, It is which was composed of tight junctions (TJs),
gap junctions (GJs) and desmosome-like junctions and adherens
junctions (AJs). The AJs include the basal tubulobulbar complex
(basal TBC) and the basal ectoplasmic specialization (basal ES)
(Wong and Cheng, 2005; Cheng and Mruk, 2012). The BTB
separates the seminiferous epithelium into basal and apical parts.
Spermatogenesis involves five orderly processes and the BTB pro-
vides a physical barrier that compartmentalizes three of these
processes: the cell cycle that enables the spermatocyte transition
from the zygotene to the diplotene stage, the procession of round
spermatids to spermatozoa and spermiation. In addition, it enables
these processes to progress in an immune-privileged environment,
indicating that the BTB plays an important role in spermatogenesis
and male fertility (Cheng and Mruk, 2012). In mice, considerable
evidence has proven that the miR-17-92 cluster plays an important
role in spermatogenesis (Bjork et al., 2010; Tong et al., 2012). miR-
20a, a member of the miR-17–92 cluster, might be related to gen-
istein (GEN)-induced abnormal spermatogenesis (Gu et al., 2017).
As the target gene of miR-20a, Limk1 (Gu et al., 2017), is involved
in the RhoB/ROCK/LIMK1 pathway and regulates the adherens
junction dynamics of Sertoli germ cells (Lui et al., 2003).

Other findings about microRNAs in Sertoli cells
Circular RNAs (circRNAs) have loop structures and perform
important functions in many biological processes (Rybak-Wolf
et al., 2015; Ebbesen et al., 2016), including those of inflammatory
reactions (Ng et al., 2016). Evidence has shown that circRNA-9119
acts as a miRNA sponge and inhibits miR-136 and miR-26a
expression. miR-136 and miR-26a inhibited the expression of ret-
inoic acid inducible gene-I (RIG-I) and Toll-like receptor 3 (TLR3)
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by binding to the 3 0UTR of RIG-I and TLR3 respectively in Sertoli
cells and Leydig cells (LCs). By targeting TLR3 and RIG-I during
orchitis in SCs and LCs, miR-136 andmiR-26amodulate circRNA-
9119-mediated inflammatory reactions, indicating that miRNAs
and circRNAs are crucial to the immune microenvironment
(Qin et al., 2019).

miR-202-5p, regulated by the testis-determining factor SOX9,
is a let-7 family member (Wainwright et al., 2013). miR-202-5p
is selectively expressed in SCs. The expression of miR-202-5p is
related to testicular development and maturation (Dabaja et al.,
2015). However, no miR-202-5p expression was detected in SCs
from SCOS patients. The distinct expression of levels of miR-
202-5p in fertile and infertile men suggests that it might play cru-
cial roles in normal male fertility (Dabaja et al., 2015).

A study on the expression of miRNAs and their target genes in
SCs after exposure to nonylphenol (NP) has been completed. The
expression of 186 miRNAs is significantly distinct from that of the
control group. In addition, it has been proven that miR-135a* can
mediate the generation of reactive oxygen species (ROS) by regu-
lating the Wnt/beta-catenin signalling pathway (Choi et al., 2011).
In 2018, a study showing the regulation of microRNA signalling by
doxorubicin in LCs and SCs was also reported (Akinjo et al., 2018).

Long noncoding RNAs

LncRNAs are longer than 200 nucleotides, with tissue- or cell-type
specificity and without protein-coding capacity (Derrien et al.,
2012). Large numbers of lncRNAs have been identified, however
few of these have been deeply explored (Ma L et al., 2015; Reon
et al., 2016; Liu et al., 2019). The main functions of lncRNAs were
summarized as mediators of nuclear trafficking, altering splicing,
changing mRNA stability and translation at both the transcrip-
tional and post-transcriptional levels (Ayupe et al., 2015). For
post-transcriptional regulation, lncRNAs also organized protein
complexes to influence cell signalling and regulate allosteric pro-
teins (Geisler and Coller, 2013). The Catsper1 gene, expressed in
male germ cells, is essential for sperm motility and fertilization.
Evidence suggests that the promoter of the Catsper1 gene can regu-
late a new gene, named Catsper1au (Catsper1 antisense upstream
transcript). Analysis of the whole genome sequence revealed that
Catsper1au has 1402 bp and is a polyadenylated lncRNA with no
intron. It is found in the nucleus of SCs and germ cells of adult male
mouse testis as well as in LCs, suggesting that it might have an
effect on spermatogenesis and male fertility (Jimenez-Badillo
et al., 2017). Nevertheless, the detailed mechanism is still unclear
and remains to be explored. Notably, many lncRNAs have been
found in SCs, but their specific targets are also unknown (Yang
et al., 2018).

PiRNA-like RNAs

PIWI-interacting RNAs (piRNAs) are small noncoding RNAs that
are exclusively expressed in the germ cells of mammalian gonads.
They have been regarded for a long time as germ-cell-specific small
RNAs. The piRNAs are categorized into repetitive sequence-
derived piRNAs and non-repetitive sequence-derived piRNAs
(Unhavaithaya et al., 2009). The former silences transposons by
DNA methylation and the latter is intergenic or intragenic and
some have other non-repetitive regions with relatively unclear
functions (Aravin et al., 2007; Carmell et al., 2007). However, in
2014, a novel class of somatic small RNAs, which were similar
to piRNAs, were detected in somatic cells and named piRNA-like
RNAs (pilRNAs). The pilRNAs have a distinct ping–pong

signature and might target mRNAs 3 0UTRs in a unique and com-
plementary way (Ortogero et al., 2014). These data provided one
possibility that pilRNAs, whose functions are similar to those of
germ cell piRNAs in SCs, might play a role in male fertility.

Leydig cells

Androgen greatly influences male health. Lack of testosterone can
influence general health in males, such as by downregulating bone
density, impairing muscle mass, injuring cognitive function and
damaging immunity (Huhtaniemi, 2014). As males age, serum tes-
tosterone levels decrease gradually following an increased in serum
follicle stimulating hormone (FSH) levels that either enhance or do
not affect LH levels, indicating that the loss of testosterone results
from changes in the ability of LCs to respond to LH. The loss is at
the gonadal level rather than the hypothalamic–pituitary level
(Wang et al., 2017). Many chronic and age-related clinical symp-
toms are associated with a low level of androgen, including cardio-
vascular diseases, obesity and metabolic syndrome (Kupelian et al.,
2006; Saad and Gooren, 2009; Kloner et al., 2016). Testosterone is
mainly produced by LCs. It plays a critical role in maintaining
secondary sexual characteristics and spermatogenesis regulation
in adults (Matzkin et al., 2013).

The LCs are divided into fetal LCs and postnatal LCs. The LH
and hypothalamic–pituitary–gonadal axis regulates testosterone
synthesis in adult interstitial LCs (Huhtaniemi I, 2015). However,
fetal LCs produce androstenedione instead of testosterone directly
without the presence of 17β-hydroxysteroid dehydrogenase-type
3 and androstenedione is converted into testosterone by fetal SCs
(Shima et al., 2013). Recent studies have shown that large numbers
of ncRNAs are also expressed in LCs, Here, we summarized the
findings of ncRNA function in LCs.

MicroRNAs

MicroRNAs related to LC steroidogenesis
Basic fibroblast growth factors (bFGF), including acidic and basic
fibroblast growth factors, play diverse and specific roles in specific
stages of LC steroidogenesis (Laslett et al., 1997). It was reported
that five miRNAs (miR-29a, miR-29c, miR-142-3p, miR-451 and
miR-335) are regulated by both bFGF and LH and are involved in
the regulation of androgen production in immature LCs (Liu et al.,
2014). miR-142-3p plays a vital role in cAMP production and PKA
biological function to influence the cAMP/PKA signalling cascade,
a secondary messenger pathway for steroid synthesis (Huang et al.,
2009; Manna et al., 2014). Scavenger receptor class B type I
(SR-BI), a HDL (high-density lipoprotein) receptor, is essential
for the selective uptake of HDL CEs (cholesteryl esters) in steroi-
dogenic cells (Shen et al., 2018). The expression of SR-BI and the
selective uptake ofHDLCEs were inhibited after the transfection of
pre-miRNA-125a and pre-miRNA-455 in LCs, implying that
miRNA-125a and miRNA-455 also play roles in steroidogenesis.
Evidence has shown that miRNA-125a and miRNA-455 can bind
to the 3 0UTR of the SR-BI gene and negatively regulate SR-BI func-
tions in rat steroidogenic cells. The two miRNAs were sensitive to
changes in trophic hormones (ACTH or gonadotropin) and cAMP
(Hu et al., 2012). In addition, treatment with Bt2cAMP increased
the levels of miRNA-96, miRNA-132, miRNA-182 miRNA-183
and miRNA-212 and decreased the expression levels of miRNA-
19a and miRNA-138 in MLTC-1 cells. All of these miRNAs can
be found in the adrenal glands and are sensitive hormones similar
to ACTH. In addition, miRNA-132 and miRNA-214 could inhibit
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the expression of SREBP-1c and LDLR by combining with the
3 0UTR of SREBP-1c and LDLR respectively (Hu et al., 2013).

MicroRNAs associated with Leydig cell development
miR-140-3p was the most highly expressed miRNA expressed in a
sexually dimorphic pattern, while the expression level of miR-140-
5p in the testis was low. Evidence showed that the absence of
miR-140-5p/miR-140-3p increased the number of mouse LCs, indi-
cating that miR-140-3p and miR-140-5p might be related to the
development of gonad as well as testis differentiation in mice
(Rakoczy et al., 2013). As explained above, miR-136 and miR-26a
played roles in the immune microenvironment, which is crucial
to LC development (Qin et al., 2019).

Other findings of microRNAs in Leydig cells
Currently, in the zearalenone (ZEN)-exposed TM3 LC line, the analy-
sis of miRNAs expression has been completed. Approximately 197
miRNAs were found to be significantly distinct from those of the
control group. The predicted target genes participate in many signal-
ling pathways, suggesting that ZEN, an important environmental
pollutant, is regulated by miRNAs in LCs.(Wang M et al., 2019)

Long noncoding RNAs

In 2018, in total, 33,883 lncRNAs were identified from sheep testes.
The sheep LCs with knocked out lncRNA TCONS_00863147
expressed lower levels of PRKCD (protein kinase C,delta), indicating
that the PRKCD could interact with lncRNA TCONS_00863147 in a
trans-activation mechanism and then played a role in spermatogen-
esis (Yang et al., 2018). This study also revealed a large number of
lncRNAs in the LCs, however their specific roles in male fertility
remain unknown.

Tesra, a novel testis-specific lncRNA in mice, has been proved
to be present in germ cells and the cytoplasm of LCs, as shown
by in situ hybridization. Tesra activated Prss42/Tessp-2 gene
expression by binding to the Prss42/Tessp-2 promoter and then
enhancing promoter activity. Prss42/Tessp-2 played important
roles in the progression of meiosis as well as in germ cell survival.
It was found that Tesra, similar to other lncRNAs, might recruit
histone modification enzymes or transcription factors such as
GClnc1 to the Prss42/Tessp-2 promoter region. However the specific
mechanism of Tesra in LCs is still unknown (Satoh et al., 2019).

Natural antisense transcripts

Natural antisense transcripts (NAT) are RNA sequences that comple-
ment a sense transcript and either encode a protein or do not encode a
protein (Balbin et al., 2015; Latge et al., 2018). In fact, many NATs
were mistakenly regarded as lncRNAs (Latge et al., 2018). Similar
to lncRNAs, NAT expression was regulated by promoters and
enhancers. Notably, their sense genes or the neighbouring genes
are closely connected to their expression levels (Lin et al., 2015).
Growing evidence implicates NATs as participants with a unique
mechanism of action in gene expression (Pelechano and Steinmetz,
2013; Nishizawa et al., 2015; Latge et al., 2018).

Translocator protein (Tspo), with rate-limiting step activity in
steroidogenesis in LC steroidogenesis, can transport cholesterol
into mitochondria (Chung et al., 2013). Evidence showed that
the expression of the Tspo gene and its function in steroidogenesis
were regulated by a NAT that was specific for Tspo (Tspo-NAT) in
LCs (Fan and Papadopoulos, 2012). The extension of the SINE
(short interspersed repetitive element) B2 element-mediated tran-
script formed Tspo-NAT in mouse tumour LCs. It has been proven

that endogenous Tspo-NAT was more likely to suppress endog-
enous Tspo levels. In addition, the evidence also revealed that
the expression of Tspo-NAT was regulated by cAMP and in this
way maintained Tspo at a proper level for optimal LCs steroid
production (Fan and Papadopoulos, 2012).

The steroidogenic acute regulatory (StAR) protein is a key pro-
tein that transports cholesterol located in mitochondria from outer
membrane to the inner membrane (Manna et al., 2013). StARNAT
was complementary to the spliced StAR sense 3.5-kb transcript and
was highly expressed in LC and steroidogenic tissues. Evidence has
shown that the StAR RNAs sense strands and the StAR RNAs anti-
sense strands might be regulated in coordination as they were both
expressed in the same cells. It has been proven that StAR NAT
could downregulate the expression of StAR protein, as well as pro-
gesterone, by regulating cAMP (Castillo et al., 2011). In this way,
StAR RNAs play a role in regulating steroid biosynthesis.

Conclusion

With the development of large-scale genomic technologies and
bioinformatics analyses, an increasing number of ncRNAs have
been identified in SCs and LCs. Noncoding RNAs especially
miRNAs including Dicer-dependent and Dicer-independent
miRNAs in SCs play key roles in phagocytosis, immunoprotection
and SCs development. These miRNAs are essential for the junction
of BTB which maintains the testicular microenvironment for sper-
matogenesis LC ncRNAs are involved in steroidogenesis and the
production of testosterone as well as development of LCs. Many
miRNAs directly target genes involved in steroidogenesis and
many of these are regulated by cAMP. Recently several novel
lncRNAs such as Tesra have been identified. In addition, the dis-
covery of NATs has provided another prospect for the regulation of
gene expression. Compared with the vast number of ncRNAs in
somatic cells, the numbers of current functional studies are explor-
ing only the tip of the iceberg. In addition, the discovery of
pilRNAs, which are similar to piRNAs and are present in somatic
cells, open new horizons for researchers.
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