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Abstract. We show that ω(n) and �(n), the number of distinct prime factors of n and the
number of distinct prime factors of n counted according to multiplicity, are good weighting
functions for the pointwise ergodic theorem in L1. That is, if g denotes one of these
functions and Sg,K =

∑
n≤K g(n), then for every ergodic dynamical system (X,A, µ, τ )

and every f ∈ L1(X),

lim
K→∞

1
Sg,K

K∑
n=1

g(n) f (τ n x)=
∫

X
f dµ for µ almost every x ∈ X.

This answers a question raised by Cuny and Weber, who showed this result for L p, p > 1.

1. Introduction
In [1] Cuny and Weber investigated whether some arithmetic weights are good weights
for the pointwise ergodic theorem in L p. In this paper we show that the prime divisor
functions ω and � are both good weights for the L1 pointwise ergodic theorem. The same
fact for the spaces L p, p > 1 was proved in [1] and our paper answers a question raised in
that paper. Recall that if n = pα1

1 · · · pαk
k , then ω(n)= k and �(n)= α1 + · · · + αk . We

denote by g one of these functions. Given K , we put

Sg,K =
∑
n≤K

g(n).

We suppose that (X,A, µ) is a measure space and τ : X→ X is a measure-preserving
ergodic transformation. Given f ∈ L1(X), we consider the g-weighted ergodic averages

Mg,K f (x)=
1

Sg,K

K∑
n=1

g(n) f (τ n x). (1)
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We show that for g = ω or � these averages µ almost everywhere converge to
∫

X f dµ,
that is, g is a good universal weight for the pointwise ergodic theorem in L1. See
Theorem 6. In proving this theorem we use maximal inequalities. Readers of our paper
pointed out that the novel idea in our proof is that in our estimates instead of using a fixed
moment of the appropriate averages (which is usually the first or the second moment) we
use increasing averages. See Lemma 5 and the proof of Claim 9, especially (24) and (25).
This approach of using different moment estimates might turn out to be useful in other
situations as well.

For some similar ergodic theorems with other weights like the Möbius function, its
absolute value or the Liouville function, we refer to the papers of El Abdalaoui et al [3]
and of Rosenblatt and Wierdl [8].

2. Preliminary results
We recall [5, Theorem 430 on p. 72]∑

n≤K

ω(n)= K log log K + B1 K + o(K ) and (2)

∑
n≤K

�(n)= K log log K + B2 K + o(K ). (3)

Hence, for both cases we can assume that there exists a constant B (which depends on
whether g = ω or g =�) such that∑

n≤K

g(n)= K log log K
(

1+
B

log log K
+

o(K )
K log log K

)
. (4)

From this it follows that there exists CS > 0 such that, for all K ∈ N,(∑
n≤K

g(n)
)blog log K c

= (Sg,K )
blog log K c > CS(K blog log K c)blog log K c. (5)

We need some information about the distribution of the functions ω and �. We
use [6, (3.9) on p. 689] by Norton, which is based on a result of Halász [4], which is
cited as [6, (3.8) Lemma]. Next we state [6, (3.9)] with δ = 0.1 and z = 2− δ = 1.9.

PROPOSITION 1. There exists a constant C̃ such that, for every K ≥ 1,∑
n≤K

1.9ω(n) ≤
∑
n≤K

1.9�(n) ≤ C̃ K exp(0.9 · E(K )) (6)

where E(K )=
∑

p≤K (1/p).

Recall that by [5, Theorem 427],

E(K )=
∑
p≤K

1
p
= log log K + B1 + o(1). (7)

The constant B1 is the same one which appears in (2). The way we will use this is the
following: there exists a constant CP such that for K > 3,

E(K )=
∑
p≤K

1
p
< CP log log K . (8)
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Combining this with (6), we obtain that for g = ω or � we have for K > 3,∑
n≤K

1.9g(n) < C̃ · K · exp(0.9 · CP log log K )≤ CH · K exp(0.9 · CPblog log K c),

(9)
with a suitable constant CH not depending on K .

In [1] a result of Delange [2] was used to deduce [1, Theorem 2.7]. The result of Delange
is the following theorem.

THEOREM 2. For every m ≥ 1, we have∑
n≤K

g(n)m = K (log log K )m + O(K (log log K )m−1).

We were unable to use this result since the constant in O(K (log log K )m−1) cannot be
chosen not depending on m ≥ 1.

Hence, we use (9) in the proof of the following lemma.

LEMMA 3. There exists a constant C� such that, for all K ≥ 16,∑
n≤K

ω(n)blog log K c
≤

∑
n≤K

�(n)blog log K c < K (C�blog log K c)blog log K c. (10)

We remark that the assumption K ≥ 16 implies that log log K > 1.01> 1.

Proof. Since ω(n)≤�(n), the first inequality is obvious in (10).
We assume that K ≥ 16 is fixed and for ease of notation we put ν = blog log K c. Set

Nl,K = {n ≤ K : 2lν ≤�(n) < 2l+1ν}. (11)

By (9), Nl,K · 1.92lν < CH K exp(0.9 · CPν). This implies that

Nl,K < CH K · exp((0.9 · CP − 2l log 1.9)ν). (12)

Since log 1.9> 0.6, we can choose l0 such that, for l ≥ l0,

0.9 · CP − 2l log 1.9+ (l + 1) log 2<−0.5 · 2l
=−2l−1. (13)

From (12) and (13), we infer that∑
n≤K

�(n)ν < K · (2ν)ν +
∞∑

l=1

Nl,K (2l+1ν)ν

≤ K · (2ν)ν
l0−1∑
l=1

K (2l+1ν)ν +

∞∑
l=l0

CH Kνν exp(((log 2l+1)+ 0.9CP − 2l log 1.9)ν)

(using (13) with a suitable constant C1 > 2)

< Cν
1 Kνν +

∞∑
l=l0

CH Kνν exp(−2l−1ν) (14)

(recalling that ν = blog log K c ≥ blog log 16c = 1, with a suitable constant C�)

< Kνν
(

Cν
1 + CH

∞∑
l=l0

exp(−2l−1)

)
< Cν

�Kνν = K (C�blog log K c)blog log K c. �
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We need an elementary inequality stated in Lemma 4, which, as Pavel Zorin-Kranich
pointed out to me, is a consequence of the generalized Hölder’s inequality: if v j > 0,
j = 1, . . . , ν and

∑ν
j=1 (1/v j )= 1, then

K∑
i=1

ν∏
j=1

|ai, j | ≤

ν∏
j=1

v j

√√√√ K∑
i=1

|ai, j |
v j . (15)

LEMMA 4. Suppose that K , ν ∈ N, b1, . . . , bK are non-negative numbers and we have
permutations π j : {1, . . . , K } → {1, . . . , K }, j = 1, . . . , ν. Then

bπ1(1) · · · bπν (1) + · · · + bπ1(K ) · · · bπν (K ) ≤ bν1 + · · · + bνK . (16)

Proof. Indeed, setting v j = ν for all j , by using (15), we obtain

K∑
i=1

ν∏
j=1

|bπ j (i)| ≤

ν∏
j=1

ν

√√√√ K∑
i=1

|bπ j (i)|
ν = bν1 + · · · + bνK . �

According to some of my colleagues, it is more natural to give an elementary proof
of Lemma 4 based on mathematical induction and on the simple fact that if A > B ≥ 0
and C > D ≥ 0 then from (A − B)(C − D)≥ 0 it follows that AC + B D ≥ AD + BC.
An earlier version of our paper contained such an argument, but for this final version we
preferred the above shorter proof.

We will use the transference principle and hence we need to consider functions
on the integers. Suppose that ϕ : Z→ [0,+∞) is a function on the integers with
compact/bounded support. Again g will denote ω or �. Put

Mg,Kϕ( j)=
1

Sg,K

K∑
n=1

g(n)ϕ( j + n) for j ∈ Z.

First we prove a ‘localized’ maximal inequality.

LEMMA 5. There exists a constant Cg > 0 such that, for any ϕ : Z→ [0,+∞), K ≥ 16
and k ∈ Z,

K∑
j=1

(Mg,Kϕ(k + j))blog log K c
≤

( 2K∑
j=2

ϕ(k + j)
)(

Cg

K

2K∑
j=2

ϕ(k + j)
)blog log K c−1

.

(17)

Proof. Without limiting generality, we can suppose that k = 0 and K ≥ 16 is fixed. We
use again the notation ν = νK = blog log K c. We put

g̃(n)= g̃K (n)=

{
g(n) if 1≤ n ≤ K ,

0 otherwise.
(18)
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We need to estimate
K∑

j=1

(
1

Sg,K

K∑
n=1

g(n)ϕ( j + n)
)ν

=
1

Sνg,K

K∑
j=1

K∑
n1=1

· · ·

K∑
nν=1

g(n1) · · · g(nν) · ϕ( j + n1) · · · ϕ( j + nν)

=
1

Sνg,K

K∑
n′=1

2K∑
j1=2

· · ·

2K∑
jν=2

ϕ( j1) · · · ϕ( jν) · g̃(n′)g̃(n′ + j2 − j1) · · · g̃(n′ + jν − j1)

=
1

Sνg,K

2K∑
j1=2

· · ·

2K∑
jν=2

ϕ( j1) · · · ϕ( jν) ·
K∑

n′=1

g̃(n′)g̃(n′ + j2 − j1) · · · g̃(n′ + jν − j1)

≤
1

Sνg,K

2K∑
j1=2

· · ·

2K∑
jν=2

ϕ( j1) · · · ϕ( jν) ·
3K−2∑

n′=−2K+3

(g̃(n′))ν (using Lemma 4 and (18))

=
1

Sνg,K

2K∑
j1=2

· · ·

2K∑
jν=2

ϕ( j1) · · · ϕ( jν) ·
K∑

n′=1

(g(n′))ν

≤ K · Cν
�ν

ν 1
Sνg,K

( 2K∑
j=2

ϕ( j)
)ν

(by using Lemma 3)

< K · Cν
�ν

ν 1
CS(Kν)ν

( 2K∑
j=2

ϕ( j)
)ν

(by (5))

<

( 2K∑
j=2

ϕ( j)
)
·

(
Cg

1
K

2K∑
j=2

ϕ( j)
)ν−1

(with a suitable constant Cg > 0). �

3. Main result
THEOREM 6. For every ergodic dynamical system (X,A, µ, τ ) and every f ∈ L1(X),

lim
K→∞

Mg,K f (x)=
∫

X
f dµ for µ almost every x ∈ X. (19)

Proof. By [1, Theorem 2.5 and Remark 2.6] we know that ω and � are good weights for
the pointwise ergodic theorem in L p for p > 1. This means that we have a dense set of
functions in L1 for which the pointwise ergodic theorem holds. In [1, Theorem 2.5] it is
not stated explicitly that the limit function of the averages Mg,K f is

∫
X f dµ, but from

the proof of this theorem it is clear that Mg,K f not only converges almost everywhere,
but its limit is indeed

∫
X f dµ (at least for f ∈ L∞(µ)). Indeed, from [1, (2.2)] it follows

that Mg,K f can be written as the sum of an ordinary Birkhoff average of f and an error
term which tends to zero as K →∞.

Hence, by a standard application of Banach’s principle (see, for example, [7, p. 91]),
the following weak L1-maximal inequality proves Theorem 6. �
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PROPOSITION 7. There exists a constant Cm such that, for every ergodic dynamical system
(X,A, µ, τ ) and for every f ∈ L1(µ) and λ≥ 0,

µ
{

x : sup
K≥1

Mg,K f (x) > λ
}
≤ Cm

‖ f ‖1
λ

. (20)

Proof of Proposition 7. By standard transference arguments, see, for example, [8, Ch. III],
it is sufficient to establish a corresponding weak maximal inequality on the integers
with λ= 1 for non-negative functions with compact support. Hence, this proof will be
completed by Proposition 8 below. �

Thus, we need to state and prove the following maximal inequality.

PROPOSITION 8. There exists a constant Cm such that, for every ϕ : Z→ [0,∞) with
compact support,

#
{

j : sup
K∈N

Mg,Kϕ( j) > 1
}
≤ Cm‖ϕ‖`1 .

It is enough to prove Proposition 8 along the subsequence K = 2l , l = 1, 2, . . . . This
will be done in the following Claim 9. Set Ml = Mg,2l .

CLAIM 9. There exists a constant C ′m such that, for every ϕ : Z→ [0,+∞) with compact
support,

#
{

j : sup
l∈N

Mlϕ( j) > 1
}
≤ C ′m‖ϕ‖`1 . (21)

Proof of Proposition 8 based on Claim 9. Given K ∈ N, choose lK ∈ N such that 2lK−1 <

K ≤ 2lK . By (2) or (3), there exists a constant CR > 0 not depending on K such that
Sg,2lK ≤ CR Sg,K . We have

1< Mg,Kϕ( j)=
1

Sg,K

K∑
n=1

g(n)ϕ( j + n)

≤
Sg,2lK

Sg,K
·

1
Sg,2lK

2lK∑
n=1

g(n)ϕ( j + n)≤ CR Mg,2lK ϕ( j).

Hence, 1< Mg,Kϕ( j) implies that 1/CR < Mg,2lK ϕ( j)= MlK ϕ( j).
For any ϕ̃ : Z→ [0,+∞)with compact support taking ϕ = CR ϕ̃, by Claim 9, we obtain

#
{

j : sup
K∈N

Mg,K ϕ̃( j) > 1
}
≤ #

{
j : sup

l∈N
Mlϕ( j) > 1

}
≤C ′m‖ϕ‖`1 = C ′mCR‖ϕ̃‖`1 . �

Proof of Claim 9. For ease of notation in this proof, when we speak about intervals we
will speak about subintervals of the integers; for example, when we speak about a dyadic
interval (r2l , (r + 1)2l

] then in fact we mean the interval (r2l , (r + 1)2l
] ∩ Z.
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For small l, say for 1≤ l ≤ 4, it is easy to obtain an estimate needed for (20). Since
ϕ ≥ 0 is of compact support,

‖Mlϕ‖`1 =

∞∑
j=−∞

1
Sg,2l

2l∑
n=1

g(n)ϕ( j + n)

=
1

Sg,2l

2l∑
n=1

g(n)
∞∑

j=−∞

ϕ( j + n)= ‖ϕ‖`1

and hence #{ j : Mlϕ( j) > 1} ≤ ‖Mlϕ‖`1 = ‖ϕ‖`1 , which implies that

#
{

j : sup
1≤l≤4

Mlϕ( j) > 1
}
≤ 4‖ϕ‖`1 . (22)

Next suppose that l > 4.We consider the dyadic intervals (r2l , (r + 1)2l
], r ∈ Z. Recall

that the constant Cg appeared in Lemma 5. We say that r ∈ Rl,+ if

1
2l

r2l
+2·2l∑

j=r2l+1

ϕ( j) >
1

100 · Cg
. (23)

Otherwise, if r 6∈ Rl,+, we say that r ∈ Rl,−.
For r ∈ Rl,−, we use Lemma 5 and the negation of (23) to deduce that for l > 4,

2l∑
j=1

(Mlϕ(r2l
+ j))blog log 2l

c <

(2·2l∑
j=2

ϕ(r2l
+ j)

)
·

(
1

100

)blog log 2l
c−1

≤ 1002
(2·2l∑

j=2

ϕ(r2l
+ j)

)
·

(
1

100

)log log 2l

≤ 1002
(2·2l∑

j=2

ϕ(r2l
+ j)

)
· exp(−(log 100) · log log 2l)

≤ 1002
(2·2l∑

j=2

ϕ(r2l
+ j)

)
·

6
l2 , (24)

where we used that 4.61≥ log 100≥ 4.60517 and log log 2>−0.37 implies that

exp(−(log 100) · log log 2l)= exp(−(log 100)((log l)+ log log 2))

= exp(−(log 100) log log 2) · exp(−(log 100) log l) <
6
l2 .

Set M∗

l = { j : Mlϕ( j) > 1} and M∗
=
⋃

l M∗

l .

If r ∈ Rl,−, then by (24),

#(M∗

l ∩ (r2l , (r + 1)2l
])≤

2l∑
j=1

(Mlϕ(r2l
+ j))blog log 2l

c

≤ 6 · 1002
·

1
l2

(2·2l∑
j=2

ϕ(r2l
+ j)

)
.
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Hence,

#
(
M∗

l ∩
⋃

r∈Rl,−

(r2l , (r + 1)2l
]

)
≤ 12 · 1002 1

l2 ‖ϕ‖`1

and

#
(⋃

l

(
M∗

l ∩
⋃

r∈Rl,−

(r2l , (r + 1)2l
]

))
≤ 12 · 1002π

2

6
‖ϕ‖`1 . (25)

On the other hand,

⋃
l>4

⋃
r∈Rl,+

(r2l , (r + 1)2l
]⊂

⋃
l>4

⋃
r∈Rl,+

[r2l , (r + 2)2l
]. (26)

By the well-known property of coverings by subintervals, we can select a subsystem I∗+ of
the intervals I+ = {[r2l , (r + 2)2l

] : l > 4, r ∈ Rl,+} such that the subsystem I∗+ covers
the same set as I+ and a point is covered by no more than two elements of I∗+, that is,

∑
I∈I∗+

χI ( j)≤ 2 for all j ∈ Z and
⋃

I∈I+

I =
⋃

I∈I∗+

I. (27)

From (23), it follows that if [r2l , (r + 2)2l
] = I ∈ I∗+, then, recalling that in this proof

intervals denote subintervals of integers,

Cg · 400
∑
j∈I

ϕ( j) > 4 · 2l > #I.

Thus, by (27),

#
( ⋃

I∈I+

I
)
= #

( ⋃
I∈I∗+

I
)
< Cg · 800‖ϕ‖`1 .

Hence, by (26),

#
(⋃

l>4

⋃
r∈Rl,+

(r2l , (r + 1)2l
]

)
≤ Cg · 800‖ϕ‖`1 .

From this, (22) and (25), it follows that

#M∗
≤

(
4+ 12 · 1002π

2

6
+ 800Cg

)
‖ϕ‖`1 = C ′m‖ϕ‖`1 . �
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