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The natural relations for sets are those definable in terms of the emptiness of the subsets

corresponding to Boolean combinations of the sets. For pairs of sets, there are just

five natural relations of interest, namely, strict inclusion in each direction, disjointness,

intersection with the universe being covered, or not. Let N denote {1, 2, . . . , n} and
(
N
2

)
denote {(i, j) | i, j ∈ N and i < j}. A function µ on

(
N
2

)
specifies one of these relations for

each pair of indices. Then µ is said to be consistent on M ⊆ N if and only if there exists

a collection of sets corresponding to indices in M such that the relations specified by µ

hold between each associated pair of the sets. Firstly, it is proved that if µ is consistent

on all subsets of N of size three then µ is consistent on N. Secondly, explicit conditions

that make µ consistent on a subset of size three are given as generalized transitivity laws.

Finally, it is shown that the result concerning binary natural relations can be generalized

to r-ary natural relations for arbitrary r > 2.

1. Introduction

Let n be a natural number and N denote the set {1, . . . , n}. Suppose that we are given some

combinatorial object µ defined on N and that, for any subset M of N, the object, denoted

by µM , is obtained by restricting µ to the subset M. We consider predicates P that are

inheritable, in the sense that, for all subsets M of N, if P holds on µM then P holds on µM ′
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for any M ′ ⊂M. Such a predicate P often turns out to be ‘locally computable’, that is, if

P holds on all objects µM with M satisfying some conditions then P holds on the whole

object µN . One typical example of such a predicate is given by Helly’s theorem [4]. For

example, in two dimensions, this states that a family of compact convex planar sets has a

nonempty intersection if and only if every triple of the sets has a nonempty intersection.

In this paper we give another locally computable predicate for which we are only

required to check the predicate on all objects µM for ‘small’ M. First we describe five

natural relations between sets, denoted by ⊂, ⊃, ‖, ⊥, ./, representing strict inclusion in

each direction, disjointness, covering the universe, and the general case, respectively. Each

can be defined in terms of the emptiness or otherwise of Boolean combinations of the

sets, and the set of these five relations is denoted by R. Let
(
N
2

)
denote {(i, j) ∈ N2 | i < j}.

Each object µ we deal with is an assignment of a natural relation to each pair (i, j) in
(
N
2

)
,

that is, a function from
(
N
2

)
to R.

The function µ is compatible with a collection of sets S1, . . . , Sn if the relation µ(i, j)

holds between Si and Sj for all (i, j) in
(
N
2

)
. If µ is compatible with some such collection

then µ is said to be consistent. For any subset M ⊆ N, the object µM is simply the

restriction of µ to
(
M
2

)
. If µM is consistent then µ is said to be consistent on M. Our main

result is that if µ is consistent on every subset of N of size three, then µ is consistent.

Conditions that make µ consistent are given explicitly in terms of the natural relations

that may hold for any three subsets. The main result for binary natural relations can be

generalized to that for r-ary natural relations for arbitrary r > 2.

The problem of characterizing a predicate on graphs, or equivalently a family of graphs

satisfying the predicate, is also discussed in Fellows and Langston [2] in a different context.

It was pointed out in that paper that local computability which only requires locally

available information is essential in architectural requirements of parallel computing.

Some combinatorial aspects of inclusion and exclusion and their relation to Boolean

complexity are also discussed by Linial and Nisan in [5].

In Section 2, we introduce natural relations on sets, and give generalized transitivity

constraints on natural relations of µ which guarantee that µ is consistent. In order to prove

the statement, a set of vectors is used as a model for µ. It is also shown that there exists

a feasible algorithm which, given a partial function µ from
(
N
2

)
to R, decides whether

or not µ can be extended to obtain a consistent total function. In Section 3, we give an

alternative graph model for the inclusion relations of µ and verify the same result as in

Section 2. In Section 4, we generalize our results to r-ary natural relations for arbitrary

r > 2, and introduce a local condition on µ, called the inheritance property. It is shown

that, if transitivity constraints are replaced by the inheritance condition, then the results in

the previous sections can be generalized to the case of r-ary natural relations for arbitrary

r > 2. In Section 5, some considerations on the time complexity of the consistency problem

for binary natural relations are given, together with concluding remarks.

2. Consistency conditions for natural relations

Let the universe U be nonempty. A natural relation for any set or sets is one that is defined

in terms of the emptiness or otherwise of the subsets defined by Boolean combinations of
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Table 1 Five natural relations.

relations

subsets ⊂ ⊃ ‖ ⊥ ./

(1,1) 1 1 0 1 1

(1,0) 0 1 1 1 1

(0,1) 1 0 1 1 1

(0,0) 1 1 1 0 1

the sets. For one set, there are four cases, depending on the emptiness of the set and its

complement. If both are empty then U = φ, a case we have excluded. The remaining three

cases correspond to the set being empty, equal to the universe and proper, respectively. A

subset S of U is called proper if neither S = φ nor S = U. In Sections 2 and 3 we shall

allow only proper subsets of U.

For two sets A and B, there are formally 16 possible relations. Under our assumptions

that the universe is nonempty and both sets are proper, there remain just seven cases. One

is A = B, another is A = B = U¬B. Both of these cases are special in that if they hold

then one of the sets can be eliminated by substitution from the remaining relations. The

remaining five natural relations constitute R. Table 1 defines these five relations in terms

of the emptiness, denoted by 0, or nonemptiness, denoted by 1, of four subsets. In the

table, (a, b) indicates the subset Aa ∩ Bb, where a and b are in {0, 1}, S1 = S and S0 = S .

Let Σ denote {0, 1}. For v in Σn, let v(i) denote the ith component of v. Given n subsets

S = S1, . . . , Sn of U, we can determine whether each subset of the form

Sv
(1)

1 ∩ Sv(2)

2 · · · ∩ Sv(n)

n

is empty or not, where v = (v(1), . . . , v(n)) is in Σn. Let V (S) denote the set of vectors v in Σn

such that Sv
(1)

1 ∩ · · · ∩Sv(n)

n is nonempty. Furthermore, let Ti, for 1 6 i 6 n, denote the set of

vectors v in V (S) such that v(i) = 1. Then it is easy to see that consistency of S1, . . . , Sn for

R is the same as that of T1, . . . , Tn. In other words, for any natural relation α, SiαSj holds

if and only if TiαTj holds. So, without loss of generality, we can consider a set of vectors

V rather than a collection of subsets as far as the consistency problem is concerned.

Relation α in Table 1 is considered to be a function from Σ2 to Σ in the obvious way:

for (a, b) in Σ2, α(a, b) = 1 if Aa∩Bb is nonempty in the relation, and α(a, b) = 0 otherwise.

Relation α can also be considered to be the set of vectors in Σ2 for which the function

takes value 1: for instance, ⊂ = {(1, 1), (0, 1), (0, 0)}. Let v(i,j) denote (v(i), v(j)), and V (i,j)

denote {v(i,j) | v ∈ V }. This notation can be generalized in an obvious way to the case

of more indices. Let µ be a function from
(
N
2

)
to R, and let M ⊆ N. We say that µ is

compatible with V on M if and only if V (i,j) = µ(i, j) for all (i, j) in
(
M
2

)
, and that µ is

consistent on M if and only if there exists a subset V of Σn that is compatible with µ on

M. In particular, when M = N, the phrase ‘on M’ in the definition may be dropped. For

M ⊆ N, let VM denote

Σn −
{
v ∈ Σn | ∃(i, j) ∈

(
M

2

)
v(i,j) 6∈ µ(i, j)

}
.
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In fact, the set VM depends on µ, but we refrain from using µ in the notation because it

will be clear from the context.

The next proposition says that VM defined above is the largest set among the sets that

are compatible with µ on M.

Proposition 1. If µ is compatible with V ⊆ Σn on M ⊆ N, then V ⊆ VM .

Proof. Assume to the contrary that V 6⊆ VM holds. Then there exists v in Σn such that

v ∈ V and v 6∈ VM . By v 6∈ VM ,

∃(i, j) ∈
(
M

2

)
v(i,j) 6∈ µ(i, j).

Thus we have v(i,j) ∈ V (i,j) and v(i,j) 6∈ µ(i, j), contradicting the assumption that µ(i, j) =

V (i,j).

By definition the next proposition is clear.

Proposition 2. For any M ⊆ N with |M| > 2 and any (i, j) in
(
M
2

)
,

µ(i, j) ⊇ V (i,j)
M .

Proposition 3. The function µ is consistent on M ⊆ N with |M| > 2 if and only if,

for all (i, j) ∈
(
M

2

)
, µ(i, j) = V

(i,j)
M .

Proof. For the proof of the ‘only if’ part, suppose that µ is compatible with V ⊆ Σn on

M ⊆ N. Then, by Propositions 1 and 2 and the definition of compatibility, we have

µ(i, j) = V (i,j) ⊆ V (i,j)
M ⊆ µ(i, j),

and hence µ(i, j) = V
(i,j)
M for any (i, j) in

(
M
2

)
. On the other hand, the condition of the

proposition implies that µ is compatible with VM on M ⊆ N.

For u in Σn and A ⊆ Σn, let u ⊕ A = {u ⊕ v | v ∈ A}, where u ⊕ v denotes the vector

obtained by taking the bit-wise ‘exclusive or’ of u and v. For u in Σn, the transformation

ϕu on the set of functions from
(
N
2

)
to R is defined as ϕu(µ)(i, j) = u(i,j) ⊕ µ(i, j). Note

that, in the definition, µ(i, j) is thought of as a subset of Σ2.

Clearly we have the next proposition.

Proposition 4. Let u be in Σn and V ⊆ Σn. Then µ is compatible with V if and only if

ϕu(µ) is compatible with u⊕ V .

In view of Proposition 4, we have the next proposition, which says that the transfor-

mation ϕu preserves the consistency of µ for any u in Σn.

Proposition 5. Let u be in Σn. Then µ is consistent if and only if ϕu(µ) is consistent.
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(1, 0)

(0, 1)(0, 1)

(1, 0)

(0, 1)

(1, 0)

⊃

⊂

‖

⊥

./

Figure 1 Transformations on natural relations.

Table 2 The eight transitivity constraints.

u(i,j,k) µ(i, j) µ(j, k) µ(i, k)

(0,0,0) ⊂ ⊂ ⊂
(0,0,1) ⊂ ‖ ‖
(0,1,0) ‖ ⊥ ⊂
(0,1,1) ‖ ⊃ ‖
(1,0,0) ⊥ ⊂ ⊥
(1,0,1) ⊥ ‖ ⊃
(1,1,0) ⊃ ⊥ ⊥
(1,1,1) ⊃ ⊃ ⊃

Before proceeding to the main theorem, we show in Figure 1 how the five natural

relations are transformed by ϕu for u = (1, 0) and (0, 1).

It is convenient to extend the definition of any object µ to {(j, i) | i < j} in the obvious

way, so that µ(i, j) = ⊂ if and only if µ(j, i) = ⊃, and µ(i, j) = µ(j, i) if µ(i, j) ∈ {‖,⊥, ./}.
If µ is consistent, then the transitivity of inclusion implies that the following constraint

holds for any distinct indices i, j and k.

If µ(i, j) = ⊂ and µ(j, k) = ⊂, then µ(i, k) = ⊂ . (∗)
By applying Proposition 5 for various choices of u, we can transform the constraint (∗)
in various ways. For example, let u(i,j,k) = (1, 0, 1) and µ′ = φu(µ). Now, if µ(i, j) = ⊥
and µ(j, k) = ‖ then µ′(i, j) = ⊂ and µ′(j, k) = ⊂, and so µ′(i, k) = ⊂, which implies

that µ(i, k) = ⊃. In Table 2 we show the eight transitivity constraints which are obtained

by taking various vectors as u(i,j,k). If µ satisfies these eight constraints it is said to be

transitive.

The next theorem says that these conditions that are necessary to make µ consistent on

any set of three indices turn out to be sufficient conditions to make µ consistent on the

set of all indices.

Theorem 6. If µ is transitive then µ is consistent.
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Proof. We shall prove the statement of the theorem by induction on n. The statement

holds trivially when n = 2. Assume that the statement holds for n− 1, where n > 3.

In view of Figure 1, it is easy to see that there exists some u in Σn such that ϕu(µ)(j, n) ∈
{⊂,⊃, ./} for all 1 6 j 6 n−1. By Proposition 5 it suffices to show that ϕu(µ) is consistent.

Furthermore, it is easy to see that if µ satisfies the conditions of the theorem then ϕu(µ)

also satisfies the conditions. So, denoting ϕu(µ) again by µ, we may assume that µ satisfies

the conditions of the theorem and that µ(j, n) ∈ {⊃,⊂, ./} for all 1 6 j 6 n− 1. Let

Ni = N − {i}
for 1 6 i 6 n. Then, by the induction hypothesis and Proposition 3, µ is compatible with

VNi
on Ni for 1 6 i 6 n.

Lemma 1. For any v in VNi
at least one of (v(1), . . . , v(i−1), 0, v(i+1), . . . , v(n)) and (v(1), . . . ,

v(i−1), 1, v(i+1), . . . , v(n)) is in VN .

Proof. Without loss of generality, let i = n. Assume to the contrary that there exists v

in VNn
such that both (v(1), . . . , v(n−1), 0) and (v(1), . . . , v(n−1), 1) are not in VN . Then, since

µ(`, n) ∈ {⊃, ⊂, ./} for any 1 6 ` 6 n− 1, there exist 1 6 j, k 6 n− 1 such that

µ(j, n) = ⊂,
µ(k, n) = ⊃,
v(j) = 1,

v(k) = 0.

Hence, by transitivity we have µ(j, k) = ⊂, which, together with v(j) = 1 and v(k) = 0,

implies that v does not belong to VNn
, contradicting the assumption.

By the induction hypothesis and Lemma 1 we have,

for all 1 6 i 6 n and (j, k) ∈
(
Ni

2

)
, µ(j, k) = V

(j,k)
Ni

= V
(j,k)
N .

On the other hand, since n > 3, for any (j, k) in
(
N
2

)
there exists 1 6 i 6 n such that

(j, k) ∈ (Ni

2

)
, and hence µ(j, k) = V

(j,k)
N , completing the proof.

Before closing the section, we note that by using Theorem 6 we can construct a feasible

algorithm which, given a partial function µ from
(
N
2

)
to R, decides whether or not µ can

be extended to obtain a consistent total function. The algorithm works as follows. Given

a partial function µ, check if it satisfies the transitivity constraints. If not, give the answer

that µ is not consistent. Otherwise, extend µ using the transitivity constraints repeatedly

until none of these constraints can be applied. In doing this, if there exists a pair to which

different relations are assigned then give the answer that µ is not extensible consistently.

Otherwise, conclude that µ is extensible consistently. In fact, if we assign ./ to any pairs

that remain unspecified at the end of the extension process, we obtain a total function.

Clearly the total function obtained in this way is an extension of µ and is consistent in

view of Theorem 6.
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3. An intuitive model for µ

In this section we shall introduce another, intuitive, model for µ based directly on the

natural relations, so that we can give another proof of Theorem 6.

Proposition 7. If µ is transitive then there exists u in Σn such that ϕu(µ)(i, j) ∈ R0 =

{⊂,⊃, ‖, ./} holds for any (i, j) in
(
N
2

)
.

Proof. Let µ be transitive. Then it is easy to see that ϕu(µ) is also transitive for any u

in Σn. We shall prove the conclusion of the proposition by induction on n. When n = 2,

Figure 1 shows the result at once. Assume as inductive hypothesis that the result holds for

Nn = {1, 2, . . . , n − 1}. Then there exists u′ in Σn such that ϕu′(µ)(i, j) ∈ R0 holds for any

(i, j) in
(
Nn

2

)
. Now at most one of ⊃ and ⊥ appears in ϕu′(µ)(1, n), ϕu′(2, n), . . . , ϕu′(n−1, n).

This is because, if there exist i, j in Nn such that ϕu′(µ)(i, n) = ⊥ and ϕu′(µ)(j, n) = ⊃,

then by transitivity we have ϕu′(i, j) = ⊥, contradicting the assumption. Thus, by taking

u = u′ ⊕ (0, . . . , 0, 1) if there exists i in Nn such that ϕu′(µ)(i, n) = ⊥, and taking u = u′
otherwise, we see from Figure 1 that ϕu(µ)(i, j) ∈ R0 holds for any (i, j) in

(
N
2

)
, completing

the induction step.

Let ϕu(µ) be as in Proposition 7. We note that, in order to obtain a model for µ, it is

sufficient by Proposition 4 to obtain a model for ϕu(µ). We again denote ϕu(µ) by µ so that

µ(i, j) ∈ R0 for any (i, j) in
(
N
2

)
. We shall define a collection of subsets that is compatible

with µ. To do this, consider the directed graph G′ with vertex set V ′ = {x1, . . . , xn} and

edge set E ′ = {(xi, xj) | µ(i, j) = ⊃}. Since µ is transitive, G′ is an acyclic graph, and we

define S ′i to be the set of xi and its descendants. It is easy to see that S ′i ⊃ S ′j if and only

if (xi, xj) ∈ E ′, and if and only if µ(i, j) = ⊃, so that G′ already gives a model for the set

containment relations of µ.

For a complete model for µ we need to extend G′ with extra vertices. Define G′′ =

(V ′′, E ′′), where V ′′ = V ′ ∪ {xi,j | µ(i, j) = ./ and i < j} and E ′′ = E ′ ∪ {(xi, xi,j),
(xj, xi,j) | xi,j ∈ V ′′}. As in the case of graph G′, let S ′′i be the set of xi and its descendants in

the graph G′′. If there exist i and j inN such that S ′′i ∪S ′′j = V ′′ holds, then let V = V ′′∪{x∞}
and E = E ′′. Otherwise, let V = V ′′ and E = E ′′. The final graph G is defined to be

(V , E). Now we define Si to be the set consisting of xi and its descendants in the graph G.

The containment relation on the new sets is the same as in the graph G′ and agrees with

µ−1(⊃). Therefore, if µ(i, j) = ./ then neither containment can hold between Si and Sj but

xi,j ∈ Si∩Sj . Hence, since Si∪Sj cannot be the whole set V , we have Si ./ Sj . For the proof of

the converse, suppose that Si ./ Sj and so µ(i, j) ∈ {‖, ./}. If there is some xk in Si∩Sj then

k 6= i, j, so Sk ⊂ Si and Sk ⊂ Sj . Hence µ(k, i) = µ(k, j) and the transitivity constraints imply

that µ(i, j) 6= ‖. Otherwise there is some xk,l in Si ∩ Sj where Sk ⊆ Si and Sl ⊆ Sj , and so

(I) k = i or µ(k, i) = ⊂, and

(II) l = j or µ(l, j) = ⊂.

The existence of xk,l implies that µ(k, l) = ./. Then (I) and (II) together with the transitivity

constraints again imply that µ(i, j) 6= ‖. This completes the proof that the graph G is a

model for µ.
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4. Generalization

So far we have discussed the consistency of binary natural relations. In this section we

generalize the situation to the case of r-ary natural relations for arbitrary r > 2. In doing

so we use, instead of the transitivity constraints, some more restrictive local constraints,

called the inheritance property. In this section we assume that the sets we deal with are

any subsets of the universe, dropping the assumption of their being proper.

Most of the notation and the results in Section 3 are generalized as follows. An r-ary

natural relation is a function from Σr to Σ. The set of r-ary natural relations is denoted by

G, that is, G = {g : Σr → Σ}. For M ⊆ N, let
(
M
r

)
denote {(i1, . . . , ir) ∈Mr | i1 < · · · < ir}.

For v in Σn and A = (i1, . . . , ij) in
(
N
j

)
, let v(A) denote the vector (v(i1), . . . , v(ij )). Moreover,

for V ⊆ Σn let V (A) = {v(A) | v ∈ V }. The generalized object µ is a function from
(
N
r

)
to

G. If µ(A) = V (A) holds for any A in
(
M
r

)
, then µ is said to be compatible with V ⊆ Σn

on M ⊆ N. Recall that, when µ(A) is a function g from Σr to Σ, µ(A) denotes the set

{u ∈ Σr | g(u) = 1} as well as the function g. If there exists V ⊆ Σn such that µ is

compatible with V on M ⊆ N, then µ is said to be consistent on M. Recall that in the

definitions above the phrase ‘on M’ may be dropped when M is equal to N. For V ⊆ Σn

and M ⊆ N, let VM denote

Σn −
{
v ∈ Σn | ∃A ∈

(
M

r

)
µ(A)(v(A)) = 0

}
.

Propositions 1, 2 and 3 are easily generalized to obtain Propositions 8, 9 and 10,

respectively.

Proposition 8. If µ is compatible with V ⊆ Σn on M ⊆ N, then V ⊆ VM .

Proposition 9. For any M ⊆ N with |M| > r and any A in
(
M
r

)
,

µ(A) ⊇ V (A)
M .

Proposition 10. The function µ is consistent on M ⊆ N with |M| > r if and only if,

for all A ∈
(
M

r

)
, µ(A) = V

(A)
M .

To generalize Theorem 6 to the case of r-ary natural relations for arbitrary r > 2, we

introduce a notion of inheritance which replaces the transitivity law for the case of r = 2.

The function µ is said to have the inheritance property on M ⊆ N if V (M ′)
M ′ = V

(M ′)
M holds

for any M ′ ⊆M such that |M ′| > r.
The next proposition says that some inheritance conditions can be restated in a

seemingly weaker fashion.

Proposition 11. The function µ has the inheritance property on every M ⊆ N with r 6
|M| 6 2r−1 if and only if µ has the inheritance property on every M ⊆ N with |M| = 2r−1.

Proof. The ‘only if’ part of the proposition is trivially true. For the proof of the ‘if ’
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part, let M ′,M ′′ and M be arbitrary subsets of N such that M ′ ⊆ M ′′ ⊆ M, |M ′| > r

and |M| = 2r − 1. By the condition of the proposition, V (M ′)
M ′ = V

(M ′)
M holds. On the other

hand, by definition we have VM ′ ⊇ VM ′′ ⊇ VM , and hence V (M ′)
M ′ ⊇ V (M ′)

M ′′ ⊇ V (M ′)
M . Thus we

have V (M ′)
M ′ = V

(M ′)
M ′′ , completing the proof of the ‘if ’ part.

Theorem 6 in Section 2 can be generalized to obtain the next theorem.

Theorem 12. If µ has the inheritance property on every M ⊆ N with r 6 |M| 6 2r − 1,

then µ is consistent on N.

Proof. The theorem will be proved by induction on n in a similar way to Theorem 6.

The statement holds trivially when r 6 |N| 6 2r− 1. Assume that the statement holds for

n− 1, where n > 2r.

By the induction hypothesis and Proposition 10, µ is compatible with VNi
on Ni = N¬{i}

for 1 6 i 6 n.

Lemma 2. Suppose that µ has the inheritance property on every M ⊆ N with r 6 |M| 6
2r− 1 and that µ(A) = V

(A)
Ni

for any A in
(
Ni

r

)
, where 1 6 i 6 n. Then, for any (v(1), . . . , v(n))

in VNi
, at least one of (v(1), . . . , v(i−1), 0, v(i+1), . . . , v(n)) and (v(1), . . . , v(i−1), 1, v(i+1), . . . , v(n))

belongs to VN .

Proof. Without loss of generality, let i = n. Let v = (v(1), . . . , v(n)) be an arbitrary vector

in VNn
, and put

v0 = (v(1), . . . , v(n−1), 0), and v1 = (v(1), . . . , v(n−1), 1).

Assume in contradiction that v0 6∈ VN, and v1 6∈ VN . Then there exist B0 and B1 in
(
N
r

)
such that

n ∈ B0, n ∈ B1, v
(B0)
0 6∈ µ(B0), and v

(B1)
1 6∈ µ(B1). (4.1)

Put B′0 = B0 − {n}, and B′1 = B1 − {n}.
Case 1. B0 = B1.

Let j be an arbitrary integer in N − B0. Put M = B0 ∪ {j} and M ′ = B′0 ∪ {j}. Then we

have
V

(M ′)
M = V

(M ′)
M ′ by the inheritance assumption,

= µ(M ′) by definition,

= V
(M ′)
Nn

by the assumption of the fact.

Therefore, since v ∈ VNn
, we have

∃v′ ∈ VM v(M ′) = v′(M ′),

which implies that either

v′(B0) = v
(B0)
0 or v′(B0) = v

(B1)
1 . (4.2)

By the inheritance assumption, we have

v′(B0) ∈ V (B0)
M = V

(B0)
B0

= µ(B0)(= µ(B1)),

contradicting the fact that both (4.1) and (4.2) hold.
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Case 2. B0 6= B1.

Put

M = B0 ∪ B1, and M ′ = B′0 ∪ B′1 = M¬{n}.
Since r 6 |M| 6 2r − 1, we have

V
(M ′)
M = V

(M)
M

by the inheritance assumption. Because

v ∈ VNn
⊆ VM ′ ,

we have

v(M ′) ∈ V (M ′)
Nn
⊆ V (M ′)

M ′ = V
(M ′)
M . (4.3)

Hence either v(M)
0 ∈ V (M)

M or v(M)
1 ∈ V (M)

M . Without loss of generality, suppose v(M)
0 ∈ V (M)

M .

Then

v
(B0)
0 ∈ V (B0)

M ⊆ V (B0)
B0

= µ(B0).

This contradiction completes the proof of the fact.

By the inductive hypothesis and Lemma 2 we have,

for all 1 6 i 6 n and A ∈
(
Ni

r

)
, µ(A) = V

(A)
Ni

= V
(A)
N .

On the other hand, since |N| > r, for any A in
(
N
r

)
there exists 1 6 i 6 n such that

A ∈ (Ni

A

)
, and hence µ(A) = V

(A)
N , completing the proof.

In the remainder of this section, we shall discuss the relation between the transitivity

and inheritance conditions.

Proposition 13. Let r = 2 and let the range of µ be R. Then µ is transitive if and only if

µ satisfies the inheritance constraints: that is, for any M in
(
N
3

)
and any M ′ in

(
M
2

)
,

V
(M ′)
M ′ = V

(M ′)
M .

Proof. For the proof of the ‘only if’ part, assume that µ is transitive, and therefore

consistent. Let M be an arbitrary element in
(
N
3

)
, and let M = (i, j, k) and M ′ = (i, j).

Since µ(M ′) = V
(M ′)
M ′ ⊇ V

(M ′)
M , all we have to verify is that µ(M ′) ⊆ V

(M ′)
M . Let v be an

arbitrary vector in µ(M ′). Without loss of generality we may take v = (1, 1). Then, in any

family of subsets consistent with µ, we have Si ∩ Sj 6= ∅. In terms of VN , this means that

v(i,j) = (1, 1) for some v ∈ VN ⊆ VM , that is, (1, 1) ∈ V (M ′)
M .

For the proof of the ‘if ’ part, assume that µ satisfies the inheritance constraints.

We show that every transitivity is satisfied. Let µ(i, j) and µ(j, k) be one of the eight

pairs given in Table 2. Then there exists a vector u in Σ3 such that ϕu(µ)(i, j) =⊂ and

ϕu(µ)(j, k) =⊂. Since the inheritance property is preserved under the transformation ϕu,

ϕu(µ) also satisfies the inheritance constraints. It suffices to show that ϕu(µ)(i, k) =⊂,
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which guarantees that the triple of relations µ(i, j), µ(j, k), µ(i, k) satisfies the transitivity

constraint given in Table 2. Let us denote ϕu(µ) again by µ. Deleting all the vectors

u = (u(1), u(2), u(3)) such that µ(i, j)(u(1), u(2)) = 0 or µ(j, k)(u(2), u(3)) = 0 from Σ3, we obtain

V{i,j,k} ⊆ {111, 011, 001, 000}.
By the inheritance constraint we therefore have

V
(i,k)
{i,k} = V

(i,k)
{i,j,k} ⊆ {11, 01, 00}.

But, since V (i,k)
{i,k} = µ(i, k) and |µ(i, k)| > 3, we also have |V (i,k)

{i,k}| > 3. Thus we have

V
(i,k)
{i,k} = {11, 01, 00},

establishing that µ(i, k) = V
(i,k)
{i,k} =⊂.

So far we have established that when r = 2 transitivity implies consistency, and that

when r > 2 the inheritance condition implies consistency. Since consistency trivially

implies transitivity, transitivity is equivalent to consistency when r = 2. One might ask if

this is also the case for arbitrary r-ary natural relations. To discuss the problem, we need

to generalize the notion of transitivity to the case of r-ary natural relations.

As the argument in the proof of Proposition 13 suggests, the transitivity condition may

be generalized to the condition described as:

for all M ∈
(

N

2r − 1

)
and M ′ ∈

(
M

r

)
, V

(M ′)
M ′ = V

(M ′)
M . (C1)

In fact, Proposition 13 says that when r = 2 transitivity is equivalent to condition (C1). So

the problem is stated as follows. Does condition (C1) imply consistency for r-ary natural

relations? As in the case of r = 2, consistency trivially implies (C1) for r-ary natural

relations. Hence, if we are able to answer the question affirmatively, then transitivity,

namely condition (C1), is in general equivalent to consistency. So far we are not able to

prove the implication.

On the other hand, as Proposition 11 shows, the inheritance condition is stated as:

for all M ∈
(

N

2r − 1

)
, r 6 i 6 2r − 1, and M ′ ∈

(
M

i

)
, V

(M ′)
M ′ = V

(M ′)
M . (C2)

Before closing this section we shall give an example of µ that satisfies (C1), but not (C2).

So (C2) is a stronger condition than (C1).

Let N = {1, . . . , 5} and r = 3. Boolean functions g0 and g1 of three variables are defined

as follows:

g0(x1, x2, x3) = x1 ∨ x2 ∨ x3,

g1(x1, x2, x3) = x1 ⊕ x2 ⊕ x3 ⊕ 1.

The function µ from
(
N
3

)
to G is defined as

µ(i, j, k) =

{
g1, if (i, j, k) = (1, 2, 5) or (3, 4, 5),

g0, otherwise.
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Table 3 Vectors in V{1,2,3,4}. Values

1 and 0 will be substituted for every

occurrence of symbols ∗1, ∗0 and ].

v(1) v(2) v(3) v(4) v(5)

1 0 1 0 ∗1
1 0 0 1 ∗1
0 1 1 0 ∗1
0 1 0 1 ∗1
1 1 0 0 ∗0
0 0 1 1 ∗0
1 1 1 1 ∗0
1 1 1 0 ]

1 1 0 1 ]

1 0 1 1 ]

0 1 1 1 ]

The vectors in V{1,2,3,4} are shown in Table 3, where both 1 and 0 are substituted for

every occurrence of ∗1, ∗0, and ] in the table. For vectors v in V{1,2,3,4} to belong to

V{1,2,3,4,5}, the parity of v(1) + v(2) + v(5) and v(3) + v(4) + v(5) must be even so that both

g1(v(1), v(2), v(5)) = 1 and g1(v(3), v(4), v(5)) = 1 hold. To satisfy these conditions, symbols ∗1

and ∗0 in Table 3 have to be replaced with 1 and 0, respectively. On the other hand,

none of 1 and 0 for the occurrence ] satisfies both of these conditions. This is because

the parity of v(1) + v(2) is different from that of v(3) + v(4) in the last four rows in the

table. So, by checking further the conditions corresponding to the remaining triples of

the indices, we can see that the set VN consists of the first seven vectors in Table 3

with ∗1 and ∗0 being replaced by 1 and 0, respectively. Furthermore, we can check that

V
(M ′)
N = V

(M ′)
M ′ = µ(M ′) holds for any M ′ in

(
N
3

)
. That is, taking N as M in condition (C1),

we see that (C1) is satisfied for µ given above. So V
(1,2,3,4)
{1,2,3,4} consists of vectors composed

of the first four components of all of the vectors in Table 3, whereas V (1,2,3,4)
{1,2,3,4,5} consists of

those corresponding to the first seven vectors. Namely, these sets are written as

V
(1,2,3,4)
{1,2,3,4} =

{
(v(1), v(2), v(3), v(4)) ∈ Σ4 |

4∑
i=1

v(i) = 2, 3, or 4
}
,

V
(1,2,3,4)
{1,2,3,4,5} =

{
(v(1), v(2), v(3), v(4)) ∈ Σ4 |

4∑
i=1

v(i) = 2 or 4
}
.

Since V (1,2,3,4)
{1,2,3,4} 6= V

(1,2,3,4)
{1,2,3,4,5}, µ turns out to be an example of the function satisfying (C1),

but not (C2).

5. Concluding remarks

We have investigated the problem of deciding whether or not a function µ that specifies

the type of the natural r-ary relation for each collection of r sets is consistent, and

proved that if µ satisfies a local consistency condition on each collection of 2r − 1 sets
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then µ is consistent on the whole collection of sets. The local consistency condition is

given as the transitivity constraints when r = 2, and as the inheritance property when

r > 2. Consistency trivially implies transitivity, so, when r = 2, transitivity turns out

to be equivalent to consistency. So far we are unable to verify that, when r > 3, the

generalized transitivity constraints, which are weaker than the inheritance property, imply

consistency. When r = 2, based on the transitivity constraints explicitly given, we gave

a feasible algorithm which, given a partial function µ, decides whether or not µ can be

extended to obtain a consistent total function.

When r = 2, the consistency of µ for n sets can be decided in time O(n3) by checking

the transitivity constraints for all triples of sets. Furthermore, as pointed out by Jimbo [3],

the problem can be solved in time O(n2.37). To show this fact, let M⊂ be the matrix

whose (i, j) component is 1 if µ(i, j) = ⊂, and 0 otherwise. Then the constraint (∗) in

Section 2 can be written as M⊂M⊂ 6M⊂, where the matrix product is done using Boolean

sum and product, and ‘6’ holds between matrices if and only if ‘6’ holds between all

the corresponding components in the matrices. Likewise, we can rewrite the remaining

transitivity constraints in Table 2 in matrix terms. Since, by the well-known result of

Coppersmith and Winograd [1], the product of two n × n matrices can be computed in

time O(n2.37), the consistency problem for n sets can be computed in time O(n2.37).
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[4] Helly, E. (1923) Über Mengen konvexer Körper mit gemeinschaftlichen Punkten. Jahresber.

Deutsch. Math. Verein 32 175–176.

[5] Linial, N. and Nisan, N. (1990) Approximate inclusion-exclusion. Proc. 32nd ACM Symposium

on Theory of Computing, pp. 260–270.

https://doi.org/10.1017/S0963548398003587 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548398003587

