
J. Fluid Mech. (2019), vol. 866, pp. 33–60. c© Cambridge University Press 2019
doi:10.1017/jfm.2019.69

33

Study of non-isothermal liquid evaporation in
synthetic micro-pore structures

with hybrid lattice Boltzmann model

Feifei Qin1,2,†, Luca Del Carro3, Ali Mazloomi Moqaddam2, Qinjun Kang4,
Thomas Brunschwiler3, Dominique Derome2 and Jan Carmeliet1

1Chair of Building Physics, Department of Mechanical and Process Engineering,
ETH Zürich (Swiss Federal Institute of Technology in Zürich), Zürich 8093, Switzerland

2Laboratory of Multiscale Studies in Building Physics, Empa (Swiss Federal Laboratories for Materials
Science and Technology), Dübendorf 8600, Switzerland

3Smart System Integration, IBM Research – Zurich, Saumerstrasse 4, Rüschlikon 8803, Switzerland
4Earth and Environment Sciences Division (EES-16), Los Alamos National Laboratory (LANL),

Los Alamos, NM 87545, USA

(Received 21 August 2018; revised 7 December 2018; accepted 16 January 2019;
first published online 8 March 2019)

Non-isothermal liquid evaporation in micro-pore structures is studied experimentally
and numerically using the lattice Boltzmann method. A hybrid thermal entropic
multiple-relaxation-time multiphase lattice Boltzmann model (T-EMRT-MP LBM)
is implemented and validated with experiments of droplet evaporation on a heated
hydrophobic substrate. Then liquid evaporation is investigated in two specific pore
structures, i.e. spiral-shaped and gradient-shaped micro-pillar cavities, referred to as
SMS and GMS, respectively. In SMS, the liquid receding front follows the spiral
pattern; while in GMS, the receding front moves layer by layer from the pillar
rows with large pitch to the rows with small one. Both simulations agree well with
experiments. Moreover, evaporative cooling effects in liquid and vapour are observed
and explained with simulation results. Quantitatively, in both SMS and GMS, the
change of liquid mass with time coincides with experimental measurements. The
evaporation rate generally decreases slightly with time mainly because of the reduction
of liquid–vapour interface. Isolated liquid films in SMS increase the evaporation rate
temporarily resulting in local peaks in evaporation rate. Reynolds and capillary
numbers show that the liquid internal flow is laminar and that the capillary forces are
dominant resulting in menisci pinned to the pillars. Similar Péclet number is found
in simulations and experiments, indicating a diffusive type of heat, liquid and vapour
transport. Our numerical and experimental studies indicate a method for controlling
liquid evaporation paths in micro-pore structures and maintaining high evaporation
rate by specific geometry designs.
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1. Introduction
Evaporative drying is a phenomenon that occurs in many scientific and engineering

processes, for example, design of new materials and structures, food preserving
and production of ceramics and paper. Recently, the self-assembly of nanoparticles
induced by controlled evaporation of colloidal suspensions has attracted a lot of
attention as a method for the fabrication of complex materials (Hamon et al.
2012; Boles, Engel & Talapin 2016; Brunschwiler et al. 2016). Zurcher et al.
(2016) and Städler et al. (2017) have been working on nanoparticle self-assembly
by non-isothermal evaporation to create underfills with high thermal conductivity
applied as materials for electronic packaging. Hamon et al. (2012) conducted drying
experiments of gold-nanorod-based materials on a textured substrate and observed
that the self-assembled nanostructures are locally ordered as a smectic B phase,
which could be used for amplifying optical signals. Boles et al. (2016) described
that different shapes of nanocrystal like spheres or polyhedral rods can be used to
design new functional materials with unique optical, magnetic, electronic and catalytic
properties. In these studies, the self-assembly of nanomaterials is highly dependent
on the control of drying of colloidal suspensions. The drying pattern determines
how and where the particles accumulate and assemble, while drying rate affects the
yield of generation of self-assembled structures. Therefore, it is essential to study the
mechanisms of liquid drying in these micro-pore structures to guide the self-assembly
processes.

Drying of pore structures includes heat and mass transfer problem that involves
phase change, liquid and gas flows inside the porous medium, and diffusive or
convective flows to the outside surrounding environment. The evaporation pattern and
rate depend on the geometry of the structure, such as the pore size and distribution,
and on the environmental conditions, such as the temperature, vapour pressure and air
speed. Experiments have been done to study drying in micro-pore structures. Laurindo
& Prat (1998) investigated the drying rate in a two-dimensional (2D) quasi-isothermal
etched micro-model of three basic cases, namely without/stabilizing/destabilizing
gravity, and found that thin liquid films have significant contributions to the drying
rate. Yiotis et al. (2004) studied the effect of liquid films on the drying of porous
media, and they found the effect to be dominant when capillarity controls the process.
Pillai, Prat & Marcoux (2009) studied slow evaporation of liquids in 2D porous
media with three sides insulated and one side exposed to air for drying. The porous
medium was divided into two layers with different porosities and pores sizes, and
only one layer was exposed to air. When the larger-pore layer was exposed, the
inner smaller-pore layer started drying only after the outer larger-pore layer was
totally dried out, and the evaporation rate decayed. When the smaller-pore layer was
exposed, both the smaller-pore layer (due to evaporation) and larger-pore layer (due
to capillary pumping) dried out and the evaporation rate was bilinear. Most recently,
Chen et al. (2017, 2018) studied how to control drying kinetics by designing three
different pore size distributions in micro-sized porous media. They demonstrated two
types of control, i.e. controlling the sequence of primary invasions through pore space
and controlling the secondary liquid structures such as films/bridges. For the liquid
films/bridges, they provide hydraulic connectivity between the bulk liquid cluster
and external rim. The bulk transports liquid to the rim due to capillary pumping,
and the liquid at the rim dries faster than at the centre since it is closer to open
air. Therefore, a higher average evaporation rate was obtained. Fantinel et al. (2017)
studied small-scale heterogeneity of the evaporation in a micro-model made of pillar
arrays, and observed no clear effect on how evaporation rates evolved. Besides
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Non-isothermal liquid evaporation in synthetic micro-pore structures 35

the effects of external force, pore size/distribution and liquid films, the influence
of temperature on drying patterns and drying rate was explored. Vorhauer et al.
(2013) compared isothermal and non-isothermal drying in a 2D square pore network.
These experiments showed that a stabilized gas–liquid region was established with
decreasing temperature, while faster breakthrough and an extended two-phase zone
were observed under isothermal condition. Vorhauer, Metzger & Tsotsas (2011) also
observed that drying patterns and drying rates significantly depend on the direction
of temperature gradient and pore size distribution.

The development of numerical models enables one to simulate the drying processes,
but taking into account accurately all drying phenomena remains a challenge. To
describe the drying process, there are mainly two categories of numerical models:
continuum models and pore network models. In continuum models, overall parameters
like porosity, permeability and diffusivity are used to represent the transport properties
of pore structures. Continuum models (Defraeye 2014) have been successfully
used to study drying behaviour in pore structures such as fruits (Defraeye et al.
2013) and porous plate (Defraeye et al. 2012). The continuum models are very
efficient in computation, but they lack the ability to analyse local pore-scale drying
phenomena. The pore network model (PNM), originally proposed by Fatt (1956),
represents a porous medium with pores and throats that interact according to different
physical mechanisms such as capillarity, gravity and pressure dissipation by flow.
Over the years, the PNM has been improved by incorporating film effect (Prat
2007; Vorhauer et al. 2015) and viscous effect (Metzger & Tsotsas 2008). The
influence of temperature (Surasani, Metzger & Tsotsas 2008, 2009) is also developed
to simulate non-isothermal drying in 2D (Taslimi Taleghani & Dadvar 2014) and
three-dimensional (3D) (Surasani, Metzger & Tsotsas 2010) pore networks. Through
these developments, PNMs have become powerful tools for studying drying of pore
structures. However, PNMs remain approximations when simulating real complex
porous materials where pores and throats are not regular, or when the sizes of pores
and throats are quite similar, even if based on actual X-ray computed tomography
(Blunt et al. 2013). The coupling of inner pore-scale liquid capillary flow as well as
evaporation with outside laboratory-scale vapour diffusion as well as gas convection
remains complex in PNMs (Yiotis et al. 2007; Shaeri, Beyhaghi & Pillai 2013).

In the last few decades, the lattice Boltzmann (LB) method has been widely
used to study complex single-phase and multiphase fluid flow in real complex pore
structures (Kang, Zhang & Chen 2002; Sukop & Or 2003; Huang et al. 2009; Boek &
Venturoli 2010; Chen et al. 2012, 2014; Liu, Zhang & Valocchi 2015; Liu et al. 2016;
Li et al. 2016a). Because of the simplicity in dealing with complex wall boundaries,
LB models have proved to be very advantageous in simulating flow in pore structures.
For simulating multiphase flow, LB models can capture the interface automatically
by incorporating intermolecular-level interactions of kinetic nature, a feature which
is very advantageous over traditional computational fluid dynamics methods such
as volume of fluid (Hirt & Nichols 1981) or level-set method (Sussman, Smereka
& Osher 1994; Osher & Fedkiw 2001) that both require interface tracking and
reconstruction. With the advantages of easily dealing with complex wall boundaries
and capturing interfaces automatically, LB models have already been successfully
applied to study immiscible fluid flow in pore structures with effects of viscosity
ratio, capillary number, wettability and gravity, under different permeability (Li, Pan
& Miller 2005; Huang et al. 2009; Ghassemi & Pak 2011). The above applications
of LB models are all under isothermal conditions, while non-isothermal LB models
are still under development and their applications are very limited. Recently, thermal

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

69
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2019.69


36 F. Qin and others

multiphase LB models have been used to simulate non-isothermal droplet evaporation
(Li, Zhou & Yan 2016b) and boiling (Li et al. 2015; Gong et al. 2018). Yu et al.
(2017) have studied droplet evaporation on different heated heterogeneous solid
surfaces. Zhang, Hong & Cheng (2015) simulated liquid thin-film evaporation on a
heated microstructural surface, and studied the heat transfer with different surface
wettability. However, the mechanisms of bulk liquid evaporation in pore structures
are yet to be studied with LB models.

In the work described above, either the experiments lacked numerical validations,
or the numerical models were still rough. In this paper, we study both numerically
and experimentally non-isothermal bulk liquid evaporation in specifically designed
micro-pore structures, i.e. spiral-shaped micro-pore structure (SMS) and gradient-
shaped micro-pore structure (GMS). Our proposed LB model here is more accurate in
capturing the physics, and it helps us to understand the mechanisms better. Firstly, we
introduce the thermal entropic multiple-relaxation-time multiphase lattice Boltzmann
model (T-EMRT-MP LBM) and validate it with experiments in the literature by
simulating single-droplet evaporation on a heated hydrophobic substrate. Then we
briefly describe the experiments as well as the simulation set-ups. Finally liquid
evaporation in SMS and GMS is simulated and compared with our experimental
results both qualitatively and quantitatively. A better understanding of the evaporation
process is obtained by investigating liquid mass, evaporation rate, liquid–vapour
interface area and simulated heat transfer during evaporation. Results from our
studies indicate ways to control liquid evaporation paths in pore structures as well as
ways to maintain a high evaporation rate.

2. Model development
2.1. EMRT-MP LBM

We apply the EMRT-MP LBM to simulate two-phase flow. The EMRT-MP LBM was
developed by Qin et al. (2018) to simulate two-phase flow with a large range of
Reynolds and Weber numbers at high density ratios. Here we briefly summarize the
method. The LB equation for the populations of discrete velocities that incorporates
the external force term is written as

fi(x+ vi, t+ 1)= f ′i ≡ (1− β)fi(x, t)+ βf mirr
i (x, t)+ Fi. (2.1)

The equilibrium populations f eq
i maximize the entropy S[ f ] = −

∑Q
i=1 fi ln( fi/Wi)

under fixed density and momentum {ρ, ρu} =
∑Q

i=1{1, vi}f
eq
i , where Wi are the

lattice weights (Karlin, Ferrante & Öttinger 1999; Chikatamarla, Ansumali & Karlin
2006). The parameter 0< β < 1 is determined by the kinematic viscosity ν through
ν = c2

s (1/(2β)− 1/2)δt. Here cs= δx/(
√

3δt) is the lattice speed of sound, and lattice
units δx= δt= 1 are used with lattice speed c= 1. The mirror state is constructed at
each lattice site and every time step from the entropy maximization of the summarized
post-collision population f ′i by relaxing high-order moments properly (Karlin, Bösch
& Chikatamarla 2014; Bösch, Chikatamarla & Karlin 2015).

The last term Fi = [f
eq
i (ρ, u+1u)− f eq

i (ρ, u)] in (2.1) represents the fluid–fluid
cohesive force for phase separation and the fluid–solid interaction for realizing various
wettability. The forces are implemented by evaluation of the flow velocity increment
1u = Fδt/ρ with the force F = Fc + Fw. Real velocity of the fluid including the
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force term is uf = u + 1u/2. To obtain a tunable surface tension, the multirange
pseudopotential-based cohesive force is applied as (Sbragaglia et al. 2007)

Fc =−ψ(x)
Q∑

i=1

w(|vi|
2)[G1ψ(x+ vi)+G2ψ(x+ 2vi)]vi, (2.2)

where the interaction potential ψ =
√

2(PEoS − ρc2
s )/[(G1 + 2G2)c2], and G1, G2 are

coefficients to tune the surface tension. Here PEoS is the equation of state, and here
we adopt the Carnahan–Starling equation of state (Yuan & Schaefer 2006). The other
fluid–solid interaction force is represented as

Fw =−ψ(x)
Q∑

i=1

w(|vi|
2)[G1ψ(ρw)I(x+ vi)+G2ψ(ρw)I(x+ 2vi)]vi, (2.3)

where I is the indicator function that equals unity at solid nodes and zero at fluid
nodes, ρw is the parameter to determine wettability and w(|vi|

2) in Fc and Fw are
appropriately chosen weights (Yuan & Schaefer 2006). With this EMRT-MP LBM,
two-phase flow can be simulated for a large range of fluid viscosity and tunable
surface tension (Qin et al. 2018).

2.2. T-EMRT-MP LBM
To model non-isothermal evaporation, the equation for heat transport in liquid and
vapour phases including latent heat is coupled to the EMRT-MP LBM, referred to as
the T-EMRT-MP LBM. The heat transport equation is derived from the local balance
law for entropy (Anderson, McFadden & Wheeler 1998). By neglecting viscous heat
dissipation, the governing equation for temperature (T) transport can be written as (Li
et al. 2016b; Yu et al. 2017)

∂tT =−uf · ∇T +
1
ρCV
∇ · (λ∇T)−

T
ρCV

(
∂PEOS

∂T

)
P

∇ · uf , (2.4)

where ρ is the fluid density, λ is the thermal conductivity and CV is the specific
heat at constant volume. The first two terms on the right-hand side of equation (2.4)
represent heat convection and conduction, respectively, while the last term corresponds
to the latent heat for phase change. There are two approaches to solve the extended
temperature equation. The first method is to use another LB equation with a source
term, which induces error terms in the recovered macroscopic temperature equation,
as explained by Li, Zhou & Yan (2017). The recent model developed by Gong et al.
(2018) uses this method. The other way is to solve it with traditional numerical
schemes like finite difference method. In this way, no error terms are introduced and
the model is more accurate. In our paper, this equation is solved by finite difference
method with second-order Runge–Kutta scheme for time discretization:

T t+δt
= T t
+
δt
2
(h1 + h2), (2.5)

where h1, h2 are given as

h1 = F(T t), h2 = F(T t
+ δt ∗ h1) (2.6a,b)

and F(T) represents the right-hand side of (2.4) while δt is the time step in numerical
iteration. For spatial discretization, isotropic central schemes are employed to evaluate
the first-order derivative and the Laplacian (Lee & Lin 2005).
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The two-way coupling between the EMRT-MP LBM and temperature equation
works as follows: at each time step, flow variables like density, velocity and pressure
are firstly computed by solving EMRT-MP LBM; then they are plugged into the
temperature equation to update the temperature field; finally the updated temperature
is incorporated in the computing flow field by the equation of state for the next time
step. The mesh used for solving the temperature equation is the lattice in EMRT-MP
LBM, and in this way extra interpolations are not necessary for data exchange. The
detailed explanation of how evaporation is considered is presented in appendix A.

2.3. Validation of T-EMRT-MP LBM
The study of droplet evaporation has been of much interest in both experimental and
numerical research (Dunn et al. 2009; Stauber et al. 2014; Saxton et al. 2016). For a
droplet of diameter D evaporating at a constant temperature, the evaporation process
is described by the well-known D2 law. This law shows that the square of the droplet
diameter decreases linearly with evaporation time, i.e. D2(t)/D2

0 = 1 − Kt, and that
the coefficient K is linearly dependent on thermal conductivity λ (Law 1982). Dash
& Garimella (2013) studied experimentally droplets evaporating on hydrophobic and
superhydrophobic surfaces, and their results were shown to follow the D2 law. Our
model is a non-isothermal model, but it can be used to simulate this quasi-isothermal
drying case by certain simulation set-ups. In appendix A, we have simulated single-
droplet evaporation in a closed cavity and compared with the diameter square law as
well as the result from Gong et al. (2018), to show the accuracy of our model. Since
we mainly study non-isothermal evaporation in this paper, we validate our T-EMRT-
MP LBM with droplet evaporation on a heated hydrophobic surface by comparing the
evolutions of droplet volume, radius and contact angles with experiment results (Dash
& Garimella 2014).

In the experiments by Dash & Garimella (2014), the droplet is gently deposited on a
heated surface with different temperatures. The droplet size is small, i.e. 3±0.1 µl, so
that gravity can be neglected. The experiments are done in ambient conditions with an
air temperature of Tair = (21± 0.5) ◦C and relative humidity (36± 2)%. We consider
two experiments with different surface temperatures of 40 and 50 ◦C. The surface has
a contact angle of 120◦ initially when the experiments start. The evaporation happens
in a relatively static ambient condition without air flow; thus convective evaporation
is neglected and diffusive evaporation is considered. Our simulations are carried out
in a 3D domain with Nx × Ny × Nz = 160 × 160 × 100 lattices3, with a droplet of
diameter of D0 = 70 lattice nodes initially located in the centre of a heated substrate.
The lateral four sides and top boundary conditions are zero gradient for both velocity
and temperature. The zero-gradient velocity boundary allows vapour flowing out
freely. The density ratio of liquid and vapour is ρl/ρv ≈ 30 with temperature ratio of
T/Tc = 0.75, where Tc is the critical temperature. The vapour temperature is set as
saturation temperature Tvapor = Tsat = 0.75Tc, while the substrate surface is considered
to be a non-slip wall at a temperature of Tw1 = 0.778Tc and Tw2 = 0.794Tc for the
cases of 40 and 50 ◦C surface temperature. These non-dimensional temperatures are
chosen to keep the relative temperature differences in the simulations similar to
those in the experiments, i.e. (Tw1 − Tvapor)/Tc = 2.8 % ≈ (40 − 21.5)/647 = 2.85 %
and (Tw2 − Tvapor)/Tc = 4.4 % ≈ (50 − 21.5)/647 = 4.41 %, where Tc = 647 K is the
water critical temperature. As Tw > Tvapor, the droplet gradually evaporates because of
the heat conducted from the substrate to the boundaries. The evaporation continues
because of the difference in vapour pressure between the liquid–vapour interface and
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Zero gradient
for uf and T Axisymmetric

Droplet profile

(a) (b) (c)
0.0730

T
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0.0714
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0.0702
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0.0694

Heated substrate

FIGURE 1. (Colour online) Evaporating droplet at normalized time t∗ = 0.14. (a) Half-
droplet cross-section profile and boundary conditions; (b) temperature contours; (c)
streamlines inside (Marogoni flow) and outside the droplet (evaporated vapour).
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0 0.2 0.4 0.6 0.8 1.0

FIGURE 2. (Colour online) Comparisons between T-EMRT-MP LBM simulations and
experiments. (a) Normalized droplet volume; (b) normalized droplet contact radius; (c)
droplet contact angle.

the outlet as explained in § 2.2. Note that all the variables here are in lattice units,
and the analysis in the following work is based on the similarity of non-dimensional
numbers between experiment and LBM, as discussed below, guaranteeing similar
fluid and heat/mass transport phenomena being studied in experiments and LBM.

The analysis of droplet evaporation is analysed using normalized variables, i.e.
VN = V(t)/V0 , rN = r(t)/r0 and t∗= t/t0(Tw1), where V0, r0 and t0(Tw1) are the initial
droplet volume, contact radius and total evaporation time at a substrate temperature of
Tw1. Using t0(Tw1 = 0.778Tc) as a reference, we can compare the different evaporation
rates for the different temperature cases, i.e. Tw1 = 0.778Tc and Tw2 = 0.794Tc.
Figure 1 shows the results for an evaporating droplet on a heated substrate with
temperature Tw1 = 0.778Tc at normalized time t∗ = 0.14. In figure 1(b) we show
the temperature distribution inside and outside the droplet. We observe that the
temperature decreases from the substrate to the outside. Because of the temperature
variation at the liquid–vapour interface, the surface tension changes. Higher surface
tension appears at locations of lower temperature, introducing a surface flow from
bottom to top on the surface of the droplet. This surface flow induces a vortex flow
inside the droplet, known as Marangoni flow (Liu et al. 2013, 2014; Li et al. 2016b;
Wodlei et al. 2018). In figure 1(c) we show the Marangoni flow, which qualitatively
validates our model.

In figure 2 we compare quantitatively the time evolution of normalized volume,
contact radius and contact angle for experiment and simulation. Overall, we observe
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60 µm

5 mm

5 mm

Protection pillars

Experimental area
(see in figure 4)

(10 ÷ 10 µm2)

500 µm
(a)

(b)

Cover: glass

Base: silicon 250 µm

FIGURE 3. (Colour online) Schematic representation of micro-pore structure: (a) side
view; (b) top view.

a good agreement between our simulation results and experiments, both showing a
decrease of droplet volume and contact radius with time. In the experiments, the
total evaporation time for a plate temperature of 50 ◦C is around 55 % of that for
a temperature of 40 ◦C, which is also captured by the simulations. The variation
in contact angle in the simulations is smaller compared with the experiments. A
possible reason is that the heated surface is assumed to be totally smooth in the
simulations, while in experiments it is not. According to Dash & Garimella (2014),
the roughness of a surface may lead to a 10◦ contact angle hysteresis. By the end
of the evaporation process, the change in contact angle in experiments becomes
more obvious, with values below 40◦, while in the simulations, the decrease is less.
However, in general, our T-EMRT-MP LBM simulation results agree well with the
experimental results both qualitatively and quantitatively.

3. Experimental set-ups and procedures

In this paper, the liquid evaporation was studied in micro-cavities containing arrays
of squared silicon (Si) micro-pillars, which were fabricated by photolithography and
reactive-ion etching, obtaining a pillar height of 60 µm (figure 3a). These pillars were
aligned in SMS and GMS geometries, respectively. In a typical porous medium, there
are two main drying periods, i.e. the constant rate period (CRP) and the decreasing
rate period (DRP) (Irawan 2006; Yiotis et al. 2006). The CRP is due to the capillary
pumping effect, which is the internal liquid transport from large pore spaces inside
the porous medium to small ones maintaining liquid water at the vaporization plane.
The DRP is when the pores filled with liquid are around the same size, and the
pumping effect is very weak and the evaporation plane is receding into the model
system. To accelerate the drying process, and since the CRP shows the highest drying
rate compared to the DRP, it is the common aim to prolong the CRP for as long
as possible. The geometries of SMS and GMS are designed in such a way with
certain pore spaces to favour capillary pumping until the end of the drying phase.
In this way, the liquid evaporation path follows the specific designs, and the liquid
evaporation rate is increased, compared to typical porous media. The evolutions of
evaporation rate in SMS and GMS are shown in §§ 5.1 and 5.2, respectively. SMS
is designed with two different values, 180 and 80 µm, for the distance between the
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20 ÷ 20 µm2
20 ÷ 20 µm2

L0 L = 7L0 L0

80 180 µm 230 µm
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105
91

71
80

Vapour out

(a) (b)

Vapour out

FIGURE 4. (Colour online) Top view of the experimental area of (a) SMS and (b) GMS.
The height of SMS and GMS is 60 µm.

pillars (figure 4a), while in GMS the pillar distance gradually decreases layer by
layer (figure 4b). Subsequently, a glass lid was bonded on top of the pillars to form
the micro-pore structure, allowing visual inspection during the evaporation process.
Before the experiments, the cavities were treated with oxygen plasma for 5 min at
600 W (PVA TePla GIGAbatch 310 M) in order to get a uniform contact angle on
the surfaces. After this treatment, the measured contact angle varies between 35◦ and
39◦. To avoid the influence of liquid remaining stuck at the edges of the plates, a
fence of pillars was placed around the experimental area, referred to as ‘protection
pillars’ (figure 3b) in the following text. The distance D (in green) is chosen as the
characteristic length for liquid flow. The red dash-dot arrows indicate the expected
flow direction. Length L is the total length that a liquid meniscus travels during the
evaporation process. In SMS, L is the total length of spiral shape, while in GMS,
L = 7L0 is the sum of the half-length of each layer. These dimensions are used to
determine non-dimensional numbers as shown below.

For the experiment, the micro-pore structure was placed on a hot plate fixed
at a constant temperature of 50 ◦C (figure 5a). A solution of deionized water and
fluorescein was injected in the micro-cavity and the fluorescence was excited by
a lateral illumination source (455 < λ < 495 nm) and filtered by an emission
filter (500 < λ < 550 nm) before being collected by a camera (ace acA2040-90,
Besler). Images were recorded every 1 s during the entire evaporation of the solution
(figure 5b). After the experiment, the recorded images were processed with ImageJ
(Stalder et al. 2010) to extract information for detailed analysis discussed in § 5.

4. Simulation set-ups

Given the small height-to-length ratio (6/500) of the micro-pore structure, we
first simulate the evaporation process in two dimensions. A comparison with a 3D
simulation is provided in § 6. In the experiment the temperature is kept constant
at 50 ◦C by heating the hot plate. Since the thermal conductivity of silicon is high
(130 W m−1 K−1), it is reasonable to assume that the silicon plate and pillars are at
the same temperature as the aluminium plate. This assumption of equal temperature
in plate and pillars is supported by measurements of the temperature difference
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Fluorescent liquid

Cover: glass

Aluminum

(a) (b)
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1 ÷ lens
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(fluorescent liquid

evaporation)
Heat
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(fluorescein)

Camera Filter wheel
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FIGURE 5. (Colour online) Experimental set-up for liquid evaporation in micro-pore
structure: (a) schematic representation; (b) photo of experimental set-up with zoom of
micro-pore structure.

across the cavity from the bottom of silicon to the top of the glass plate, which was
found to be less than 1 ◦C. It is important to note that in two dimensions the heated
silicon pillars are the only heat sources, while in three dimensions the plate is also
a heat source. In LBM simulations, the spurious current around the liquid–vapour
interface increases with the density ratio, which affects the accuracy of the models.
By applying the EMRT-MP LBM here, the spurious current is decreased around one
order of magnitude (Qin et al. 2018) compared to that in original models. However,
the characteristic velocity of liquid during drying is also very small (see experiments
in § 5), suggesting the density ratio not too high in simulations. Moreover, according
to the mechanisms analysed in § 5, as long as the non-dimensional numbers are kept
similar to those of experiments, similar drying processes are recovered by simulations.
We simulated the drying process for liquid–vapour density ratios ranging from 15 to
60 and found that the results are not sensitive to these ratios. To maintain a high
accuracy of the simulations while saving computational time, the density ratio of
liquid to vapour is chosen to be ρl/ρv ≈ 30 with a vapour temperature equal to the
saturation temperature Tvapor = Tsat = 0.75Tc and a pillar temperature Tpl = 0.76Tc.
The pillar temperature is set to ensure that all the mechanisms during drying are
the same as in the experiments (see § 5 and appendix D). The temperature boundary
conditions at the four lateral sides are assumed to be Neumann boundary conditions,
with a temperature gradient equal to zero. The boundary condition for vapour flow
is a zero-gradient velocity condition at the four lateral sides so that vapour can flow
out freely. Heat at the boundary is thus transported out of the computational domain
by vapour transport. The size of pillars is 7 × 7 lattices2 and the pillars are located
similarly to the experiments. In our LBM simulations, the liquid–vapour interface is
a smooth boundary over 4 to 5 lattices. The pillar size is sufficiently larger than the
interface thickness so that interface effects can be neglected, meaning pinning of the
interface will occur at the pillar edges.

In this paper, the Reynolds, capillary and Péclet numbers are used to evaluate the
similarity between our simulations and experiments. For fluid flow, the Reynolds and
capillary numbers are used. The Reynolds number Re = umD/v is defined as the
ratio of inertial to viscous force, while the capillary number Ca = ρlvum/σ is the
ratio of viscous to capillary force, where ρl, v and σ are liquid density, kinematic
viscosity and surface tension. For heat and mass transport, we also use the Péclet
number Pe= umD/Dv, which is the ratio of convective and diffusive transport of heat
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or mass and Dv represents the thermal or mass diffusivity. The fluid properties such
as thermal conductivity, heat capacity and viscosity are set according to the values in
the experiments. Parameter D is a characteristic length taken as the distance between
pillars in the centre of the evaporation path (see figure 4). Distance D is equal to
180 µm (63 lattices) for SMS and 115 µm (38 lattices) for GMS. Parameter um
is the average velocity of the main liquid meniscus. In SMS, the average velocity
of the main liquid meniscus is defined as um = L/ttot, where L is the total distance
travelled by the evaporation front (length of red line in figure 4a) and ttot is the total
evaporation time. In GMS, the evaporation front travels layer by layer from large
pore rows to small ones resulting in L= 7L0.

5. Two-dimensional results and discussion
5.1. Liquid evaporation in SMS

We first analyse the liquid configurations during the evaporation process in SMS.
Different frames are compared in figure 6(a,b) for experiment (supplementary movie 1,
available online at https://doi.org/10.1017/jfm.2019.69) and simulation (supplementary
movie 2). The evaporation process follows a spiral route as we designed. A good
agreement between experiment and simulation results is observed. To understand the
origin of this spiral pathway, we analyse the density, liquid pressure distribution and
velocity contour at time t = 32.87 s (figure 7). We observe in figure 7(b) that the
liquid pressure is higher at the major meniscus showing a large radius of curvature,
while the liquid pressure is lower at the minor menisci, showing smaller radii of
curvature. According to the Laplace law, the capillary pressure scales with the
surface tension σ divided by the radius of curvature of the meniscus r, or Pσ ∝ σ/r.
If we neglect temperature difference at different menisci, the surface tension σ can
be assumed to be the same at all menisci. This means that the capillary pressure
Pσ at the major meniscus is lower than that at the minor menisci. Assuming the
vapour pressure is constant in the vapour phase and in equilibrium with the liquid
pressure at the menisci, the liquid pressure is then given by Pl = Pv − Pσ . This
means that the liquid pressure will be higher at the major meniscus than at the minor
menisci, as is found in our simulations. This pressure difference leads to an internal
liquid flow from major to minor menisci as also shown in the velocity contours in
figure 7(c). This shows that evaporation mainly happens at the minor menisci, while
the movement of the major meniscus results from the internal liquid flow driven by
the liquid pressure difference.

Figure 6(c) shows the temperature distribution (supplementary movie 3) during
the evaporation process. The temperature drops at the menisci due to evaporative
cooling. The vapour phase is cooled in a zone around the evaporating menisci (zone
in blue in figure 6c). The vapour phase remains colder at the consecutive times
t = 85.19, 112.10, 136.00 except at zones around the pillars, where the vapour is
locally heated by the hot pillars. In the liquid phase, heat is transported from the
heated pillars immersed in the liquid phase. A temperature gradient is observed from
inside the liquid to the evaporating menisci. The average and maximum temperature
variations in the 2D simulation are shown in figure 8(d). We can see that the average
and maximum temperature drops are around 2.7 and 10.0 K. Next, by studying the
Péclet number for heat flow in liquid and vapour phase, we analyse whether the
heat transport is diffusive (conduction) or convective (by fluid flow). It is worth
mentioning that the temperature difference in the 2D simulation is found to be larger
than that in 3D results, which is presented below.
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t = 0 t = 35.01 t = 87.38 t = 116.01 t = 136.00

t = 0 t = 38.87 t = 85.19 t = 112.10 t = 136.00
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FIGURE 6. (Colour online) Different frames of liquid evaporation in SMS. (a) Liquid
distribution from experiment (supplementary movie 1); (b) density (supplementary movie
2) and (c) temperature distribution (supplementary movie 3) from 2D T-EMRT-MP LBM
simulation. Density (rho) and temperature (T) are in lattice units while time (t) is in
physical units (s).
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FIGURE 7. (Colour online) Explanation of spiral route with (a) density, (b) pressure and
(c) velocity contours at physical time t= 32.87 s. Density (rho), pressure (p) and velocity
(velo) are in lattice units.

Figure 8(a) shows the evolution of liquid mass m with time t for experiment
and simulation. A good agreement between simulation and experimental results is
observed. Figure 8(b) gives the evaporation rate Ep versus time. The evaporation
rate gradually decreases with time showing some temporary peaks. Figure 8(c) gives
the liquid–vapour interface I versus time. The global decrease in evaporation rate
is closely related to the decrease in interfacial area as shown in figure 8(e, f ), for
simulation and experiment, respectively. The local peaks correspond to temporary
higher evaporation rates when the major meniscus passes a corner of the spiral
path (figure 8e, f ). Liquid configurations at two selected peaks for both simulation
(t = 28.33 s and t = 77.87 s) and experiment (t = 20.98 s and t = 72.81 s) are
illustrated in figure 8(g). After passing the corner, the major meniscus breaks up
leaving an isolated liquid island within the corner pillars. These liquid islands
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FIGURE 8. (Colour online) Analyses of liquid evaporation in SMS. (a,b) Comparison
of liquid mass and evaporation rate between experiment and simulation; (c) comparison
of liquid–vapour interface area between experiment and simulation; (d) average and
maximum temperature variation in simulation; (e, f ) comparison of evaporation rate and
liquid–vapour interface in simulation and experiment; (g) comparison of liquid film
between pillars after the main meniscus passes the corner between simulation (at t =
28.33 s and t = 77.87 s) and experiment (at t = 20.98 s and t = 72.81 s). All variables
are in physical units.

evaporate faster compared to bulk liquid due to their high perimeter-to-area ratio,
accounting for the peaks in evaporation rate.

The evaporation rates of the 2D simulation and experiment follow the same trend
until about t ≈ 116 s, after which the evaporation rate remains relatively constant in
the experiment, while it continuous to decrease in the simulation. This observation
may be explained by the fact that, in the 2D simulation, the heat comes only from
the heated pillars, while, in the experiment, both pillars and base silicon plate are
heated. Therefore, the thermal energy available for evaporating the liquid is less in the
2D simulation with respect to the experiment. This lower thermal energy slows down
the evaporation rate in simulation compared to experiment. Additionally, the higher
evaporation rate in the experiment at the end of the evaporation process (t= 136.00 s)
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can be attributed to the evaporation of a film tail of liquid (figure 6a), which does
not appear much in the simulation (figure 6b). In § 6, we show that we can improve
the simulation results when simulating the evaporation process in three dimensions
taking into account heat also provided from the silicon plate. In the experiment of
drying in SMS, the ratio of the average evaporation rate to the maximum evaporation
rate is Epaver/Epmax = 81.5 %, which means the evaporation rate is generally constant.
One main reason is the contribution of capillary pumping as explained in § 3, and the
other one is the high heat supply with a substrate temperature of Tpl= 50 ◦C. The high
temperature difference between the micro-pillar structure and the environment (Tair =

22 ◦C) speeds up the vapour diffusion process, which greatly increases the evaporation
rate. Thus, the SMS geometry as well as the heating source helps to maintain a high
evaporation rate during the entire drying process.

Now we evaluate the non-dimensional numbers as described in § 4. In the
experiment, the temperature of the hot plate is at 50 ◦C, at which the properties of
water are ρl= 988 kg m−3, vL= 5.53× 10−7 m2 s−1 and σ = 6.79× 10−2 N m−1. The
average velocity of the main evaporation meniscus is um= L/ttot = 5.93× 10−3/136=
4.36× 10−5 m s−1. The dimensionless numbers for liquid phase then are a Reynolds
number of ReL= 0.014 and a capillary number of Ca= 3.51× 10−7. As the Reynolds
number is small, the liquid internal flow is in the laminar regime. The capillary
number is very small, which means the capillary forces are much more dominant
than the viscous forces. For our 2D simulation in SMS, the iteration steps are 364 000
with 7.0 CPU h of 64 processors, leading to the average velocity of main meniscus of
4.61× 10−3 lattice units. We calculated the corresponding non-dimensional numbers as
ReL= 1.74 and Ca= 2.33× 10−2. The Reynolds and capillary numbers in simulations
are not as low as in experiments, due to the limitation of the LB models, i.e. the
velocity cannot be very low and surface tension cannot be very high (Yuan &
Schaefer 2006; Qin et al. 2018). However, both numbers indicate that the simulated
flow characteristics are in a similar regime as in the experiment, i.e. laminar flow and
capillary forces dominating viscous forces, which accounts for the good agreement
between experiments and simulations.

The Reynolds numbers for vapour flow in experiment and simulation are ReV =

5.57 × 10−3 and ReV = 0.42, respectively. Therefore, the vapour flow is also in
the laminar regime. Heat transport from the pillars to the liquid phase is found to
be important since it mainly affects the energy supply controlling the evaporation.
Therefore, we compare the Péclet number of heat transport in the liquid phase
PeL,T for simulation and experiment. We obtain PeL,T = 0.05 < 1 in the experiment
and PeL,T = 0.71 < 1 in the simulation, which indicates that the heat transport in
the liquid phase is dominated by diffusion rather than convection. For example,
at tN = 20.71 in figure 6(c), the liquid temperature distribution does not follow
the internal liquid flow, indicating that the convective heat flow is rather negligible
compared to heat diffusion. We further study the type of vapour transport in simulation
and experiment. In experiment, the Péclet number of vapour mass transport is
PeV,m = ReV ∗ ScV = 3.86 × 10−3, with ScV = vV/DV the Schmidt number, where
vV = 2.08 × 10−5 m2 s−1 and DV = 3.0 × 10−5 m2 s−1 are the vapour kinematic
viscosity and mass diffusivity at 50 ◦C. In the simulation, the mass diffusivity
is more difficult to determine. We first estimate the average density gradient
1ρV/1LV = (ρV2 − ρV1)/1LV from liquid–vapour interface to outlet, with ρV2 the
vapour density at the interface and ρV1 the vapour density at the outlet boundary, and
1LV the average distance from interface to outlet. We also calculate the mass flux
q = 1mL/(AV ∗ t) through evaporation, and finally obtain the vapour diffusivity as
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t = 0 t = 35.13

(a)

(b)

t = 87.38 t = 116.01 t = 136.00

t = 0 t = 7.57 t = 16.66 t = 22.67 t = 28.71

FIGURE 9. (Colour online) Comparison of liquid evaporation process in SMS (2D) at
different heating temperatures: (a) Tpl = 0.76Tc; (b) Tpl = 0.80Tc. Time is in physical
units (s).

ReL ReV Ca PeL,T PeV,m

Experiment 0.014 0.006 3.51× 10−7 0.05 3.68× 10−3

2D LBM 1.740 0.420 2.33× 10−2 0.71 1.30× 10−3

Mechanism Laminar Laminar Capillary force Diffusion Diffusion
flow flow dominant dominant dominant

TABLE 1. Non-dimensional numbers for experiment and 2D LBM simulation in SMS.

DV = q/(dρV/dLV). In our simulation, the kinematic viscosity of vapour is vV = 0.167.
Then we calculate the Péclet number as PeV,m=ReV ∗ ScV = 1.30× 10−3, which is in a
range similar to that of experiments. This means that the vapour transport is diffusive.
All the non-dimensional numbers discussed above are summarized in table 1.

The capillary number Ca affects the capillary pumping effect, and the smaller the
capillary number, the stronger the pumping. The evaporation pattern is determined
by the competition between pumping effect and local evaporation rate (controlled by
temperature gradient by liquid and environment). If the pumping effect is stronger
than the local evaporation, the liquid remains pinned to the pillars, which is the case
in our experiment. Since the heating temperature affects the liquid properties like
surface tension as well as the drying rate, changing temperature results in different
evaporation patterns. For example, when we raise the heating temperature of pillars
from Tpl= 0.76Tc to Tpl= 0.80Tc, the capillary number Ca increases from 2.33× 10−2

to 1.40× 10−1, and the evaporation pattern changes from ‘spiral’ to ‘continuous’ as
shown in figure 9. We found that for a capillary number lower than 2.33× 10−2, the
capillary pumping effect is sufficient to guarantee a spiral evaporation pattern.

5.2. Liquid evaporation in GMS
Figures 10(a) and 10(b) show frames of different liquid configurations for the GMS
case, for experiment (supplementary movie 4) and simulation (supplementary movie
5), respectively. Again a good agreement can be observed. The frames show that
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t = 0 t = 36.56 t = 59.30 t = 83.01 t = 105.74

t = 0 t = 38.58 t = 58.61 t = 81.47 t = 107.00
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FIGURE 10. (Colour online) Frames of liquid evaporation in GMS. (a) Liquid distribution
from experiment (supplementary movie 4); (b) density (supplementary movie 5) and (c)
temperature contour (supplementary movie 6) from T-EMRT-MP LBM simulation. Density
(rho) and temperature (T) are in lattice units while time (t) is in physical units (s).
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FIGURE 11. (Colour online) Explanation of layer-by-layer evaporation route with (a)
density, (b) pressure and (c) velocity contour at physical time t= 51.36 s. Density (rho),
pressure (p) and velocity (velo) are in lattice units.

the liquid evaporation front moves mainly layer by layer from the top row with
larger pillar distance to the lower rows with decreasing pillar distance. The larger
distance between the pillars in the higher rows leads to menisci with larger radius
of curvature, which according to the Laplace law leads to lower capillary pressure
or higher liquid pressure. The lower rows with smaller distance between the pillars
result in lower liquid pressures. The pressure difference from large to small pore
rows, as seen in figure 11(b) at t = 51.36 s, leads to an internal liquid flow from
large menisci to small ones (figure 11c). The liquid front thus moves downwards row
by row until all liquid is evaporated from the smallest pore row. The temperature field
(figure 10c, supplementary movie 6) shows evaporative cooling at the evaporating
menisci: a cooled vapour zone next to these menisci with locally heated zones due to
the presence of hot pillars, and a hotter liquid zone heated by the pillars immersed
in the liquid phase. The average and maximum temperature variations in the 2D
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FIGURE 12. (Colour online) Analyses of liquid evaporation in GMS. Comparison of (a)
liquid mass, (b) evaporation rate and (c) liquid–vapour interface area between experiment
and simulation; (d) average and maximum temperature variation during drying; comparison
of (e) evaporation rate and ( f ) liquid–vapour interface in simulation and experiment. All
variables are in physical units.

simulation are shown in figure 12(d). We can see that the average and maximum
temperature drops are around 1.6 and 4.6 K.

Figure 12(a) shows that the changes of liquid mass with time in the experiment
and simulation are in good agreement. The evaporation rate (figure 12b) in both
experiment and simulation fluctuates while decreasing with time. Figure 12(c) gives
the liquid–vapour interface IN versus time. Figure 12(e, f ) shows the relations between
evaporation rate and liquid–vapour interfacial area for simulation and experiment,
respectively. We observe a close relation between the evaporation rate and interfacial
area. The fluctuation behaviour can be explained by the consecutive de-pinning
of menisci in a row resulting in a local increase of the evaporation rate. At the
end of the evaporation process after t ≈ 95 s, the evaporation rate continuously
decreases in the simulation while it increases again in the experiment. The reason is
also attributed to the fact that less thermal energy available for evaporation in the
simulation compared to the experiment as explained in § 5.1. In the experiment of
drying in GMS, the ratio of the average evaporation rate to the maximum evaporation
rate is Epaver/Epmax = 79.0 %, indicating that the evaporation rate is almost constant.
Similar to SMS, the GMS geometry also helps to maintain high evaporation rate
during the entire drying process with heat source.

In GMS, the evaporation time in experiment is 107 s, while the iteration steps in
simulation are 300 000 (6.6 CPU h with 64 processors). Similar to the SMS case, we
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ReL ReV Ca PeL,T PeV,m

Experiment 0.006 0.015 2.25× 10−7 0.02 1.03× 10−3

2D LBM 0.570 1.240 1.44× 10−2 0.23 1.56× 10−3

Mechanism Laminar Laminar Capillary force Diffusion Diffusion
flow flow dominant dominant dominant

TABLE 2. Non-dimensional numbers for experiment and 2D LBM simulation in GMS.

have determined the non-dimensional numbers for both experiments and simulations
in GMS, as shown in table 2. The range of non-dimensional numbers shows that the
flow, heat and mass transport mechanisms are laminar, capillary-driven and diffusion-
dominated.

6. Three-dimensional results

In the 2D simulations presented above, heat is provided only by the pillars, while in
the experiments, both the silicon plate and pillars serve as heat sources. Moreover, the
menisci in the experiments have a more complex 3D shape, which cannot be captured
in a 2D simulation. To verify the accuracy of a 2D simulation, we carried out a 3D
simulation for SMS. The ratio of height to length/width is set identical to the one
in experiments, and other dimensions remain the same as in the 2D simulation. The
3D simulation set-up is shown in figure 13. The silicon plate and pillars are set to a
temperature of Th = 0.751Tc, which is slightly greater than the saturation temperature
Ts= 0.75Tc. We used a lower surface temperature of the heat source in order to render
comparable the non-dimensional numbers in experiment and simulation. The lower
surface temperature in three compared to two dimensions can be explained by the
fact that heat is more efficiently transported to the liquid in the 3D case with both the
bottom silicon plate and pillars as heat sources. The top glass is set adiabatic, since
the measured glass temperature was close enough to the surface temperature of the
silicon plate. We impose zero velocity gradient (allowing free vapour outflow) at the
four boundary sides, similar to the 2D case. For the temperature at the four lateral
sides Tl, we assume that Tl increases linearly with time until the drying completes
when Tl becomes identical to Th, in order to consider the heating effect of the bottom
hot plate Th during drying.

Different frames for the 3D simulation are shown in figure 14. The spiral
evaporation route (supplementary movie 7) is the same as in the 2D simulation and
experiment. The menisci have now a 3D shape as shown in figure 13. A more striking
difference from the 2D simulation is much smaller zones cooled by evaporation in
the temperature field (supplementary movie 8), and smaller temperature differences
between vapour and liquid phase as shown in figure 14(b). These are caused by the
strong heating effect of the bottom silicon plate. The temperature drop in our 3D
simulation of drying in SMS is shown in figure 15(c,d). We can see the average and
maximum temperature drops are 0.2 and 8.0 K, which are smaller than those in the
2D simulation showing values of 2.6 and 10.0 K. In the work of Städler & Carro
(2016), they find that the temperature at the meniscus first increases by around 1.0 K
and then drops by up to 5.0 K in the water drying experiment in a two-layer structure
(60 µm high) under a heating temperature of 76 ◦C. The temperature variation is very
similar to the average maximum drop (5.5 K) in our 3D simulation. For the average
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Vapour out
Glass

Liquid
Hot pillar

3D menisciHot silicon

FIGURE 13. (Colour online) Illustration of 3D T-EMRT-LBM simulation set-up of SMS
with zoom of 3D menisci.

t = 0

(a)

(b)

t = 45.91 t = 93.63 t = 116.54 t = 136

T
0.0707
0.0706
0.0705
0.0704
0.0703
0.0702
0.0701

FIGURE 14. (Colour online) Frames of liquid evaporation in SMS from 3D T-EMRT-MP
LBM simulation. (a) Liquid configuration (supplementary movie 7); (b) temperature
contour (supplementary movie 8) of cross-section. Temperature (T) is in lattice units while
time (t) is in physical units (s).

temperature drop, they find that it is less than 1.0 K, which is also comparable with
our 3D simulation.

We further investigate the change of liquid mass and evaporation rate with
time. As shown in figure 15(a), the evolution of liquid mass with time is quite
similar in 2D and 3D simulations and experiment. In figure 15(b), we can see
that the evaporation rate of our 3D simulation decreases more slowly than in
the 2D simulation, and generally agrees better with the experiment. Especially
after tN ≈ 30, the evaporation rate only slightly decreases in the 3D simulation,
but decreases much more significantly in the 2D simulation. The reason is, as
explained in § 5.1, that more thermal energy is available in the 3D case for
evaporation. For a more detailed comparison, we evaluate the relative errors
of the liquid mass (Errm = (m(LBM) − m(exp))/m(exp)) and evaporation rate
(ErrEp= (Ep(LBM)−Ep(exp))/Ep(exp)) for 2D and 3D simulations results, compared
to experiment. The average relative error of liquid mass (evaporation rate) is 3.3 %
(7.9 %) in the 3D simulation, which is smaller than the 7.2 % (11.7 %) in the 2D
simulation. It is clear that the 3D simulation is generally more accurate quantitatively
than the 2D one. However, the computational cost in the 3D simulation is 8.0 CPU h
with 8800 processors, which is much higher than that in the 2D simulation. Finally,
the non-dimensional numbers for the 3D simulations are found to be in a similar
regime to those of the experiments (table 3).

In our 3D simulation with contact angle θ = 30◦, no liquid films adjacent to the
plates are observed. When we use a contact angle of θ = 0◦, liquid films adjacent to
the plates and the corners between the plates and pillars are seen at some time frames
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FIGURE 15. (Colour online) Comparison of (a) liquid mass and (b) evaporation rate
between experiment and 2D and 3D T-EMRT-MP LBM simulation results in SMS. (c)
Average temperature variation and (d) maximum temperature variation between 2D and
3D T-EMRT-MP LBM simulation results in SMS. All variables are in physical units.

ReL ReV Ca PeL,T PeV,m

Experiment 0.014 0.006 3.51× 10−7 0.05 3.68× 10−3

3D LBM 0.450 0.105 6.08× 10−3 0.37 3.26× 10−3

Mechanism
Laminar Laminar Capillary force Diffusion Diffusion

flow flow dominant dominant dominant

TABLE 3. Non-dimensional numbers for experiment and 3D LBM simulation in SMS.

as shown in figure 16. However, the films only stay for a short time due to the strong
evaporation caused by the high heating temperature of 50 ◦C. The high temperature
makes the evaporation much faster than in the case of isothermal evaporation under
ambient temperature, quickly depleting the liquid films. Apart from this, the pumping
effect also becomes strong due to the decrease of contact angle. The pumping effect
is due to capillary pressure difference, i.e. σ cos θ(1/r2 − 1/r1), where r2 and r1
are small and large pore spaces as shown in figures 7 and 11, respectively. With θ

decreasing from 30◦ to 0◦, the pumping effect increases, leading to the overall increase
of evaporation rate. As a result, the total evaporation time with θ = 0◦ is reduced to
around 93.5 % of that with θ = 30◦ in our 3D simulations.

Overall, both 2D and 3D simulations capture the spiral evaporation route observed
in the experiment. For quantitative results such as liquid mass and evaporation rate,
the 3D simulation results are slightly better than the 2D results. In conclusion, 2D
simulations are suitable for studying the evaporation pattern and rate in these quasi-2D
micro-pillar cavities, while 3D simulations are more accurate in terms of quantitative
analysis and simulated temperature field. The drawback of 3D simulation is that the
computational cost is much higher compared to 2D. This means that 2D simulations
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t = 48.30 t = 128.84

FIGURE 16. (Colour online) Liquid configuration at two different time frames (t= 48.30 s
and t= 128.84 s) with the zoom of films adjacent to plates and pillar corners. The contact
angle is θ = 0◦.

can be used for a quicker exploration of different micro-pillar configurations, while
3D simulations can be used for a better prediction of the temperature field.

7. Conclusion
In this paper, non-isothermal liquid evaporation in specifically designed micro-pore

structures is studied both experimentally and numerically. A hybrid T-EMRT-MP LBM
is implemented and validated with droplet evaporation experiments to demonstrate the
capability of simulating non-isothermal liquid evaporation. Then liquid evaporation
in two micro-pore structures, i.e. SMS and GMS, is simulated. In SMS, the main
evaporation front follows a spiral route, while in GMS it moves layer by layer from
large pillar distances to smaller ones, and both of them agree well with experiments.
From the temperature field obtained from our T-EMRT-MP LBM simulation, we
observed and explained latent heat effects at the liquid–vapour interface (evaporative
cooling) as well as heat conduction in liquid and vapour. Quantitatively, in both
SMS and GMS the change of liquid mass with time coincides with experimental
measurements. The evaporation rate is found to decrease with time mainly because
of the reduction in liquid–vapour interface. In SMS, small peaks are observed in
evaporation rate in both simulation and experiment, which are caused by evaporation
of liquid film formed among pillars when the main evaporation front passes the corner
of the cavity. In GMS, the evaporation fluctuates reflecting the consecutive de-pinning
of menisci at the evaporation front. The analysis of non-dimensional numbers such as
Reynolds, capillary and Péclet numbers shows that the internal liquid flow is in the
laminar flow regime and capillary forces are dominant over viscous forces leading
to pinning of the menisci to the pillars. The simulation results demonstrate that our
T-EMRT-MP LBM is able to capture the non-isothermal evaporation phenomena
observed in the experiments. Based on our numerical and experimental study, we
find it is possible to control the evaporation route in pore structures at relatively high
evaporation rate.
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FIGURE 17. (Colour online) The relation between pressure and volume of two-phase flow
under different temperatures.

Supplementary movies

Supplementary movies are available at https://doi.org/10.1017/jfm.2019.69.

Appendix A. How diffusive evaporation is considered in our model

We use a single-component (specie) two-phase model (liquid and vapour) to
model the evaporation process. In our coupling model, we do not have an explicit
equation for vapour diffusion (evaporation). The evaporation (mass transport) is
induced by vapour pressure difference, which is controlled by temperature difference
through equation of state. Under equilibrium state with saturation temperature Tsat and
saturation pressure Psat, there is no phase change between liquid and vapour. Once
there is a temperature variation, the liquid and vapour tend to reach a new equilibrium
state with different densities under new temperature. For example, if we heat the liquid
from T1 to T2 shown in figure 17, liquid density decreases from ρl,1 to ρl,2 while
vapour density increases from ρv,1 to ρv,2 at the interface. The fluid pressure at T2
is higher than that at T1, i.e. P(T2) > P(T1). In this way, the vapour at the interface
has a higher pressure (density) than that at the boundary. The pressure (density)
difference drives the motion of vapour molecules. This process can be analogized
to diffusion driven by concentration gradient, where pressure can be analogized
to vapour partial pressure, while the vapour density can be analogized to vapour
concentration. According to Fick’s law J = Dv(dϕv/dLv), where J is the diffusion
flux with units of mol m−2 s−1 while ϕv is the vapour concentration with units of
mol m−3. Since we are concerned about the mass flux q with units of kg m−2 s−1,
Fick’s law is modified to be q=Dv(dρv/dLv) with ρv representing the vapour density
with units of kg m−3. The modified Fick’s law is used to calculate the vapour mass
diffusion coefficient in our simulations shown in §§ 5 and 6. We also mention that
Cueto-felgueroso, Fu & Juanes (2018) applied the same equation (q = Dv(dρv/dLv))
in their isothermal phase change model. In the future, we will improve our model to
a two-component, two-phase model allowing also the incorporation of air (modelling
partial pressure, convection).

Appendix B. Single-droplet evaporation in a closed cavity

A single droplet evaporating in a closed cavity is simulated and the results are
compared with the diameter square law, as well as the results from Gong et al. (2018).
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t* = 0 t* = 0.24 t* = 0.48 t* = 0.71 t* = 0.95

FIGURE 18. (Colour online) Snapshots of a droplet evaporating in a closed cavity at
different normalized times t∗.
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FIGURE 19. (Colour online) Comparison of normalized diameter squared and error versus
normalized time for T-EMRT-MP LBM results, LBM (Gong et al. 2018) results and the
diameter square law.

As in Gong et al. (2018), the droplet size is 65 lattices and located in the middle of
a 2D square domain with Nx × Ny = 245 × 245. In our simulation, the density ratio
of liquid and vapour is ρl/ρv ≈ 30 with temperature ratio of T/Tc= 0.75, where Tc is
the critical temperature. The droplet temperature is initially set as Td/Tc = 0.75 and
the surrounding vapour is Tv/Tc = 0.86. All the surfaces of the domain are non-slip
walls, and the wall temperature is set as Tw/Tc=0.86 during the entire process. In this
simulation, the thermal conductivity and heat capacity of liquid and vapour are both
set as λ= 0.4 and CV = 120. To compare our results with those of the Gong model
(Gong et al. 2018), we use normalized time t∗ = t/ttot and diameter square D2(t)/D2

0.
The drying process in our simulation at different times is shown in figure 18, while
the comparison is shown in figure 19. The error is calculated by simulated value
minus analytical value of normalized diameter square, i.e. error = (D/D0)

2(Sim.) −
(D/D0)

2(Ana.). From figure 19 we can see that the error of our T-EMRT-MP LBM is
always smaller than 0.014, while it can reach 0.040 for the Gong model. It is obvious
that the agreement between our T-EMRT-MP LBM simulation and diameter square law
is better than the Gong model.

Appendix C. Liquid evaporation in a capillary tube
To check the accuracy of our model for quasi-isothermal evaporation, we simulate

the evaporation in a capillary tube and compare the result with the analytical solution.
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FIGURE 20. (Colour online) Schematic illustration of liquid drying in a capillary tube.
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FIGURE 21. (Colour online) Comparison of meniscus position of liquid drying in a
capillary tube between analytical solution and T-EMRT-MP LBM simulation.

We assume a capillary tube with a length of 3.2 mm and a width of 0.32 mm, and the
left side is open for evaporation as shown in figure 20. According to Cueto-felgueroso
et al. (2018), the analytical solution of the meniscus distance from outlet boundary
with time is written as xm(t) = (2Dv(ρ

∗

v − ρ
out
v )/(ρ

∗

l − ρ
∗

v ))
1/2t1/2, where ρ∗l , ρ

∗

v and
ρout
v represent the liquid density and vapour density at meniscus and outlet boundary.

The evaporation is under a temperature of 55 ◦C, with a contact angle of θ = 90◦,
and the environment temperature is 22 ◦C with relative humidity of 36 %. Then we
obtain: Dv = 3.05× 10−5 m2 s−1, ρ∗l = 985.7 kg m−3, ρ∗v = 0.126 kg m−3 and ρout

v =

0.0454 kg m−3, or xm(t) = 6.63 × 10−5
× t1/2 m with a total evaporation time and

average velocity of meniscus ttot = 2328.9 s and um = 1.37× 10−6 m s−1.
In our simulation, we set liquid and vapour outlet temperatures as Tl = 0.80Tc and

Tout
v = 0.75Tc in order to keep the same temperature difference as in the above case,

i.e. (Tl − Tout
v )/Tc = 0.80− 0.75= (55− 22)/647= 0.05. We simulate the evaporation

with a contact angle of θ =90◦, the same as in the analytical solution. Our simulations
are done with hybrid LBM, which is a mesoscopic numerical model with the units
being lattice units instead of physical units. To compare the numerical modelling
with experiments, we convert the lattice units (length and time) to physical ones.
For the time unit conversion, we use non-dimensional time t∗ = (u0 × t)/Ltube, where
u0 is the characteristic velocity of the meniscus and Ltube is the length of the tube.
The non-dimensional times for physical and lattice units are t∗p = (u0,p × tp)/Ltube,p
and t∗l = (u0,l × tl)/Ltube,l, respectively. In physical units, the characteristic velocity is
derived as u0,p = Dv(ρ

∗

v − ρ
out
v )/(ρ

∗

l − ρ
∗

v )(1/1x). If we consider the average velocity
as the characteristic velocity, then 1x = Ltube,p/2. Thus the characteristic velocity
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is u0,p = Dv(ρ
∗

v − ρ
out
v )/(ρ

∗

l − ρ
∗

v )2/Ltube,p. In lattice units, the characteristic velocity
derived from fluid flow is u0,l =

√
(2(p∗v − pout

v ))/ρ
∗
v (ρ

out
v /ρ

∗

l ). In simulations and
experiments, the non-dimensional time for each should be identical, i.e. t∗l = t∗p . Then
the dimensional time in physical units becomes tp = (u0,lLtube,p)/(u0,pLtube,l)tl. For the
non-dimensional length, we use length of tube x∗= x/Ltube. Then the non-dimensional
lengths in lattice and physical units are x∗l = xl/Ltube,l and x∗p = xp/Ltube,p. Similarly,
with the equality of the non-dimensional lengths x∗l = x∗p, we get xp = (Ltube,p/Ltube,l)xl.

Then we can plot the relation between xp and tp to compare with the analytical
solution xm(t)= (2Dv(ρ

∗

v − ρ
out
v )/(ρ

∗

l − ρ
∗

v ))
1/2t1/2 mentioned above. From figure 21 we

can see that our simulation result agrees reasonably well with the analytical solution.
The drying time with a contact angle of θ = 90◦ is 2340 s, with a small relative error
of only 0.52 %.

Appendix D. Conversion from lattice to physical units
To better compare our simulation results with experimental ones, we convert from

lattice units to physical ones similar to that in appendix C. We compare the liquid
mass, evaporation rate and interface area with time. Then the dimensional time in
physical units is calculated as tp = (um,lLp/um,pLl)tl, where um,l and um,p are the
average velocities of the main liquid–vapour meniscus, and Ll and Lp (figure 4)
are the characteristic moving distances of the main liquid–vapour meniscus in
simulation and experiment. For the liquid mass left in the micro-pore structures,
the corresponding conversion is mp= (m0,p/m0,l)ml with ml= ρl,lAl,lHl, m0,l= ρl,lA0,lHl
and m0,p = ρl,pA0,pHp, where mp, m0,p, ρl,p, A0,p and ml, m0,l, ρl,l, A0,l are liquid mass
during drying, initial liquid mass, liquid density, initial liquid area in physical and
lattice units. Here Al,l is liquid area in lattice units during drying. Parameters Hp and
Hl are the heights of liquid in the micro-pore structure in physical and lattice units,
and we assume Hl = (Ll/Lp)Hp. With the converted liquid mass and time in physical
units, we can calculate the evaporation rate in physical units as Epp = |1mp/1tp|.
Similarly, we can convert the interfacial area from lattice units Il to physical units
Ip with Il = (I0,l/I0,p)Ip, where I0,l and I0,l are initial interfacial area in lattice and
physical units. We also determine the conversion from lattice to physical units for the
temperature. The critical temperature in simulation and experiment is Tcl = 0.0943
and Tcp = 647 K. The ratio of temperature variation to critical temperature should
be the same in both physical and lattice units, namely 1Tp/Tcp = 1Tl/Tcl. Thus
the temperature variation in physical units can be given as 1Tp = Tcp ×1Tl/Tcl, in
which 1Tl = Tl − Tl,0 and Tl,0 is the initial temperature in simulations. The liquid
mass, evaporation rate, liquid–vapour interface and temperature with converted units
are compared in §§ 5 and 6.
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