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Three-dimensional turbulence without vortex
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We consider three-dimensional turbulence from which vortex stretching is removed. The
resulting system conserves enstrophy, but does not conserve kinetic energy. Using spectral
closure, it is shown that enstrophy is transferred to small scales by a direct cascade.
The inviscid truncated system tends to an equipartition of enstrophy over wave vectors.
No inverse cascade is observed once the scales larger than the forcing scale are in
equipartition.
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1. Introduction

One of the fascinating aspects of turbulence is the intricate interplay between vorticity
and velocity. Indeed, the vorticity, defined as the curl of the velocity, is both advected and
stretched by a turbulent velocity field. The importance of vortex stretching was recognized
early on in turbulence research (see e.g. Taylor 1938; Betchov 1956; Ashurst et al. 1987),
and authors such as Tennekes & Lumley (1972) and Tsinober (2009) have highlighted its
important role in the nonlinear dynamics of turbulence. However, not all aspects of vortex
stretching are understood. In recent investigations, the precise role of vortex stretching was
investigated (Johnson & Meneveau 2016; Buaria, Bodenschatz & Pumir 2020; Carbone &
Bragg 2020) and models were proposed to obtain a better understanding of the effects
of vorticity stretching and velocity-gradient dynamics in general (Chertkov, Pumir &
Shraiman 1999; Chevillard & Meneveau 2006).

Different approaches can be used to obtain a better understanding of a particular feature
of turbulence. One method is to attempt to disentangle, in a simulation or experiment,
the influence of a particular term or structure from other features. Such an attempt is
not without difficulty, because in an instantaneous flow-field it is non-trivial to recognize
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which flow features are caused by vortex stretching. Indeed, the whole Lagrangian history
must be taken into account (Guala et al. 2005). Furthermore, separating vortex stretching
from other effects often requires identifying regions of flow dominated by either stretching
or advection, both of which depend on thresholds and arbitrary definitions.

Another approach which can be used to identify the influence of a certain effect is to
modify the physical system in order to isolate the influence of a particular feature. This
is achieved by deliberately removing the feature from the dynamics, and comparing the
resulting system with the original. Yet another approach is to alter the spatial dimension of
the system. These methods have been used to study turbulence for decades. The resulting
system does not, in general, correspond to a physical system, but shows, by comparison
with the original set-up, what the influence of the additional or missing feature is.

Typical examples of such modifications are the removal of the pressure terms from
the governing equations as first investigated by Burgers (1950), and later by Polyakov
(1995) and Boldyrev (1999), the removal of a certain class of modes upon which the
flow-field is projected to focus on certain triadic interactions (Biferale, Musacchio &
Toschi 2012; Alexakis 2017; Briard, Biferale & Gomez 2017; Qu, Naso & Bos 2018), or
the decimation of Fourier space to change the fractal dimension of space (Frisch, Lesieur
& Sulem 1976; Frisch et al. 2012; Lanotte et al. 2015). The change of the dimension of
space can also be directly investigated by reformulating turbulence in more than three
dimensions (Gotoh et al. 2007; Yamamoto et al. 2012; Berera, Ho & Clark 2020), or by
considering intermediate systems such as axisymmetric turbulence, with properties of both
two- and three-dimensional systems (Leprovost, Dubrulle & Chavanis 2006; Naso et al.
2010; Qu, Bos & Naso 2017; Qin et al. 2020), or thin-layer turbulence (Celani, Musacchio
& Vincenzi 2010; Benavides & Alexakis 2017; Favier, Guervilly & Knobloch 2019).

The present work follows the approach of altering the Navier–Stokes equations. The
modification is drastic because it involves the removal of vortex stretching from the system,
which in turn changes the nonlinearity of the Navier–Stokes equations. One way to do
this is to consider two-dimensional turbulence, because in a two-dimensional velocity
field, the vorticity is perpendicular to the velocity (and its gradient) so that the vortex
stretching term drops out of the vorticity equation. However, this method also changes
the dimension of the system. In this investigation vortex stretching is removed from the
three-dimensional Navier–Stokes equations without changing the space dimension, and
the resulting statistical properties of the system are analysed. This approach can also be
seen as extending the case of pure advection of vorticity, as in two-dimensional turbulence,
to a system with a higher dimension.

The approach by which we investigate the resulting system uses closure theory, which
provides a method of analysing non-physical systems. Furthermore, for an exploratory
investigation such as this, the method allows us to explore, at low-computational cost,
assumptions of asymptotic scaling. The assumptions underlying closure theory do not
violate the detailed conservation properties of invariants of the governing equations and
do, in general, correctly capture asymptotic scaling of second- and third-order velocity
correlations (Sagaut & Cambon 2008). Higher-order moments, reflecting the intermittency
properties of the flow can in principle be addressed by closure (Chen et al. 1989; Bos &
Rubinstein 2013), but are not always reproduced correctly. The instantaneous structure of
the flow cannot be reproduced by a purely statistical approach. It is therefore recommended
that the present results be validated using direct numerical simulations, but this will be left
for future work.
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Three-dimensional turbulence without vortex stretching

In the following section (§ 2) we present the theoretical framework and modified
Navier–Stokes system. Then, in § 3 we derive a closed expression for the evolution
equation of the kinetic energy using an eddy-damped quasi-normal Markovian (EDQNM)
approach. The equations are integrated numerically and the results are presented in § 4.
Section 5 contains the conclusions.

2. Navier–Stokes equations without vortex stretching

We consider three-dimensional, incompressible, statistically homogeneous turbulence,
maintained by an external force term f (x, t). The velocity u(x, t) of this unmodified flow
is governed by the Navier–Stokes equations

∂u
∂t

− ν�u = −u · ∇u − ∇P + f , (2.1)

with P(x, t) the pressure, ν the kinematic viscosity and ∇ · u = 0. The time dependence
of the velocity, force and pressure is omitted here.

In order to remove the vortex stretching from the dynamics, we consider the curl of (2.1),
yielding the vorticity equation

∂ω

∂t
+ u · ∇ω︸ ︷︷ ︸

Advection

−ν�ω = ω · ∇u︸ ︷︷ ︸
Stretching

+∇ × f . (2.2)

If the vorticity is only advected and not stretched, we remove the stretching term, leading
to

∂ω

∂t
+ u · ∇ω − ν�ω = ∇ × f . (2.3)

This equation is similar to the two-dimensional Navier–Stokes equations, but with the
important difference that vorticity is now a three-component vector. The corresponding
Navier–Stokes equation is as follows

∂u
∂t

− ν�u = −u · ∇u − ∇P − φ + f , (2.4)

with φ a force, or damping, applied to the velocity field defined such that

∇ × φ = ω · ∇u. (2.5)

Such an artificial forcing term, applied to all scales is analogous to the helical forcing
used in Plunian et al. (2020). It is important to note that the present investigation does not
address the question of whether it is vortex stretching or strain self-amplification that is
more significant in the process of energy transfer (Johnson & Meneveau 2016; Carbone &
Bragg 2020), because removing the vortex-stretching term from the vorticity equation will
simultaneously suppress the strain self-amplification from the dynamics. It is, therefore,
implied in the following discussion that references to vortex stretching also include strain
self-amplification.
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From (2.3) for a periodic or statistically homogeneous system

dZ
dt

= βin − β, (2.6)

with the enstrophy Z given by

Z = 1
2 〈‖ω‖2〉, (2.7)

the enstrophy injection by external forcing

βin = 〈ω · ∇ × f 〉, (2.8)

and the enstrophy dissipation

β = −ν〈ω · �ω〉, (2.9)

so that the enstrophy of the unforced inviscid system (ν = 0, f = 0) obeys

dZ
dt

= 0, (2.10)

and is thus conserved by the nonlinear interactions of the system.
The kinetic energy balance is

dK
dt

= εin − ε − Ψ, (2.11)

where kinetic energy K, energy input and viscous dissipation are defined, respectively, by

K = 1
2 〈‖u‖2〉, (2.12)

εin = 〈u · f 〉, (2.13)

ε = −ν〈u · �u〉. (2.14)

The energy input or destruction due to the absence of the vortex stretching term is

Ψ = 〈φ · u〉. (2.15)

In the unforced, inviscid case, the energy balance reads

dK
dt

= −Ψ, (2.16)

so that the inviscid system ((2.4) with ν = 0) does not necessarily conserve energy.
From these considerations it follows that Z (or other moments of the vorticity) are

conserved by the nonlinearity of the system. We have not identified other invariants. Here
we consider only the mirror-symmetric case. Whether an invariant, such as the volume
averaged helicity, is conserved for the non-mirror-symmetry case will be left for future
research.
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Three-dimensional turbulence without vortex stretching

3. Fourier representation and closure of the system

In Fourier space the Biot–Savart operator becomes an algebraic operation, which allows
us to rewrite the Navier–Stokes equations without vortex stretching in a convenient form.
The explicit form of the evolution of the Fourier modes is derived in Appendix A and can
be written in the form

∂ui(k)

∂t
= −i

∫
δ(k − p − q)Γijm(k, p, q)uj(p)um(q) dp dq − νk2ui(k) + fi(k), (3.1)

where

Γijm(k, p, q) =
[(
λ

p · k
k2 + q · k

k2

)
kjPim(k)

]
(3.2)

and Pij(k) = δij − kikjk−2. Note that for λ = 1 we have Γijm(k, p, q) = kjPim(k) and
we retrieve the unmodified Navier–Stokes equations. The case λ = 0 corresponds to
the dynamics without vortex stretching. Here and in the following we will distinguish the
Fourier coefficients u(k) from the associated velocity field u by their explicit dependence
on the wave vector.

The energy spectrum, defined as the spherically averaged energy density in Fourier
space, is then governed by the Lin equation

∂E(k)
∂t

= T(k) − 2νk2E(k) + P(k), (3.3)

where P(k) represents the energy input,∫
P(k) dk = 〈u · f 〉 ≡ εin. (3.4)

The nonlinear transfer term is given by

T(k) = −4iπk2
∫

δ(k − p − q)Γijm(k, p, q)〈ui(−k)uj(p)um(q)〉 dp dq, (3.5)

and its integral is ∫
T(k) dk = −Ψ, (3.6)

which is strictly zero in non-modified turbulence. The dissipation spectrum is related to
the viscous dissipation by ∫

2νk2E(k) dk = ε. (3.7)

The nonlinear transfer contains a triple velocity correlation. For this correlation we derive
a closed expression within the framework of the EDQNM theory (Orszag 1970) and the
details of the derivation can be found in Appendix B. For the case without vortex stretching
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we have

T(k) = 1
2

∫
Δ

dp
p

dq
q

Θk,p,q

{[
f λ(1)X(1) + f λ(2)X(2)

]
k3E( p)E(q)

−
[

f λ(3)X(3) + f λ(4)X(4)

]
p3E(k)E(q) −

[
f λ(5)X(5) + f λ(6)X(6)

]
q3E( p)E(k)

}
, (3.8)

where the Δ denotes the integration domain in the p–q plane, where k, p, q can form the
sides of a triangle. The X terms are

X(1) = (1 − z2)(1 + y2), X(2) = −xyz − y2z2 (3.9)

X(3) = xy(1 − z2), X(4) = z(−y2 − xyz) (3.10)

X(5) = y(−x2 − xyz), X(6) = ( y + zx)(1 + y2) (3.11)

and the f λ terms read for λ = 0,

f λ(1) = y2
(q

k

)2
, f λ(2) = yz

pq
k2 (3.12)

f λ(3) = xy
q2

pk
, f λ(4) = yz

q
p

(3.13)

f λ(5) = xy
p
k
, f λ(6) = y2. (3.14)

The triad interaction time is defined as

Θ(k, p, q) = 1 − exp[−(θk + θp + θq)t]
θk + θp + θq

(3.15)

with

θk = α

√∫ k

0
s2E(s) ds + νk2, (3.16)

and α = 0.5. For the classical EDQNM closure we have, using λ = 1 in the derivation,
that all f λ terms are equal to unity, yielding

T(k) = 1
2

∫
Δ

dp
p

dq
q

Θk,p,q

{[
X(1) + X(2)

]
k3E( p)E(q)

− [
X(3) + X(4)

]
p3E(k)E(q) − [

X(5) + X(6)

]
q3E( p)E(k)

}
, (3.17)

which can be symmetrized to obtain the familiar expression found in the literature.

4. Results

In this section we integrate the closure equations. We first highlight the differences
with respect to unmodified three-dimensional turbulence. Subsequently we investigate,
by dimensional analysis and variation of the Reynolds number, the inertial range of the
system. Finally, we consider the inviscid system to show the equilibrium properties of the
system.
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Figure 1. Steady-state kinetic energy spectra of forced Navier–Stokes turbulence compared with the energy
spectra of the system without vortex stretching for the same parameters. VS, vortex stretching.

4.1. Numerical set-up and parameters
To integrate the equations we use the same in-house EDQNM code that has been used
over the last few decades in our laboratory (Sagaut & Cambon 2008), containing a routine
written by Leith (1971). For all simulations a logarithmic discretization was used with a
minimum resolution of 20 points per decade. Simulations were performed on a domain
k ∈ [0.05kf , 5kη], where kf is the forcing frequency (kf = 1) and kη = ν−3/4ε

1/4
in . The

forcing term in (3.3) is defined by (Briard et al. 2017),

P(k) = A exp
(
−100[ln(k/kf )]2

)
(4.1)

with A determined such that the integral of P(k) is unity. This ensures an energy input
which is fixed at εin = 1 and an enstrophy input close to unity (βin = 1.02). With the
exception of the inviscid relaxation simulations in § 4.4 all results are reported when a
statistically steady state is reached.

4.2. Comparison with classical turbulence and scaling ranges
In order to highlight the differences between unmodified high-Reynolds-number
turbulence and the system without vortex stretching, we first present the results of the
integration of the two systems, using the same parameters, defined in the foregoing
paragraph, with viscosity ν = 1 × 10−4. This corresponds, for the unmodified turbulence,
to a Taylor-scale Reynolds number Rλ ≈ 103.

The resulting spectra are shown in figure 1. The Navier–Stokes system yields a spectrum
with for k > kf a Kolmogorov k−5/3 scaling and for k < kf a k2 dependence, reminiscent
of energy-equipartition. For large k, a dissipation range is observed, where the energy
spectrum falls off more rapidly than a power law.

The system without vortex stretching shows a peak, representing the forcing scale,
similar to that of the Navier–Stokes system. However, for larger and smaller wave numbers,
the spectrum is steeper or shallower, respectively. An inertial range is observed with a
wave-number dependence close to k−3. A dissipation range is observed which starts at a
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Figure 2. Spectra of (a) energy transfer and (b) enstrophy transfer for both systems. The energy transfer is
normalized by the energy injection rate εin, whereas the enstrophy spectra are normalized by the enstrophy
dissipation rate β. VS, vortex stretching.

wave number about 10 times smaller than for the reference case. Furthermore, for small
k, an approximately flat spectrum is observed. This range is associated with the statistical
equilibrium properties of the new system and we return to this in § 4.4.

In figure 2, transfer spectra are presented. Multiplication by k allows to assess in this
semi-logarithmic representation the conservation of energy, by comparing the positive
and negative areas (or lobes) delimited by the spectra (figure 2a). In the Navier–Stokes
case the energy is transferred towards the small scales. This is illustrated by the negative
dip around the forcing frequency, where the nonlinear interaction absorbs the energy, and
the positive lobe near the dissipation scale where it is expelled. In between these two
scales the energy is conserved. The energy transfer of the turbulent flow without vortex
stretching shows that virtually no energy is transferred, and all energy is locally destroyed
by nonlinear interaction. Indeed, no positive lobe in the transfer is observed, illustrating
that the energy is absorbed and destroyed by the nonlinearity. The amount of energy
destroyed by nonlinear effects corresponds to the term Ψ in the energy balance equation
(2.11).

By multiplying the transfer spectrum by k2, the enstrophy-transfer spectrum is
obtained. It is observed (figure 2b) that the system without vortex stretching conserves
enstrophy, transferring it from the injection scale to the enstrophy dissipation scale. The
Navier–Stokes enstrophy balance shows that enstrophy is strongly enhanced throughout
the cascade. Normalizing the transfer spectra by the enstrophy dissipation β shows that
the amount of enstrophy at the viscous end of the cascade is so much larger than its
injected value, that the latter is negligible. Indeed, considering the enstrophy transfer near
the injection scales would appear to indicate that no enstrophy is injected. However, both
systems are subject to equal amounts of injected enstrophy, and owing to the very strong
production of enstrophy, caused by vortex stretching, the normalized spectra mask the
injected enstrophy in this representation.

We quantify this by the ratios of injected to dissipated energy and injected to dissipated
enstrophy. We obtain, for the case of Navier–Stokes turbulence,

ε

εin
= 1,

β

βin
= 1.3 × 104 (4.2a,b)
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Figure 3. Fluxes of (a) energy in Navier–Stokes turbulence and (b) enstrophy in the system without vortex
stretching (VS). The fluxes are normalized by the energy injection rate εin and enstrophy injection rate βin,
respectively.

and without vortex stretching,

ε

εin
= 2.5 × 10−3,

β

βin
= 1. (4.3a,b)

Comparing these values illustrates the enormous amount of enstrophy which is generated
by vortex stretching at high-Reynolds-number turbulence. It also shows the importance of
vortex stretching to the process of energy conservation.

In order to complete the picture, we show in figure 3 the fluxes associated with the
conserved quantities. In figure 3(a,b) we show the energy and enstrophy flux towards small
scales, defined, respectively, as

ΠE(k) = −
∫ k

0
T(k) dk, ΠZ(k) = −

∫ k

0
k2T(k) dk. (4.4a,b)

A clear inertial range is observed for both quantities, where the flux is approximately
constant. In both cases, fluxes are in the direction of the small scales. Indeed, a steady state
is observed where scales k < kf are in statistical equilibrium. This equipartition state is
associated with zero net transfer. Extending the wave-number domain to smaller k extends
this equipartition state, where E(k) ∼ k2 for Navier–Stokes turbulence and E(k) ∼ k0 for
the system without vortex stretching. It is, therefore, not necessary to add large-scale
friction to the system in order to achieve steady state, unlike the case of two-dimensional
turbulence, where energy accumulates in the forced system in the absence of large-scale
damping terms. Further analysis of the equipartition range is postponed to § 4.4, where the
truncated inviscid system is considered.

4.3. Dimensional analysis and scaling
The foregoing analysis shows that, without vortex stretching, enstrophy is conserved by
the nonlinear interactions and is transferred to small scales, where it is dissipated. No
inverse (or direct) cascade of energy is observed. Kolmogorov-type arguments, assuming
scale locality, will lead to a scaling that is dependent on the enstrophy flux and the local
length scale (or wave number). In a steady state the enstrophy flux is equal to the enstrophy
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Figure 4. Reynolds number scaling of the energy spectra of turbulence without vortex stretching. (a)
Non-normalized spectra for three distinct values of the viscosity. (b) The same spectra normalized by enstrophy
dissipation and viscosity.

dissipation β, so that we obtain from dimensional arguments that

E(k) ∼ β2/3k−3. (4.5)

The equivalent of the viscous Kolmogorov scale will now become

ζ ≡ ν1/2

β1/6 . (4.6)

The energy spectra should then collapse in the high-wave-number range, for large
Reynolds numbers using the length scale ζ and the viscosity

E(k) = ν3/2β1/6f (kζ ), (4.7)

where f is a unique function. This is assessed in figure 4 where we show plots of the
energy spectrum associated with turbulence in the absence of vortex stretching, for ν =
0.01, 0.001, 0.0001. In figure 4(a) we show the non-normalized spectra, which coincide at
the large scales. Normalizing using the above scaling arguments allows data collapse for
all three cases in the dissipation and inertial ranges (figure 4b).

These scaling arguments can also be used to explain why in figure 1 the viscous cut-off
of both systems is different by an order of magnitude. The Kolmogorov scale in turbulence
is of order η = ν3/4ε

−1/4
in and the Kolmogorov-like scale in the modified system is given

by expression (4.6). The ratio is then

η

ζ
= β

1/6
in

ε
1/4
in

ν1/4. (4.8)

As both εin and βin are order unity, and ν = 10−4, this ratio is around 10 for the spectra
shown in figure 1.

4.4. Inviscid equilibrium
Previously it was observed that for scales larger than the forcing scale, i.e. for wave
numbers k < kf , the energy spectrum is flat in turbulence without vortex stretching.
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Figure 5. Inviscid relaxation to an equilibrium state where enstrophy is equipartitioned over the
different modes. (a) Short time behaviour, showing the kinetic energy spectra at t = 0 and t =
0.04; 0.08; 0.16; 0.32; 0.64; 1.28; 2.56; 5.12. (b) Long time evolution, showing the spectra at t =
5.12; 10; 20; 40; 80; 160; 320; 640; 1280 and t = 104.

In the current section, we show that this scaling is associated with the inviscid equilibrium
state of the system.

The inviscid equilibrium properties of turbulence have received much interest motivated
by the establishment of a direct connection between thermodynamic and fluid mechanics
properties of such flows. Early investigations showed that a Galerkin truncation of the
Navier–Stokes system, in the absence of viscosity, allows an equilibrium solution where
all Fourier modes contain, statistically, the same amount of energy (Lee 1952; Kraichnan
1973). The resulting system shows then an energy spectrum proportional to k2. Kraichnan
(1967) extended these ideas to two-dimensional turbulence. In the present case, where
only one particular invariant is present in the system, it is plausible that the equilibrium
distribution corresponds to an equidistribution of enstrophy between modes. As the
enstrophy spectrum is related to the energy spectrum by

EZ(k) ∼ k2E(k), (4.9)

we can expect an equilibrium spectrum,

E(k) ∼ k0. (4.10)

We check this by integrating the inviscid system, starting from a concentrated energy (and
enstrophy) distribution,

E(k, 0) = H(2 − k) (4.11)

with H the Heaviside function. The domain is k ∈ [1, 100]. In figure 5(a) we show the
short-time evolution of the system. At very short times we observe the staircase scaling
recently discussed in Fang, Wu & Bos (2020). Then, at intermediate times, as shown
in figure 5(b) an enstrophy cascade coexists with a thermalized part as also observed
in the three-dimensional case for the energy cascade (Cichowlas et al. 2005; Bos &
Bertoglio 2006). The relaxation towards an E(k) ∼ k0 spectrum shows the equipartition
of enstrophy. It also explains the wave-number dependence of the energy spectra for scales
larger than the forcing scale observed in figure 1. Indeed, for such large scales in forced
three-dimensional turbulence the modes are shown to be in thermal equilibrium, showing
a k2 equipartition energy spectrum, as observed in figure 1 (see, for instance, Alexakis &
Brachet (2019) for a discussion). Transposing this to the enstrophy-conserving dynamics
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observed in the present investigation suggests the observed k0 scaling observed in figure 1
for turbulence without vortex stretching.

5. Conclusion

Three-dimensional turbulence without vortex stretching is different from two-dimensional
turbulence. Both systems conserve enstrophy and cascade that quantity to the small scales.
However, whereas in two-dimensional turbulence energy is transferred towards large
scales, displaying thereby a double cascade, the modified three-dimensional system does
not conserve energy and a simple cascade is observed, associated with a k−3 inertial range.

This absence of vortex stretching also alters the absolute equilibrium states of
the truncated inviscid system. In the two-dimensional case the statistical equilibrium
is a function of both invariants, whereas in three-dimensional turbulence without
vortex stretching the equilibrium distribution is a simple equipartition of enstrophy,
corresponding to a flat k0 energy spectrum. This behaviour is also observed in the forced
system for scales larger than the forcing scale.

What we can therefore safely state is that vortex stretching is inseparable from the energy
cascade mechanism. Indeed, in its absence, energy is not conserved and the dynamics of
the flow is radically changed. In classical turbulence at high Reynolds numbers, vortex
stretching amplifies enstrophy by several orders of magnitude between the injection scale
and the dissipation scale. In the absence of vortex stretching, the enstrophy becomes scale
independent in the inertial range. However, in the same range for the system without
stretching, the energy is destroyed and only a very small fraction survives the cascade
towards the dissipation scale. We repeat here that the present investigation does not address
the dynamical differences between vortex stretching and strain self-amplification (Johnson
& Meneveau 2016; Carbone & Bragg 2020), because both effects are suppressed by
removing the vortex-stretching term from the vorticity equation. It does not seem easy
to remove only one of the two effects from the Navier–Stokes equations without altering
the other.

The present investigation opens up several possibilities for future work. In particular,
direct numerical simulations will provide enough data to assess the fine properties of the
flow, such as intermittency, and allow researchers to investigate the physical space structure
of this new type of turbulence.

Recently, turbulence was investigated using local surgery of the velocity field, where
strongly vortical regions were locally damped (Buzzicotti, Biferale & Toschi 2020). A
variant of the present approach, where vortex stretching is suppressed locally, might be
of interest. A parametric study, varying λ in (3.2) between zero and unity would allow an
assessment of how exactly the statistics depend on the strength of the vortex stretching.
Indeed, the procedure of fractal decimation (Lanotte et al. 2015) shows that statistical
properties such as intermittency can be extremely sensitive to the variation of a control
parameter around a critical value or dimension.

A final possibility is the mathematical investigation of turbulence without vortex
stretching. Indeed, because the steep spectral energy distribution in the inertial range
suggests that the flow is statistically smooth, considerations about the existence and
uniqueness of solutions of the present system might suggest new methods of assessing
the mathematical properties of Navier–Stokes turbulence.

Acknowledgement. I thank T. Wu for useful comments.
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Appendix A. Fourier representation of the Navier–Stokes equation without vortex
stretching

The vorticity equation without vortex stretching reads
∂ωi(k)

∂t
= −ikj

∫
δ

uj(p)ωi(q), (A1)

where we use the short-hand notation∫
δ

≡
∫

dp dqδ(k − p − q). (A2)

Here, and in the following, we omit time arguments and Fourier modes are indicated by
their dependence on the wave vector. Forcing and viscous terms can be added afterwards.

As for a solenoidal field we have ∇ × ∇ × u = −�u, and in Fourier space the
Laplacian becomes an algebraic operator, the vorticity equation can be easily uncurled,
yielding

∂ui(k)

∂t
= i

k2 εiabεbcd

∫
δ

kakjqcuj(p)ud(q). (A3)

Developing the permutation tensor gives
∂ui(k)

∂t
= i

k2

∫
δ

(kdkjqiuj(p)ud(q) − kaqakjuj(p)ui(q)). (A4)

The first term in parentheses can be symmetrized

∂ui(k)

∂t
= i

k2

∫
δ

(kdkjqiuj(p)ud(q)/2 + kdkjpiuj(p)ud(q)/2 − kaqakjuj(p)ui(q)), (A5)

and using p + q = k gives

∂ui(k)

∂t
= i

k2

∫
δ

(kdkjkiuj(p)ud(q)/2 − kaqakjuj(p)ui(q)). (A6)

Removing the potential part by multiplying both sides with Pin(k) and relabeling gives

∂ui(k)

∂t
= −ikjPim(k)

∫
δ

(kaqa)

k2 uj(p)um(q)). (A7)

Comparison with the Navier–Stokes equations,
∂ui(k)

∂t
= −ikjPim(k)

∫
δ

uj(p)um(q)), (A8)

allows us to write the general form

∂ui(k)

∂t
= −i

∫
δ

(
λ
(kapa)

k2 + (kaqa)

k2

)
kjPim(k)uj(p)um(q)), (A9)

which gives the case of turbulence without vortex stretching for λ = 0, and which, for
λ = 1, reduces to the Navier–Stokes equations, because the term in parentheses yields
unity.
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Appendix B. EDQNM closure of the nonlinear transfer

We follow the procedure outlined in Bos & Bertoglio (2013), leading to equations of the
EDQNM family. Alternative procedures (Orszag 1970; Sagaut & Cambon 2008) should
yield the same closure.

We start with
∂ui(k)

∂t
=

∫
δ

Γijm(k, −p, −q)
[
uj(p)um(q)

] − νk2ui(k). (B1)

The velocity correlations obey(
1
2

∂

∂t
+ νk2

)
〈ui(k)ui(−k)〉 =

∫
δ

Γijm(k, p, q)〈uj(p)um(q)ui(−k)〉, (B2)

where the triple correlations need to be determined. We can formally invert equation (B1)
to obtain expressions for evolution of the three modes constituting the triple correlations,
u = u(0) + u(1), with u(0) the Gaussian or independent velocity estimate, and u(1) the
perturbation by nonlinear direct triad interaction within the mode k = p + q,

u(1)
i (−k) =

∫ t

0
dsG′(k)

(
Γiab(−k, p, q)

[
u′

a(−p)u′
b(−q)

] + Γiab(−k, q, p)
[
u′

a(−q)u′
b(−p)

])
,

u(1)
j (p) =

∫ t

0
dsG′( p)

(
Γjab(p,−k, q)

[
u′

a(k)u′
b(−q)

] + Γjab(p, q,−k)
[
u′

a(−q)u′
b(k)

])
,

u(1)
m (q) =

∫ t

0
dsG′(q)

(
Γmab(q,−k, p)

[
u′

a(k)u′
b(−p)

] + Γmab(q, p,−k)
[
u′

a(−p)u′
b(k)

])
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(B3)

The primed quantities depend on the time t = s and G′ is Green’s function. There is a
difference in the treatment of Eulerian and Lagrangian theory here (Kraichnan 1965), but
the final expressions for the single-time closure which we derive here are insensitive to
this difference (see Bos & Bertoglio 2013). Substituting the triple correlation, the velocity
modes u = u(0) + u(1) and retaining the first-order terms, we obtain

1
2

∂

∂t
〈ui(k)ui(−k)〉 =

∑
i=1..6

∫
δ

∫ t

0
dsF(i)(k), (B4)

with

F(1) = G′(k)Γijm(k, −p, −q)Γiab(−k, p, q)
[
u′

a(−p)u′
b(−q)uj(p)um(q)

]
, (B5)

F(2) = G′(k)Γijm(k, −p, −q)Γiab(−k, q, p)
[
u′

a(−q)u′
b(−p)uj(p)um(q)

]
, (B6)

F(3) = G′( p)Γijm(k, −p, −q)Γjab(p, −k, q)
[
u′

a(k)u′
b(−q)um(q)ui(−k)

]
, (B7)

F(4) = G′( p)Γijm(k, −p, −q)Γjab(p, q, −k)
[
u′

a(−q)u′
b(k)um(q)ui(−k)

]
, (B8)

F(5) = G′(q)Γijm(k, −p, −q)Γmab(q, −k, p)
[
u′

a(k)u′
b(−p)uj(p)ui(−k)

]
, (B9)

F(6) = G′(q)Γijm(k, −p, −q)Γmab(q, p, −k)
[
u′

a(−p)u′
b(k)uj(p)ui(−k)

]
, (B10)

and using the definition 〈
u′

i(k)uj(−k)
〉 = Pij(k)U(k)R′(k) (B11)
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Three-dimensional turbulence without vortex stretching

with R′(k) a time-correlation function

R′(k) =
〈
u′

i(k)ui(−k)
〉

〈ui(k)ui(−k)〉 , (B12)

and U(k) = E(k)/4πk2. This can be written

∂E(k)
∂t

= 4πk2
∑

i=1..6

∫
δ

∫ t

0
dsF(i)(k), (B13)

F(1) = G′(k)R′( p)R′(q)Γijm(k, −p, −q)Γiab(−k, p, q)Paj(p)Pbm(q)U( p)U(q), (B14)

F(2) = G′(k)R′( p)R′(q)Γijm(k, −p, −q)Γiab(−k, q, p)Pbj(p)Pam(q)U( p)U(q), (B15)

F(3) = G′( p)R′(k)R′(q)Γijm(k, −p, −q)Γjab(p, −k, q)Pia(k)Pbm(q)U(k)U(q), (B16)

F(4) = G′( p)R′(k)R′(q)Γijm(k, −p, −q)Γjab(p, q, −k)Pib(k)Pam(q)U(k)U(q), (B17)

F(5) = G′(q)R′(k)R′( p)Γijm(k, −p, −q)Γmab(q, −k, p)Pia(k)Pjb(p)U(k)U( p), (B18)

F(6) = G′(q)R′(k)R′( p)Γijm(k, −p, −q)Γmab(q, p, −k)Pib(k)Pja(p)U(k)U( p). (B19)

All the two-time dependence is contained in the quantities R′, G′. Markovianization
consists here in assuming exponential time dependence for these quantities. Furthermore,
assuming G′ = R′ for s < t, allows us to write∫ t

0
G′(k)R′( p)R′(q) ds = Θ(k, p, q), (B20)

resulting in a Markovian closure.
To advance we need to contract and substitute the Γ s. These are defined as (see

Appendix A)

Γijm(k, −p, −q) = −i
(
λ

p · k
k2 + q · k

k2

)
kjPim(k) (B21)

so that

Γiab(−k, p, q) = i
(
λ

p · k
k2 + q · k

k2

)
kaPib(k), (B22)

Γiab(−k, q, p) = i
(
λ

q · k
k2 + p · k

k2

)
kaPib(k), (B23)

Γjab(p, −k, q) = −i
(
λ

k · p
p2 + −q · p

p2

)
paPjb(p), (B24)

Γjab(p, q, −k) = −i
(
λ
−q · p

p2 + k · p
p2

)
paPjb(p), (B25)

Γmab(q, −k, p) = −i
(
λ

k · q
q2 + −p · q

q2

)
qaPmb(q), (B26)

Γmab(q, p, −k) = −i
(
λ
−p · q

q2 + k · q
q2

)
qaPmb(q) (B27)

and the product of the Γ s is
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Γijm(k,−p,−q)Γiab(−k, p, q) =
(
λ

p · k
k2 + q · k

k2

) (
λ

p · k
k2 + q · k

k2

)
kaPib(k)kjPim(k)

Γijm(k,−p,−q)Γiab(−k, q, p) =
(
λ

q · k
k2 + p · k

k2

) (
λ

p · k
k2 + q · k

k2

)
kjkaPib(k)Pim(k)

Γijm(k,−p,−q)Γjab(p,−k, q) = −
(
λ

k · p
p2 + −q · p

p2

) (
λ

p · k
k2 + q · k

k2

)
kjpaPjb(p)Pim(k)

Γijm(k,−p,−q)Γjab(p, q,−k) = −
(
λ
−q · p

p2 + k · p
p2

) (
λ

p · k
k2 + q · k

k2

)
kjpaPjb(p)Pim(k)

Γijm(k,−p,−q)Γmab(q,−k, p) = −
(
λ

k · q
q2 + −p · q

q2

) (
λ

p · k
k2 + q · k

k2

)
kjqaPmb(q)Pim(k)

Γijm(k,−p,−q)Γmab(q, p,−k) = −
(
λ
−p · q

q2 + k · q
q2

) (
λ

p · k
k2 + q · k

k2

)
kjqaPmb(q)Pim(k)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(B28)
The terms in parentheses all yield the value 1 for λ = 1. For λ = 0 we have, using the

definitions q · k = kqy, p · k = pkz, q · p = −pqx,

Γijm(k, −p, −q) × Γiab(−k, p, q) = y2
(q

k

)2
kaPib(k)kjPim(k), (B29)

Γijm(k, −p, −q) × Γiab(−k, q, p) = yz
pq
k2 kaPib(k)kjPim(k), (B30)

Γijm(k, −p, −q) × Γjab(p, −k, q) = −xy
q2

pk
paPjb(p)kjPim(k), (B31)

Γijm(k, −p, −q) × Γjab(p, q, −k) = −yz
q
p

paPjb(p)kjPim(k), (B32)

Γijm(k, −p, −q) × Γmab(q, −k, p) = −xy
p
k

qaPmb(q)kjPim(k), (B33)

Γijm(k, −p, −q) × Γmab(q, p, −k) = −y2qaPmb(q)kjPim(k), (B34)

thus

F(1) = y2
(q

k

)2
kaPib(k)kjPim(k)Paj(p)Pbm(q)Θ(k, p, q)U( p)U(q), (B35)

F(2) = yz
pq
k2 kaPib(k)kjPim(k)Pbj(p)Pam(q)Θ(k, p, q)U( p)U(q), (B36)

F(3) = −xy
q2

pk
paPjb(p)kjPim(k)Pia(k)Pbm(q)Θ(k, p, q)U(k)U(q), (B37)

F(4) = −yz
q
p

paPjb(p)kjPim(k)Pib(k)Pam(q)Θ(k, p, q)U(k)U(q), (B38)

F(5) = −xy
p
k

qaPmb(q)kjPim(k)Pia(k)Pjb(p)Θ(k, p, q)U(k)U( p), (B39)

F(6) = −y2qaPmb(q)kjPim(k)Pib(k)Pja(p)Θ(k, p, q)U(k)U( p), (B40)
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which is written as

F(1) = y2
(q

k

)2
[k1k2Pk

34Pp
12Pq

34]Θ(k, p, q)U( p)U(q), (B41)

F(2) = yz
pq
k2 [k1k2Pk

34Pp
13Pq

24]Θ(k, p, q)U( p)U(q), (B42)

F(3) = −xy
q2

pk
[k1p2Pk

23Pp
14Pq

34]Θ(k, p, q)U(k)U(q), (B43)

F(4) = −yz
q
p

[k1p2Pk
34Pp

13Pq
24]Θ(k, p, q)U(k)U(q), (B44)

F(5) = −xy
p
k

[k1q2Pk
23Pp

14Pq
34]Θ(k, p, q)U(k)U( p), (B45)

F(6) = −y2[k1q2Pk
34Pp

12Pq
34]Θ(k, p, q)U(k)U( p). (B46)

Note that we prefer for purely technical reasons to replace wave vector dependence by
superscripts and the indices by numbers, which allows us to more easily organize and
order the different terms. Summation over repeated indices is still assumed. A procedure,
explained in Leslie (1973), allows us to rewrite the integral over wave vectors as a scalar
integral over p, q space. This allows us to rewrite the expression as

∂E(k)
∂t

= 1
2

∫
Δ

dp
p

dq
q

Θ(k, p, q)

×
[

f λ(1)X(1) + f λ(2)X(2)

]
k3E( p)E(q) (B47)

−
[

f λ(3)X(3) + f λ(4)X(4)

]
p3E(k)E(q) (B48)

−
[

f λ(5)X(5) + f λ(6)X(6)

]
q3E( p)E(k), (B49)

where the X are

X(1) = k−2k1k2Pk
34Pp

12Pq
34 = (1 − z2)(1 + y2), (B50)

X(2) = k−2k1k2Pk
34Pp

13Pq
24 = −xyz − y2z2, (B51)

X(3) = (kp)−1k1p2Pk
23Pp

14Pq
34 = xy(1 − z2), (B52)

X(4) = (kp)−1k1p2Pk
34Pp

13Pq
24 = z(−y2 − xyz), (B53)

X(5) = (kq)−1k1q2Pk
23Pp

14Pq
34 = y(−x2 − xyz), (B54)

X(6) = (kq)−1k1q2Pk
34Pp

12Pq
34 = ( y + zx)(1 + y2). (B55)

As a consistency check we can assess the case λ = 1 leading to the classical EDQNM
closure.
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