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The λ-calculus is destructive: its main computational mechanism, beta reduction, destroys

the redex, which makes replaying the computational steps impossible. Combinatory logic is

a variant of the λ-calculus that maintains irreversibility. Recently, reversible computational

models have been studied mainly in the context of quantum computation, as (without

measurements) quantum physics is inherently reversible. However, reversibility also

fundamentally changes the semantical framework in which classical computation has to be

investigated. We describe an implementation of classical combinatory logic in a reversible

calculus for which we present an algebraic model based on a generalisation of the notion of

a group.

1. Introduction

It has been suggested (see, for example, Mundici and Sieg (1995)) that the standard

model for computation, as embodied in Turing machines, answers the problem of what

constitutes a ‘computational procedure’ in Hilbert’s 10th Problem by reference to mental

arithmetic as practised in previous times by European school children, accountants and

waiters. This ‘waiter’s arithmetic’ is non-reversible and destructive. One may speculate

whether a culture based on reversible computation like an abacus would have developed

a different basic computational model. Quantum computation (Kitaev et al. 2000; Nielsen

and Chuang 2000), various issues in systems biology (Danos and Krivine 2004; Phillips

and Ulidowski 2005), and the need for minimal energy loss (Vitanyi 2005) have made

reversible computation interesting once again. Quantum computation was the motivation

for van Tonder (van Tonder 2004), who presents a reversible applied lambda calculus with

quantum constants; his operational semantics provided the inspiration for the operational

semantics of our reversible version of combinatory logic. On the other hand, the set of

combinators that we consider here have also been studied by Abramsky (Abramsky 2001;
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Abramsky et al. 2002), although with a different motivation, namely, to study the links

between reversible calculus and linear logic.

Our main motivation for investigating a reversible version of combinatory logic is,

ultimately, the development of a denotational semantics of (probabilistic versions of) the

λ-calculus reflecting the operational semantics we introduced in Di Pierro et al. (2005). This

kind of semantics is based on linear operator algebras and aims to support a compositional

approach to (probabilistic) program analysis. The close relationship between reversibility

and certain important classes of linear operators – in particular, unitary and normal

operators – was the starting point for a deeper investigation of the structure of reversible

computation.

In this paper we introduce an extension of the classical combinatory logic CL and its

associated notion of reduction, which incorporates information useful for reconstructing

the redex from the contractum. Intuitively, we can reverse a computation if we keep

information about its ‘history’, that is, information about the reduction steps that have

been performed during the computation. Our extension is based on this intuition and, in

particular, on the notion of a ‘history term’, which consists of a sequence of variables and

appropriately annotated combinators. This notion and, in general, the information that

has to be recorded as a history is strictly dependent on the nature and structure of the

original calculus; for example, in Van Tonder’s λ-calculus (van Tonder 2004) the history

keeps track only of the substitutions that take place in each β-reduction step.

Reversibility naturally introduces a notion of symmetry into computation and is there-

fore strongly related to the theory of groups; these are considered by most mathematicians

as being virtually synonymous with symmetry (Weinstein 1996). However, the notion of

automorphism associated with groups is in some sense too ‘trivial’ for characterising the

symmetry involved in a reversible computation. According to R. Brown (Brown 1987),

this has motivated the extension of the theory of groups to the theory of groupoids. A

groupoid can be described informally as a group with many objects, where objects can be

thought of as the start and end points of computational processes. While group theory

only allows us to characterise processes that start from one point and (possibly after a

number of steps) come back to the same point, in groupoid theory processes can have

different start and end points, which can be composed if and only if the starting point

of one process is the end point of the previous one. Thus, the algebraic structure of

groupoids naturally reflects the structure of reversible processes, which may traverse a

number of states, and is, therefore, more suitable for our purposes.

Based on this idea, we show that computations in the reversible CL can be modelled

as elements of the groupoid associated with the reduction relation. This corresponds to

the action of a group on the set of reversible terms, the group being determined by the

history terms.

This last characterisation allows us to show that the reversible CL is universal for

classical reversible computation, in the sense that all reversible computations can be

represented as a reversible CL reduction and vice versa. Moreover, as every reversible

reduction corresponds to a permutation, that is a unitary operator, reversible CL rep-

resents a high-level, though extremely inefficient way, of embedding classical (irreversible)

computation in quantum computation.
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2. Combinatory logic

Combinatory logic (Curry and Feys 1958; Hindley et al. 1972; Hindley and Seldin 1986)

(CL) is a formalism that, like the λ-calculus, was introduced to describe functions and

certain primitive ways to combine them to form other functions. Compared with the

λ-calculus, it has the advantage that it is variable free, which allows one to avoid all the

technical complications concerned with substitutions and congruence. It has, on the other

hand, the disadvantage of being less intuitive than the λ-notation. For the purposes of

our work we have opted for this more involved formalism because it allows a more agile

treatment and definition of our notion of reversible computation.

Definition 1 (Combinatory logic terms). The set of combinatory logic terms, CL-terms,

over a finite or infinite set of constants containing K and S and an infinite set of variables

is defined inductively as follows:

1 All variables and constants are CL-terms.

2 If X and Y are CL-terms, then (XY ) is a CL term.

Following Barendregt (Barendregt 1984), we will use the symbol ≡ to denote syntactic

equivalence. The two combinators S and K form a common basis for combinatory logic.

However, other sets of basic combinators can be defined. We will use the base consisting

of four basic operations encoded in the combinators B (implementing bracketing), C

(elementary permutations), W (duplication) and K (for deletion), which could be λ-defined

as follows (Curry and Feys 1958, page 379):

K ≡ λxy.x

W ≡ λxy.xyy

C ≡ λxyz.xzy

B ≡ λxyz.x(yz).

Importantly, we can use B, W and C to implement the common combinator S (Curry and

Feys 1958, page 155):

S ≡ B(B(BW)C)(BB).

In order to generate equalities provable in this calculus, we use a notion of reduction

similar to weak reduction for the SK-calculus (Barendregt 1984). This is defined as the

smallest extension of the relation on CL-terms induced by the basic operators that is

compatible with application.

Definition 2 (Reduction in CL). The reduction relation �� on CL-terms is defined by

the following rules:

1 KXY �� X
2 WXY �� XY Y

3 CXY Z �� XZY

4 BXY Z �� X(Y Z)

5 X �� X ′ implies XY �� X ′Y

6 X �� X ′ implies Y X �� Y X ′ .

https://doi.org/10.1017/S0960129506005391 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129506005391


A. Di Pierro, C. Hankin and H. Wiklicky 624

We will use �� �� to denote the reflexive transitive closure of �� . Following Barendregt

(Barendregt 1984), we will use = to denote the least equivalence relation extending �� �� .

This relation coincides with the set of all equalities that are provable in CL (Barendregt

1984, Proposition 7.2.2).

The relation between the λ-calculus and CL is a standard result (Barendregt 1984). With

reference to the standard base {S,K}, there is a canonical encoding ( )CL of λ terms in CL

terms. It is well known that in the presence of a rule for extensionality, the two theories

λ-calculus and CL (which are in general not equivalent) become equivalent (Barendregt

1984, Definition 7.3.14).

2.1. Invertible terms

The assumption of extensionality is also essential in the investigation of invertibility,

as shown in Dezani-Ciancaglini (1976) and Bergstra and Klop (1980) in the context of

λ-calculus.

Within the theory CL+ext, that is, CL extended with the rule (see Barendregt (1984,

Definition 7.1.10))

Px = P ′x for all x �∈ FV (PP ′) implies P = P ′,

we can characterise the invertible combinatory logic terms. We first observe that a semi-

group structure on the extended theory CL+ext is given by defining a composition of

terms by means of the B combinator as

X · Y = BXY ,

since for all Z we get (X · Y )Z = BXY Z = X(Y Z). This operation is associative and

can be seen as implementing ‘sequential’ or ‘functional composition’. In the λ-calculus it

is defined by

M · N = λz.M(Nz)

for any two λ-terms M,N.

Moreover, we can take the I combinator as the identity; in the λ-calculus this can be

defined, for example, by the term λx.x.

Naturally, the question arises as to which terms of a calculus like CL+ext form a group,

that is, for which terms X do we have an element X−1 (the inverse) such that

X · X−1 = X−1 · X = I.

The classically invertible CL terms are all those terms X for which there is a Y

such that BXY = BY X = I holds (cf. also Curry and Feys (1958, Section 5.D.5 and

Definition 5.D.1)). A very simple example of an invertible term is the identity combinator

I, which is its own inverse. In fact, we have

I · I = BII = I.

However, in calculi without extensionality this might be about the only example of an

invertible term. According to Barendregt (1984, Section 21.3), the invertible terms in the

λ-calculus (without extensionality) form the trivial group {I}. Extensionality is therefore
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needed to obtain some non-trivial invertible elements. It allows us to show, for example,

that C = C−1, that is, C is its own inverse. This is intuitively clear as the combinator C

is essentially representing a transposition of its 2nd and 3rd argument, and permutations

are reversible.

Dezani (Dezani-Ciancaglini 1976) and Bergstra and Klop (Bergstra and Klop 1980)

have studied the problem of how to describe the invertible elements in different calculi

and theories. This also resulted in a description of the group of all invertible elements in

the λη-calculus – cf. Barendregt (1984, Chapter 21).

In contrast with the classical approach, we will define a calculus that is reversible in the

sense that all reductions in the calculus can be expanded in a unique way to get the same

derivation, but in the opposite direction. The new reversible calculus will be an extension

of the CL+ext theory, so that all classical CL+ext reductions will still be reductions in

the new calculus.

3. Reversible combinatory logic

Providing a mechanism for recording the computational history of a term allows us to

define a reversible version of CL, which we will call rCL.

Formally, we define a reversible combinatory logic term, or rCL term, as a pair 〈M | H〉,
where M is a classical CL term, which we refer to as the proper term, and H is a list of

elements that record the reduction steps S (forward execution) and their expansion steps

S (backward execution). We refer to H as the history term.

Definition 3 (Reversible combinatory logic terms). A term in rCL is a pair 〈M | H〉, where

M is a classical CL term and H has the following syntax:

H ::= ε | S : H

S ::= TKm
n | Wm

n | Bm
n | Cm

n | S

where T is a classical CL-term, n, m ∈ � and S is defined as S .

If H ≡ S1 : S2 : . . . : Sn, we will use H to denote the term Sn : Sn−1 : . . . : S1. We identify

the terms H and H , that is, H = H . We use H to denote the set of all history terms

modulo this equivalence. It is easy to see that by construction the set of histories H forms

a group with respect to the composition operation ‘:’ by defining the neutral element of

the group as the empty history ε and the inverse of H by H , that is, H : H = H : H = ε.

The two numbers n and m record the exact point in the term in which the combinator,

that is, its corresponding reduction rule, is applied, and the length of prefix of the reduced

term, respectively. This information is important for guaranteeing a unique replay of all

reduction steps. We will often omit ε and use blank to represent the empty history. We will

use S + l with l ∈ � to denote a history step in which the position reference is increased

by l, for example, TKm
n + l ≡ TKm

n+l , and H + l to denote a position shift applied to a

whole history, that is, H + l ≡ S1 + l : S2 + l : . . . : Sk + l.
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Formally, we define the function len on classical CL-terms by

len(X) =

{
1 if X is a constant or variable

n + m if X = (Y Z) with len(Y ) = n and len(Z) = m.

Definition 4 (Reduction in rCL). The reversible reduction relation �� �� is defined by

the following rules:

Forward Rules

1 〈KXY | 〉 �� �� 〈X | Y Klen(X)
0 〉

2 〈WXY | 〉 �� �� 〈XY Y | Wlen(X)
0 〉

3 〈CXY Z | 〉 �� �� 〈XZY | Clen(X)
0 〉

4 〈BXY Z | 〉 �� �� 〈X(Y Z) | Blen(X)
0 〉

Backward Rules

1 〈X | 〉 �� �� 〈KXY | Y K
len(X)
0 〉

2 〈XY Y | 〉 �� �� 〈WXY | W
len(X)
0 〉

3 〈XZY | 〉 �� �� 〈CXY Z | C
len(X)
0 〉

4 〈X(Y Z)| 〉 �� �� 〈BXY Z | B
len(X)
0 〉

Structural Rules

1 〈X | 〉 �� �� 〈X ′ | H ′〉 implies 〈XY | 〉 �� �� 〈X ′Y | H ′〉
2 〈X | 〉 �� �� 〈X ′ | H ′〉 implies 〈Y X | 〉 �� �� 〈Y X ′ | H ′ + len(Y )〉
3 〈X | 〉 �� �� 〈X ′ | H ′〉 implies 〈X | H〉 �� �� 〈X ′ | H : H ′〉.

We will refer to Backward Rule i as the symmetric of Forward Rule i, and vice versa,

for i = 1, 2, 3, 4. The Structural Rules guarantee the compatibility of the reduction relation

with the composition operation on the proper terms (Rules 1 and 2), and with the

composition of history terms (Rule 3).

We call the relation �� �� on rCL defined by the Forward, Bckward and Structural

rules in Definition 4 the forward reduction, and we use �� �� �� to denote the reflexive

and transitive closure of �� �� . The relation �� �� is a proper relation, that is, not

a function; reductions in rCL are therefore non-deterministic. However, the converse

transition relation �� �� , defined as

〈P2 | H2〉 �� �� 〈P1 | H1〉 iff 〈P1 | H1〉 �� �� 〈P2 | H2〉,

and referred to as backward reduction, is deterministic. This allows us to reconstruct the

reduction sequences uniquely, despite the non-deterministic nature of �� �� . We will show

this formally in Proposition 1, whose proof will highlight the fundamental role played by

the pair of integers (m, n) occurring in the history terms in making the backward reduction

deterministic. Since �� �� is defined only on those terms 〈P2 | H2〉 for which there is a

forward reduction, it is a partial function.

In the following we will use the words ‘reduction’, ‘reduction sequence’, ‘computational

path’ and ‘computation’ interchangeably.
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Proposition 1. The relation �� �� is a partial function.

Proof. We have to show for every rCL term 〈P2 | H2〉 that there is either no term

〈P1 | H1〉 different from 〈P2 | H2〉 with 〈P2 | H2〉 �� �� 〈P1 | H1〉, or if there exists such a

term 〈P1 | H1〉, it is uniquely determined.

The proof is a straightforward induction on the depth of the derivation tree for

〈P2 | H2〉 �� �� 〈P1 | H1〉.
There are eight base cases corresponding to the four Forward Rules and the four

Backward Rules. In each case: H2 is a single term; the history H1 is empty; and the term

P1 can be uniquely determined from 〈P2 | H2〉 (by inspection of the rules).

There are three parts to the inductive step: one case for each of the Structural Rules.

Since each of the rules has a single premise, each case follows from a single use of the

induction hypothesis.

If we represent classical CL terms as binary trees, the last step S of the history H ′
2 : S

specifies a simple tree transformation. This transformation combined with the removal of

S from the history implements the reverse relation �� �� . To do this, we first have to

decompose the tree representation of P2 according to the information provided by the

sub- and superscripts m and n, and then transform the tree.

Example 1. Consider the classical term P2 ≡ (((WW)(KC))B). This term can be represented

by the binary tree

•

�������������

�������������

•

��������������

������������� B

•

������
������ •

������
������

W W K C

Let us assume that the history contains only one step, for example, H2 ≡ CK1
4. Then we

can (re)construct the sub-tree corresponding to P ′
2 by isolating the sub-tree on the first 4

leaves, and the one corresponding to X as the (degenerate) sub-tree with just one leaf, such

that P2 = P ′
2XP ′′

2 : in our case we get the sub-trees corresponding to P ′
2 ≡ ((WW)(KC))

and X ≡ B while P ′′
2 is omitted. Based on this decomposition, we can (re)construct the

tree P1 ≡ P ′
2(KXT )P ′′

2 ≡ (((WW)(KC))(KBC)).

In terms of tree-transformations, we just have to replace the subtree X ≡ B by the

subtree representing ((KX)T ) ≡ (KBC);

•

�������������

��������������

•

��������������

������������� •

������������

•

������
������ •

						






 •

������������ C

W W K C K B

https://doi.org/10.1017/S0960129506005391 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129506005391


A. Di Pierro, C. Hankin and H. Wiklicky 628

It is important to note that the decomposition of P2 according to the data provided by

n and m might not always be possible. If we had taken, for example, H2 ≡ CK1
3, it would

have been impossible to isolate a complete sub-tree with the first three leaves W, W and

K. This would represent a case where the reverse computation is not defined.

An important property of rCL is that reductions always increase the length of the

history term. We can interpret the accumulation of steps in the history as reflecting the

progress of time.

Proposition 2. Let T = 〈M | H ′〉 and T ′ = 〈N | H ′′〉 be two rCL terms. If T �� �� �� T ′,

there exists H ∈ H such that H ′′ = H ′ : H .

Proof. The proof is by a straightforward induction on the length of the reduction

T �� �� �� T ′.

The identification of histories in H via the equivalence H : H = ε allows us to eliminate

‘computational loops’, that is, the cyclic application of a certain sequence of rules. In this

way we can return to the start of a computation by undoing all its steps (in reverse order)

as in the following two simple reductions:

〈W | 〉 �� �� 〈KWB | BK
1
0〉 �� �� 〈W | BK

1
0 : BK1

0〉 = 〈W | 〉, and

〈KWB | 〉 �� �� 〈W | BK1
0〉 �� �� 〈KWB | BK1

0 : BK
1
0〉 = 〈KWB | 〉 .

The following example shows that without the position references it would be impossible

to reconstruct or retrace a given computational path.

Example 2. Consider the two reductions for terms 〈K(CW)C | 〉 and 〈KCCW | 〉, respect-

ively:

〈K(CW)C | 〉 �� �� 〈CW | CK〉 and 〈KCCW | 〉 �� �� 〈CW | CK〉 .
It is, therefore, impossible to tell where 〈CW | CK〉 came from. However, by adding the

position information, we have

〈K(CW)C | 〉 �� �� 〈CW | CK2
0〉 and 〈KCCW | 〉 �� �� 〈CW | CK1

0〉 .

The position information also allows us to encode different reduction strategies (for

example, n = 0 indicates left-most reduction) as in the following example.

Example 3. Let us consider the classical term W(BXY Z)K. It has two possible reduction

paths, which are reflected in the history terms:

〈W(BXY Z)K | 〉 �� �� 〈(BXY Z)KK | W4
0〉 �� �� 〈(X(Y Z))KK | W4

0 : B1
0〉 and

〈W(BXY Z)K | 〉 �� �� 〈(W(X(Y Z))K | B1
1〉 �� �� 〈(X(Y Z))KK | B1

1 : W3
0〉 .

Note that fixing a strategy in a reduction effectively rules out the use of Structural Rule 2

in the reduction.

The retracing of a computational path, that is, the reverse reduction relation �� �� , is

naturally implemented within the transition relation �� �� .
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Lemma 1. If 〈P2 | H2〉 �� �� 〈P1 | H1〉, there exists a history H with H ≡ H1 such that

〈P2 | H2〉 �� �� �� 〈P1 | H〉.

Proof. If 〈P2 | H2〉 �� �� 〈P1 | H1〉, then 〈P1 | H1〉 �� �� 〈P2 | H2〉 (by definition of the

converse relation). Assume that H1 = S1 : . . . : Sn−1 and H2 = S1 : . . . : Sn−1 : Sn. Take

H = S1 : . . . : Sn−1 : Sn : Sn, then

〈P2 | S1 : . . . : Sn−1 : Sn〉 �� �� 〈P1 | S1 : . . . : Sn−1 : Sn : Sn〉 .

since for every Forward Rule there is a symmetric Backward Rule in Definition 4, and,

obviously, S1 : . . . : Sn−1 ≡ S1 : . . . : Sn−1 : Sn : Sn.

3.1. Embedding CL in rCL

Classical combinatory logic can be embedded in rCL by representing any CL-term M with

a rCL-term T of the form 〈M | ε〉. The following result shows that the weak reduction

relation for CL-terms can be simulated by the reversible reduction relation on rCL.

Proposition 3. For every M ∈ CL we have:

If M �� �� N, then for all H ∈ H there exists H ′ ∈ H : 〈M | H〉 �� �� �� 〈N | H ′〉.

Proof. By hypothesis, there exists a classical reduction

M = N0
�� N1 . . . �� Ni . . . �� Nn = N

for some n � 1, where for all 0 � i � n, Ni
�� Ni+1 is an instance of one of the rules

1 − 4 of Definition 2.

By replacing each reduction step by the corresponding reversible forward reduction

step obtained by the rules in Definition 4, we get

〈M | 〉 �� �� �� 〈N | H ′′〉,

with H ′′ the history term produced in the reversible forward reduction. For any H ∈ H,

we can now apply Structural Rule 3 in Definition 4 to get

〈M | H〉 �� �� �� 〈N | H : H ′′〉.

Then take H ′ = H : H ′′.

The reverse of the proposition above does not hold, as shown by the following example.

Example 4. Consider the CL term M = KCBBB and its corresponding rCL term

〈KCBBB | 〉. The following is a possible reversible reduction for this term:

〈KCBBB | 〉 �� �� 〈CBB | BK1
0〉 �� �� 〈WCB | BK1

0 : W
1
0〉 .

The first step is Forward Rule 1, and the second step is by Backward Rule 2. We therefore

have

〈M | H〉 �� �� �� 〈N | H ′〉
with M = KCBBB, N = WCB, H = ε and H ′ = BK1

0 : W
1
0.
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However, neither of the two classical reductions

KCBBB �� �� WCB or WCB �� �� KCBBB

are possible as, classically, the two terms KCBBB and WCB reduce as follows:

KCBBB �� CBB

and

WCB �� CBB.

3.2. Invertible CL terms and rCL reduction

The inverse of a history and the inverse of a classical CL term, if it exists, are closely

related. The inverse history can, to a certain degree, simulate the effects of the inverse of

a classical term. In order to establish this relation, we first show how the group structure

of the history terms interacts with the reversible reduction rules introduced earlier.

Lemma 2. Let X be a classical CL term, and let H ∈ H. Then

〈X | 〉 �� �� �� 〈X ′ | H〉 iff 〈X ′ | 〉 �� �� �� 〈X | H〉.
Proof. Provided that 〈X | 〉 �� �� �� 〈X ′ | H〉, we have, by Structural Rule 3,

〈X | H〉 �� �� �� 〈X ′ | H : H〉 ≡ 〈X ′ | 〉,
and thus, by replacing in this derivation each rule by its symmetric rule,

〈X ′ | 〉 �� �� �� 〈X | H〉.

We can now show that for classical invertible terms M, histories can be used to simulate

a reduction for the inverse M−1 given a reduction for M.

Proposition 4. Let M be an invertible term in CL. Assume a history H ∈ H and two CL

terms N1 and N2 such that

〈MN1 | 〉 �� �� �� 〈N2 | H〉.
Then there exists H ′ ∈ H such that

〈M−1N2 | 〉 �� �� �� 〈N1 | H ′〉.
Proof. By Lemma 2 and the hypothesis 〈MN1 | 〉 �� �� �� 〈N2 | H〉, we have

〈N2 | 〉 �� �� �� 〈MN1 | H〉.
By Structural Rule 2, this reduction holds in any context, for example, M−1, and by

applying Backward Rule 4 and Structural Rule 3, we get

〈M−1N2 | 〉 �� �� �� 〈M−1(MN1) | H + len(M−1)〉
�� �� ��

〈
BM−1MN1 | H + len(M−1) + 1 : B

1
0

〉
=

〈
(M−1 · M)N1 | H + len(M−1) + 1 : B

1
0

〉
=

〈
IN1 | H + len(M−1) + 1 : B

1
0

〉
�� �� �� 〈N1 | H ′〉,

where the last reduction is by Proposition 3.
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In this proof the existence of H ′ is guaranteed by Proposition 3, which allows us to

translate classical equivalence into reversible equivalence: from P = P ′ and PM �� �� N,

we can conclude classically, by exploiting extensionality, that P ′M �� �� N for any M.

From Proposition 3, this can be translated into a similar statement in rCL:

〈PM | 〉 �� �� �� 〈N | H〉

implies that there exists H ′ such that for any P = P ′ and any M, we have

〈P ′M | 〉 �� �� �� 〈N | H ′〉.

Thus, in the proof above, H ′ can be constructed as in the proof for Proposition 3.

Note that since there are many different representations of the identity, for ex-

ample, I ≡ WK or I ≡ SKK ≡ B(B(BW)C)(BB)KK, the derivations of 〈WKM | 〉 and

〈B(B(BW)C)(BB)KKM | 〉 will result in rCL terms 〈M | H〉 and 〈M | H ′〉 with the same

proper term M, but with completely different histories H and H ′. We can therefore say

nothing about the concrete nature of H ′ in the previous proposition.

4. The groupoid structure of reversible computations

A groupoid can be defined succinctly as a small category in which every morphism is

an isomorphism (Brown 1987). This algebraic structure, which was introduced by Brandt

(Brandt 1926) (for further details see, for example, Renault (1980), Weinstein (1996),

Ramsay and Renault (2001) and Brown (1987)), naturally reflects the operational meaning

of term reduction and its reverse process. In fact, the reduction relation �� �� �� defines a

reversible computation as an isomorphism between rCL terms.

In this section we will develop this analogy in full detail. We will adopt the definition

of a groupoid as in Brown (1987).

Definition 5. A groupoid with base B is a set G with mappings α and β from G onto B, a

partially defined binary operation (product) (g, h) �→ g · h = gh, and a function i from B
to G satisfying the following conditions:

1 gh is defined whenever β(g) = α(h), and in this case α(gh) = α(g) and β(gh) = β(h).

2 The product is associative: if gh and hk are defined, then so are (gh)k and g(hk), and

they are equal.

3 For each b ∈ B, i(b) is the identity morphism: α(i(b)) = β(i(b)) = b.

4 Each g ∈ G has an inverse g−1 satisfying g−1g = i(β(g)), gg−1 = i(α(g)), α(g−1) = β(g)

and β(g−1) = α(g).

An element g ∈ G is often written as an arrow g : α(g) → β(g).

Groups are particular cases of groupoids, namely those where the base B contains only

a single element. In this case, we get a universal identity, the left and right inverse of any

g ∈ G coincide, and the composition is defined for any two elements g and h.

Example 5 (Groups). Any group (G, •) with identity e and typical elements g, h . . . defines

a groupoid G as follows: take G = G and as base any one element set B = {∗}; define

α(g) = ∗ and β(g) = ∗ for all g ∈ G. The group operation ‘•’ is translated in the obvious
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way into the groupoid operation ‘·’ via g · h = g • h. In particular, composition is defined

in this situation for any two elements g and h in G = G as α(g) = ∗ = β(h). We also get a

universal identity e ∈ G = G, and the inverse g−1 ∈ G and g−1 ∈ G coincide.

The prototypical example of a groupoid that is not a group is the ‘path space’ groupoid.

Example 6 (Paths). Consider any (finite) directed graph Γ = (E, V ) and use s(e) and d(e)

to denote the source and destination vertices of an edge e ∈ E. Let P be the set of finite

paths on Γ, that is, the finite sequences π = e0e1 . . . en of edges ei ∈ E such that two

successive edges share a common vertex, that is, d(ei) = s(ei+1) for i = 0, . . . , n − 1. We

use ε to denote the path of length zero. We interpret an undirected graph as a directed

graph where every edge e ∈ E also has a reverse edge e∗ ∈ E such that s(e) = d(e∗) and

d(e) = s(e∗). We call an edge ev ∈ E with s(e) = d(e) = v a self-loop. Furthermore, we

define an equivalence relation between paths that have the same start and end points,

that is, π1 ∼ π2 with π1 = e1
0e

1
1 . . . e

1
n and π2 = e2

0e
2
1 . . . e

2
m iff s(e1

0) = s(e2
0) and d(e1

n) = d(e2
m).

As usual, we use P/∼ to denote the set of equivalence classes.

We can then define a groupoid structure on the equivalence classes of paths on any

undirected graph Γ as follows: take G = P/∼ and B = V , that is, all vertices of Γ.

Furthermore, define α(π) = s(e0) and β(π) = d(en) for any path π = e0e1 . . . en ∈ P . We

can ‘compose’ any two paths π1 = e1
0e

1
1 . . . e

1
n and π2 = e2

0e
2
1 . . . e

2
m if and only if the ending

and beginning match, that is, iff β(π1) = d(e1
n) = s(e2

0) = α(π2); in which case we obtain

the path π1 · π2 = e1
0e

1
1 . . . e

1
ne

2
0e

2
1 . . . e

2
m. Clearly, this product is associative. The empty path

ε (or equivalently a self-loop ev) defines the identity i(v) on any vertex v. Since every

edge in an undirected graph has a reverse, we can define the inverse of π = e0e1 . . . en as

π−1 = e∗
n . . . e

∗
1e

∗
0.

These two examples clearly show the main difference between groups and groupoids:

while composition in groups is always defined, in groupoids there is a ‘matching’ condition

that has to be fulfilled. In this sense groupoids are groups with ‘typing’. Moreover, the

fact that in a group there is a single base element makes the notion of a reverse path in

this structure quite restrictive: it only includes paths that start from point ∗ and come

back to point ∗ itself. In a groupoid such a notion can be defined between different start

and end points provided the path can be ‘retraced’ or ‘reverted’.

Thus, a groupoid model for our reversible CL allows us to include reversible reductions

like the one in Example 3:

〈W(BXY Z)K | 〉 �� �� 〈(BXY Z)KK | W4
0〉 �� �� 〈(X(Y Z))KK | W4

0 : B1
0〉

where, even though the end and start points differ, the computation can be retraced

backward. This kind of computation would be excluded from a model based on a group

structure; this would only allow us to include reversible reductions like

〈W | 〉 �� �� 〈KWB | BK
1
0〉 �� �� 〈W | BK

1
0 : BK1

0〉 = 〈W | 〉, or

〈KWB | 〉 �� �� 〈W | BK1
0〉 �� �� 〈KWB | BK1

0 : BK
1
0〉 = 〈KWB | 〉 ,

that is, ‘computational loops’ where the same sequence of steps are first done and then

undone in reverse order (cf. Section 3).
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Groupoids

Group Actions

Equivalence Relations

Groups

Fig. 1. Groups, group actions and equivalence relations

In our rCL model for reversible computations, we cannot talk about the inverse of a

term M per se; since 〈MN1 | 〉 and 〈MN2 | 〉 will in general reduce to different terms

〈M1 | H1〉 and 〈M2 | H2〉, an ‘inverse’ of M would depend on the context. Instead, we have

for every computational path (represented by a history H1 or H2) an inverse computational

path (essentially represented by H1 or H2). If we consider invertible terms in CL, we can

ignore the context: if a term M has an inverse term M−1, then any execution of M−1 will

undo the effects of the execution of M in any context. This means that we only need a

dummy context N such that M−1 · MN = N, which corresponds to a one-element base,

that is, a group instead of a general groupoid.

In other words, while groups are convenient and natural for investigating invertible

terms (cf. Dezani-Ciancaglini (1976) and Bergstra and Klop (1980)), reversible computa-

tion requires us to reason about (reversible) paths with matching conditions and multiple

base points. Groupoids are therefore the natural generalisation of groups that allow us to

do this.

Besides being a generalisation of groups, groupoids can also be seen as a generalisation

of other mathematical structures, such as group actions and equivalence relations, as shown

in Figure 1 (Ramsay and Renault 2001).

The reduction relation �� �� �� establishes an equivalence relation on the rCL terms. We

can therefore define a model for rCL by taking the corresponding groupoid. According

to Brown (1987), this is given by G = G(T, �� �� �� ), where T is the set of all rCL terms,

and α, β, the identity i and the product operation are defined as follows:

— G ⊆ T × T with (T ,T ′) ∈ G iff T �� �� �� T ′

— B = T
— α((T ,T ′)) = T and β((T ,T ′)) = T ′

— (T ,T ′) · (T ′, T ′′) = (T ,T ′′)

— i(T ) = (T ,T )

— (T ,T ′)−1 = (T ′, T ).

4.1. The actor groupoid

We now show that the groupoid G(T, �� �� �� ) of reversible computations on rCL defined

above, can also be introduced via the action of the history group H on the set of
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rCL terms. Intuitively, this means that each history term determines a permutation on

rCL corresponding to a reversible computation, and vice versa.

Given a group G with identity e and a set X, a group action of G on X is defined as a

homomorphism π of G into the automorphism group of X, that is, π(g) ∈ Aut(X) such

that π(e) = id, where id is the identity automorphism, and π(gh)(x) = π(g)(π(h)(x)). Given

a group action π of G on X, we can define a groupoid G = G(X,G, π), as follows:

— G ⊆ X × G × X with (x, g, y) ∈ G iff π(g)(x) = y

— B = X

— α((x, g, y)) = x and β((x, g, y)) = y

— (x, g, y) · (y, h, z) = (x, hg, z)

— (x, g, y)−1 = (y, g−1, x).

This construction is due to Ehresmann (Ehresmann 1957) and is sometimes called the

actor groupoid or semi-direct product groupoid.

Consider the groupoid G defined by the action π of H on rCL given by

π(H)(〈M | H ′〉) =

{
〈N | H ′ : H〉 if 〈M | H ′〉 �� �� �� 〈N | H ′ : H〉
〈M | H ′〉 otherwise.

Proposition 5. For all H ∈ H, π(H) is a permutation on rCL.

Proof. Given an enumeration of the rCL terms, for any H ∈ H the map π(H) realises

a shift on rCL terms.

It is interesting to note that the structure of the permutation group Aut(rCL) = {π(H) |
h ∈ H} is determined by the structure of the history group. In fact, composition, identity

and inverse are defined in Aut(rCL) as π(H1)(π(H2)) = π(H2 : H1), π(ε), and π(H) = π(H),

respectively.

It is easy to verify that the groupoid G(rCL, �� �� �� ) is identical to the group action

groupoid G(rCL,H, π) defined above. In fact, we can define a groupoid isomorphism by

simply forgetting about the ‘connecting history’.

Proposition 6. The map δ : G(rCL,H, π) → G(rCL, �� �� �� ) defined by

δ(〈T ,H,T ′〉) = 〈T ,T ′〉

is a groupoid isomorphism.

Proof. The map δ is a groupoid morphism since it is compatible with the product, head

and tail maps of the two groupoids, that is, we have δ(g1g2) = δ(g1)δ(g2), δ(α(g)) = α(δ(g))

and δ(β(g)) = β(δ(g)). Thus, we only need to show that it is injective and surjective.

Surjective:

Let 〈T ,T ′〉 ∈ G(rCL, �� �� �� ), and let T = 〈M | H ′〉 and T ′ = 〈N | H ′′〉. Then there

exists a reversible reduction T �� �� �� T ′. By Proposition 2, we have H ′′ = H ′ : H for

some H ∈ H. Therefore, 〈T ,H, π(H)(T )〉 = 〈T ,H,T ′〉 is the element in G(rCL,H, π)

such that δ(〈T ,H,T ′〉) = 〈T ,T ′〉.
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Injective:

If δ(〈T1, H1, T
′
1〉) = δ(〈T2, H2, T

′
2〉), then 〈T1, T

′
1〉 and 〈T2, T

′
2〉 identify the same element

in G(rCL, �� �� �� ). Thus, by Proposition 2, there exists a history H ∈ H such that

〈M | H ′〉 �� �� �� 〈N | H ′ : H〉 with T1 = T2 = 〈M | H ′〉 and T ′
1 = T ′

2 = 〈N | H ′ : H〉.
This implies that H1 = H2 must hold. Otherwise we would have

T ′
1 = π(H1)(T1) = 〈N | H ′ : H1〉 �= 〈N | H ′ : H2〉 = π(H2)(T2) = T ′

2.

5. Conclusion

We have introduced a reversible version rCL of combinatory logic in which terms are

enriched with a history part that allows us to replay every computational step uniquely. We

have taken an ‘application-oriented’ approach and given prominence to the computation

features of the λ-calculus and the related theory of combinatory logic rather than other

important aspects such as as a foundation of mathematics and in their pure form.

Given the well-known relationship between CL and the λ-calculus, we can, in principle,

define a reversible version of the λ-calculus by exploiting the encoding of the λ-calculus in

CL. However, the variable-freeness of CL requires only a relatively simple kind of history

term, as we can avoid recording details of (multiple) variable substitution, and so on.

The definition of the formal semantics of rCL does not change the non-deterministic

nature of classical CL: depending on the particular reduction strategy, we may get different

computational paths starting from the same term. However, as the history term not only

records ‘which’ kind of reduction has happened, but also ‘where’, we are able to define

a converse transition relation (which ‘goes back in time’) that is deterministic, and thus

allows us to reconstruct reduction sequences uniquely.

We have also established a clear distinction between the closely related concepts of

invertibility of terms and the reversibility of computations. A term M, for example, in CL,

is invertible if a(nother) term M−1 exists that is always able to compensate for the effects

of the first one, and vice versa. In order to introduce this notion, we need concepts like an

identity term I and term composition ‘·’. A computation is reversible, if it can be ‘replayed’,

that is, it is possible to reconstruct the computational steps given the outcome. While

invertible terms form a group, we need the more general notion of a groupoid to describe

reversible computations, as we can ‘compose’ two computations only if terminal and initial

terms coincide. We have shown that the computational paths of our reversible calculus

can be seen as the orbits of the history group acting on the space of rCL terms. On the

other hand, the reduction rules of the rCL calculus introduce an equivalence relation on

the terms with an associated groupoid. We have shown that the two definitions essentially

identify the same groupoid as a model for the computational paths in rCL.

Reversibility is an essential requirement for the embedding of classical computation in

quantum mechanics, as quantum computing devices are essentially represented by unitary,

that is invertible, transformations. The reversible combinatory logic we have presented

offers a universal model for classical reversible computation, in the sense that every

classical reversible computation corresponds to a rCL reduction, and vice versa. In the

field of quantum computation this result provides an alternative high-level way to look
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at reversible classical computation; this is usually described in terms of circuits built

out of a particular universal gate, namely the Toffoli gate (Nielsen and Chuang 2000).

The universality of rCL for classical reversible computation comes from the fact that,

as shown by the actor groupoid model, an rCL reduction effectively corresponds to a

permutation of the rCL terms. However, rCL is an extremely wasteful way to provide

reversibility, and hence of no practical use as a basis for any plausible implementation of

classical (irreversible) computation in a quantum mechanical setting – much more efficient

approaches have been devised to this end (Bennet 1973).

A more promising direction for further work is related to the definition of a model for

rCL that is more denotational in nature. For this we aim to clarify the relationship between

reversible reductions and a particular class of linear operators, namely unitary operators,

which may serve as a base for a fixpoint semantics of rCL and similar reversible extensions

of the λ-calculus, as well as for the semantics of more concrete quantum programming

languages such as those recently proposed in the literature (Gay 2005). For this we

hope to exploit well-established results on the relationship between operator algebras (in

particular C∗ algebras) and groupoids (Renault 1980).
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