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Direct numerical simulations using up to 40963 grid points on a deforming domain
have been used to study the response of initially isotropic turbulence to a period
of spatially uniform axisymmetric contraction (with one extensional and two equally
compressive directions) and subsequent relaxation. A time-dependent strain rate is
formulated to closely correspond to the downstream evolution in the wind tunnel
experiments of Ayyalasomayajula & Warhaft (J. Fluid Mech., vol. 566, 2006,
pp. 273–307), with a smoothly varying 4 : 1 contraction ratio. The application of
strain leads to anisotropy in both the large scales and the small scales, in a manner
where nonlinear effects not considered in rapid-distortion theory play an important
role. Upon termination of strain, the small scales quickly return to isotropy while
a residual level of anisotropy appears to persist at the large scales. The simulations
are shown to reproduce many key findings from experiments, including distinctive
changes in the form of the one-dimensional spectra in the extensional direction
that arise at sufficiently high Reynolds number, during both the straining and
relaxation periods. Scale-dependent measures of anisotropy are presented in terms
of one-dimensional spectra and axisymmetric versions of the energy spectrum. To
explain the observed changes in spectral shapes, various terms in the spectral evolution
equation representing rapid pressure strain, slow pressure strain, production, nonlinear
transfer and viscous dissipation are computed, showing that nonlinear effects take a
dominant role when a wide range of scales exists. In particular, the ‘double-peak’
spectral form observed in experiments at high Reynolds number is found to be a
consequence of the small scales relaxing towards isotropy much faster than the large
scales. A comparison of results obtained from computational domains of varying sizes
and grid resolutions show that the numerical findings are robust.

Key words: homogeneous turbulence, turbulence simulation, turbulent flows

1. Introduction
Many fundamental studies of turbulent flow are, for important reasons, devoted to

the canonical geometries of isotropic turbulence with no mean velocity gradients, or

† Email address for correspondence: pk.yeung@ae.gatech.edu
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Turbulence under axisymmetric contraction 461

to flows dominated by mean shear with or without wall boundaries. However, many
turbulent flows also undergo changes in cross-section, e.g. flows through nozzles and
diffusers, where the effects of deformation by irrotational mean strain are of great
interest. Mean strain rates give rise to anisotropy, which weakens when the strain is
removed. A considerable body of work is known for the return-to-isotropy problem
in Reynolds stress closures (Lumley & Newman 1977; Speziale 1991). However, at
a more detailed level, the nature of anisotropy development at different scale sizes,
which is important for subgrid-scale modelling (Liu, Katz & Meneveau 1999), is still
not well understood (Sagaut & Cambon 2008).

Assuming incompressibility, three principal sub-classes of irrotational mean strain
can be identified, namely: (i) axisymmetric contraction (one extensional direction
and two equally compressive directions), (ii) axisymmetric expansion (two equally
extensional directions and one compressive direction) and (iii) plane strain (one
extensional direction and one compressive direction). A number of experimental
(Gence & Mathieu 1979; Liu et al. 1999; Choi & Lumley 2001; Ayyalasomayajula
& Warhaft 2006; Brown, Parsheh & Aidun 2006) and numerical (Lee & Reynolds
1985; Zusi & Perot 2013, 2014) studies covering one or more of these sub-classes
are known. All three sub-classes are distinct and important. However, axisymmetric
contraction and expansion (as well as relaxation therefrom) are more closely related
to flows through conduits of variable cross-section in engineering devices, and to
converging and diverging sections in laboratory wind tunnel facilities. A number of
early experimental (Uberoi 1956; Mills & Corrsin 1959; Reynolds & Tucker 1975;
Warhaft 1980) and theoretical (Batchelor & Proudman 1954) studies focused on
the response of isotropic turbulence subjected to axisymmetric contraction. Velocity
fluctuations are (as expected from the Reynolds stress transport equations) suppressed
in the extensional direction but amplified in the compressive directions. The small
scales also depart from isotropy when the strain rate is large (Uberoi 1956). However,
in these early studies, the Reynolds number was usually limited, and no attempt was
made to investigate the Reynolds number dependence of the flow.

In this paper, we present a computational investigation of turbulence under
axisymmetric contraction and subsequent relaxation, with a special interest in
conditions corresponding to experiments. In particular, we refer closely to the
experimental data of Ayyalasomayajula & Warhaft (2006) (AW henceforth) in which
grid-generated turbulence was passed through an axisymmetric contraction of area
ratio 4 : 1. Using both passive and active grids, the experiments of AW covered
a range of Reynolds numbers (40–470, based on the Taylor scale). A significant
result was that a qualitative change in the form of the transverse one-dimensional
(1-D) spectra occurred during relaxation (referred to as a ‘double peak’) only if the
Reynolds number was sufficiently high. Increasing departures from rapid distortion
theory (RDT) (Savill 1987) were also observed as the Reynolds number was increased.

Although strained turbulence becomes less anisotropic upon removal of strain
(Sarkar & Speziale 1990; Choi & Lumley 2001), a full return to isotropy is not
guaranteed. For example, the simulations of Chasnov (1995) and Davidson, Okamoto
& Kaneda (2012) showed that for anisotropic Saffman turbulence (Saffman 1967;
Krogstad & Davidson 2010), the large scales do not return to isotropy. Changes
in the form of the spectra measured by AW also imply that different scales
respond differently to both the application and removal of strain. To understand
the mechanisms involved it is necessary to study spectral transfer resulting from
nonlinear interactions and pressure-strain correlations between different scale sizes
and velocity components (in the extensional versus compressive directions). Direct
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462 M. P. Clay and P. K. Yeung

numerical simulations (DNS) using Fourier pseudo-spectral methods are well suited
to provide the detailed information necessary for this purpose.

It is well known that, provided the strain rate is uniform in space, turbulence under
irrotational mean strain is homogeneous and can be simulated on a solution domain
that deforms with the mean flow (Rogallo 1981). A number of such simulations,
with strain rates held constant in time, have been helpful in examining the structure
of Reynolds stress anisotropy (Lee & Reynolds 1985), assessing turbulence models
(Zusi & Perot 2013, 2014) and understanding inertial and fluid particle statistics (Lee
et al. 2015). However as in the case of Gualtieri & Meneveau (2010) (in conjunction
with Chen, Meneveau & Katz (2006)), a time-dependent strain rate in the DNS is
necessary to facilitate comparisons with experiment, where typically the turbulence
evolves in space rather than in time.

In this work we have developed a smoothly varying time-dependent strain rate to
closely mimic the laboratory conditions of AW. A series of numerical simulations
in a deforming periodic domain have been performed to study the effect of the
Reynolds number and possible numerical or sampling limitations of the results. To
capture the natural behaviours of both large- and small-scale motions faithfully,
simulation parameters are chosen to ensure that, at all times, the large scales are
sufficiently well sampled along the shortest side of the solution domain, while the
small scales are sufficiently well resolved along the direction of coarsest grid spacing.
A pre-simulation is first carried out in order to produce a state of fully developed
isotropic turbulent flow before strain is applied. The highest grid resolution is 40963.
During the application of strain, the small scales become strongly anisotropic, but in
contrast to the large scales, they return to isotropy quickly when strain is removed.
For the case of highest pre-strain Reynolds number (95 based on the Taylor scale),
we find clear evidence of the characteristic change in spectral shape that AW reported
in their higher Reynolds number experiments during the relaxation phase. Detailed
analyses of the evolution of axisymmetric spectra (Mininni, Rosenberg & Pouquet
2012) in the simulations show that this feature is the result of a strong contrast in
rates of return to isotropy between the large scales and the small scales, with this
contrast being stronger at higher Reynolds number.

The remaining sections of this paper are organized as follows. In § 2, we present our
numerical method including the governing equations on a domain deforming with the
mean flow, the development of a time-dependent strain rate used to model the wind
tunnel contraction of AW and the formulation of evolution equations for spectra. In
§ 3, we give details on the pre-simulation approach and a list of several simulations
conducted for both physical (Reynolds number) and numerical (domain size and grid
resolution) reasons. In § 4, we focus on the response of initially isotropic turbulence
to the time-dependent axisymmetric contraction. In § 5, we present results for the
relaxation phase that begins when the strain rate is turned off. A number of 1-D
spectra are shown which display features similar to those reported by AW in their
experiments. Finally, in § 6 we summarize the conclusions from this work and briefly
discuss some possible paths for further investigation. In the Appendix we show that
our numerical results are robust by comparing simulations on domains of different size
and grid resolution.

2. Mathematical formulation and numerical approach
The use of a solution domain that deforms according to an axisymmetric time-

dependent strain rate, which is in turn constructed to model a laboratory turbulent
flow with a spatially evolving cross-section, requires some special care in both the
conduct of the simulation and the subsequent data analysis, as we discuss below.
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2.1. Solution algorithm in a deforming, anisotropic domain
Rogallo (1981) introduced the coordinate transformation ξi = Bij(t)xj, in which the
deforming coordinate system ξi is related to the laboratory coordinates xi through the
metric tensor Bij(t). Summation over repeated Latin indices is implied throughout the
text. The deforming coordinates are required to move with the mean flow, according
to

dBij

dt
+ Bik

∂〈Uk〉
∂xj
= 0, (2.1)

where 〈Ui〉 is the mean velocity. In this coordinate system the turbulence is
homogeneous, and periodic boundary conditions are applicable provided the mean
velocity gradients are uniform in space. The continuity and momentum equations
become

Bji
∂ui

∂ξj
= 0 (2.2)

∂ui

∂t
+ uj

∂〈Ui〉
∂xj
+ Bkj

∂uiuj

∂ξk
=−Bji

1
ρ

∂p
∂ξj
+ νBkjBlj

∂2ui

∂ξk∂ξl
, (2.3)

where ui is the fluctuating velocity, p is the fluctuating pressure, ρ is the density
and ν is the kinematic viscosity. Nonlinear terms are evaluated using a Fourier
pseudo-spectral method, and the numerical solution in Fourier space is advanced in
time using a second-order predictor–corrector scheme. Aliasing errors are mitigated
by using truncation and grid shifting in wavenumber space (Rogallo 1981).

For irrotational axisymmetric contraction, the mean deformation tensor is given by
(Lee & Reynolds 1985)

∂〈Ui〉
∂xj
= 2√

3
S(t)


1 0 0

0 −1
2

0

0 0 −1
2

 (2.4)

with S(t) > 0. The solution domain is orthogonal at all times, such that only the
diagonal elements of Bij(t) are non-zero. Solving (2.1) leads to (for α = 1, 2, 3, no
summation)

Bαα(t)= B0
ααe−fα(t), (2.5)

where B0
αα ≡ Bαα(0) and exp[ fα(t)] is the total strain in each direction with

fα(t)=
∫ t

0

∂〈Uα〉
∂xα

dτ . (2.6)

Figure 1 shows a schematic of how the domain is deformed during the application of
strain. At any time t, the length of the domain on each side given by Lα = 2π/Bαα(t)
varies as Lα(t) = L0

α exp[ fα(t)] where L0
α is the initial length. While the number of

grid points is fixed, the grid spacings and hence also resolution in each direction
vary. Correspondingly, the wavenumbers represented in each direction of the domain
are given by kα(nα, t) = nαBαα(t), where nα = −Nα/2 + 1, · · · , Nα/2, and Nα is the
number of grid points in the xα direction. The maximum resolved wavenumber in each
direction after truncation is kmax,α(t)=

√
2NαBαα(t)/3. As the simulation proceeds and

the domain becomes deformed from its original shape, it is necessary to check that the
large scales continue to be well contained within the domain in all directions, while
the small scales likewise remain well resolved (Gualtieri & Meneveau 2010).
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Strain

x1x3

x2

FIGURE 1. Grid deformation under axisymmetric contraction with a total elongation of 4
in the x1 direction. The grid metrics in the x2 and x3 directions are equal.

2.2. A time-dependent strain as a model for experiment
In most wind tunnel experiments the change in cross-section is gradual, which results
in a smooth variation of the mean velocity with distance downstream along the wind
tunnel centreline. The mean strain rate along the wind tunnel centreline is thus readily
established as a function of the spatial coordinates. However, as a fluid element passes
through the wind tunnel, the spatially varying mean strain rate is experienced in a
time-dependent manner. To model the mean strain rates from experimental wind
tunnels in our time-dependent DNS, we apply a spatially uniform, but time-dependent
mean strain rate that corresponds to the local value of the mean strain rate that a
fluid element experiences as it passes through the wind tunnel (Pearson 1959). This is
accomplished by introducing a convective time t as the time taken for a fluid element
travelling with the mean flow to reach a position x from a reference location xa.
(Here x alone, or xa etc. without tensor subscripts shall refer to distances measured
along the wind tunnel centreline.) We write

t=
∫ x

xa

dξ
〈U1(ξ)〉 . (2.7)

According to (2.5)–(2.6), by this time t the grid metric in the extensional direction
will be

B11(t)= B0
11 exp

[
−
∫ t

0

∂〈U1〉
∂x1

dτ
]
. (2.8)

The integral in (2.8) can be evaluated through a change of variables, dτ = dx/〈U1(x)〉
(suggested by (2.7)). After some simplifications, we obtain

B11(t)= B0
11
〈U1(xa)〉
〈U1(x)〉 . (2.9)

Since the applied mean strain is volume preserving, the product of the three diagonal
metric factors B11B22B33 is fixed, while axisymmetry requires B22 = B33. As a result,
the change in the transverse grid metrics is given by

B22(t)
B0

22
= B33(t)

B0
33
=
√
〈U1(x)〉
〈U1(xa)〉 . (2.10)
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FIGURE 2. (Colour online) (a) Schematic of mean velocity profile in experiments, and (b)
examples of non-dimensional strain rate Sτa as function of convective time in experiments
and DNS. In (b):E (black) is for the AW Rλ = 260 experiment,@ (blue) for AW Rλ =
40 experiment,q (magenta) for S∗0 = 25 numerical,f (green) for S∗0 = 20 numerical and
s (red) for S∗0 = 15 numerical.

Since in the simulation the turbulence is advanced in time instead of space, at each
time step from tn to tn+1t, it is necessary to solve (2.7) for a new spatial location x,
so that the new metric factors can be evaluated according to (2.9)–(2.10). In addition,
at every time step the metric factors are used to form the viscous integrating factors
(Rogallo 1981). The solution to (2.7) and the calculation of the integrating factors are
carried out using QUADPACK (Piessens et al. 1983).

In the experiments of AW, the mean streamwise velocity 〈U1(x)〉 along the
centreline of the wind tunnel is well described by an error function, which yields a
Gaussian profile for the mean extensional strain (see figure 2 of AW). We consider
the functional form

〈U1(x)〉 = a erf(bx)+ c, x ∈ [xa, xb] , (2.11)

where the five parameters a, b, c, xa and xb are chosen so the mean strain closely
matches the experiments in a non-dimensional sense, and the origin of the x-axis has
been placed at the location of maximum mean velocity gradient. In the experiments,
some appreciable strain also existed immediately upstream and downstream of the
physical beginning and ending locations of the contraction. To incorporate this feature
in our DNS, we specify two intermediate locations xi and xf satisfying xa < xi < xf <
xb (xi and xf correspond to the vertical lines in figure 2 of AW). Since these two
locations are approximately equally far from the location of maximum strain rate, we
take xi=−xf . The straining ‘period’ in the DNS is considered to be the entire phase
of the simulation during which there is non-zero mean strain, corresponding to the
physical distance between xa and xb. Figure 2(a) presents a sketch of an error function
mean velocity profile with these locations marked for later reference. While xi and xf
are used to specify the mean velocity variation, we report pre- and post-contraction
statistics at xa and xb, respectively.

For a systematic procedure for choosing the five curve-fit parameters noted above,
we need five constraints to control both the spatial spread of the profile and its
maximum velocity gradient (which is proportional to the product ab). First, since
the value of c does not affect the strain rate, it is arbitrary provided it is large
enough to ensure that 〈U1(x)〉 > 0 for all x. Second, we specify the velocity ratio
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〈U1(xf )〉/〈U1(xi)〉 at a value close to the experiment. Third, we require that the strain
rate S at x=0, denoted by S0, corresponds to a non-dimensional strain S∗0 formed from
S0 and a large-eddy time scale of the turbulence before strain is applied. Specifically,
we define S∗0 = S0τa, where τa= (2K/〈ε〉)a, with K and ε being the turbulence kinetic
energy and the dissipation rate. Fourth, the starting location xa is chosen to give
a desired non-dimensional strain rate at xa based on the experiments. Finally, the
ending location xb is chosen to achieve a desired velocity ratio 〈U1(xb)〉/〈U1(xa)〉, i.e.
deformation, for the entire straining period.

Figure 2(b) shows a qualitative comparison of the non-dimensional strain rate
profiles obtained numerically from three values of S∗0 with experimental data
derived from AW at two values of the pre-strain Reynolds number. Experimental
data in this figure are obtained first by applying curve fits of a form similar to
(2.11) and then differentiating. The non-dimensional strain rates are plotted at
convective times t in the laboratory facility obtained using (2.7) and normalized
by large-eddy turnover times obtained from table 1 of AW. The numerical strain rates
are obtained using the aforementioned procedure with c = 10, bxf = 0.9, a velocity
ratio 〈U1(xf )〉/〈U1(xi)〉 = 2.85, a starting non-dimensional strain rate of 0.3 at xa and
an overall velocity ratio 〈U1(xb)〉/〈U1(xa)〉 = 4. The resulting strain rate profiles are
similar to those in the experiments, suggesting that the procedures described here
model the mean velocity variation in the wind tunnel contraction well.

2.3. Spectral evolution and rapid-distortion theory
To understand the dynamical processes underlying the change in shape of the energy
spectrum under applied strain, we need to compute various terms in the spectral
evolution equations. In isotropic turbulence, computation of the nonlinear transfer
spectrum of the kinetic energy (e.g. Domaradzki & Rogallo 1990; Yeung, Brasseur
& Wang 1995) in spherical wavenumber shells is sufficient. However, in this work
we also have to consider pressure-strain correlations and systematic anisotropy, which
requires individual components of spectra in one- and two-dimensional partitions
of wavenumber space. In addition, the mean strain distorts the wavenumbers on a
deforming domain, leading to transport of the spectrum in wavenumber space (Pope
2000).

In Fourier space, the fluctuating velocity on a deforming periodic domain evolves
by

dûi(k)
dt
=−ûj(k)

∂〈Ui〉
∂xj
− ikip̂(k)−Gi(k)− νk2ûi(k), (2.12)

where the metric factors in (2.3) are expressed through time dependence of the wave
vector k, p̂(k) is the Fourier coefficient of the fluctuating pressure, Gi(k) = ikjûiuj

and i=√−1. It is important to distinguish between rapid pressure and slow pressure,
which respond to the mean flow and the velocity fluctuations respectively; we write
p̂= p̂r + p̂s. Both are obtained by solving well-known Poisson equations. The spectral
covariance E ij(k)≡〈û∗i (k)ûj(k)〉 (where superscript ∗ denotes complex conjugates) is in
general complex valued, although because mean shear is absent we are only concerned
with the diagonal components, which are real. We can write

dE ij(k)
dt
= Pij(k)+Π r

ij(k)+Π s
ij(k)+ Tij(k)−Dij(k), (2.13)

where terms on the right-hand side represent, respectively, production due to the mean
velocity gradient, redistribution due to rapid pressure and slow pressure, spectral
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transfer due to nonlinear terms and dissipation due to viscosity. Specifically, these
terms are:

Pij(k)=−∂〈Uj〉
∂xm

E im(k)− ∂〈Ui〉
∂xm

E∗jm(k), (2.14)

Π r
ij(k)= iki〈û∗j (k)p̂r(k)〉∗ − ikj〈û∗i (k)p̂r(k)〉, (2.15)

Π s
ij(k)= iki〈û∗j (k)p̂s(k)〉∗ − ikj〈û∗i (k)p̂s(k)〉, (2.16)

Tij(k)=−[〈û∗i (k)Gj(k)〉 + 〈û∗j (k)Gi(k)〉∗], (2.17)

Dij(k)= 2νk2E ij(k). (2.18)

The angled brackets in these equations represent averaging over multiple realizations,
i.e. ensemble averaging, which we perform for the majority of our simulations detailed
later. When axisymmetric contraction is applied the production term is negative for
E11(k), but positive for E22(k) and E33(k), thus causing anisotropy directly, especially
at the large scales. The pressure-strain term exchanges energy among the diagonal
components Eαα(k) and is traceless due to incompressibility, for both rapid and slow
pressures. The rapid pressure is present only while strain is applied, while slow
pressure is also important during relaxation. Since nonlinear transfer redistributes
energy in Fourier space, each component of Tij(k) integrates to zero over wavenumber
space. Integrating (2.13) over all wavenumbers gives the Reynolds stress transport
equation for homogeneous turbulence, which is

d〈uiuj〉
dt
=−〈ujuk〉∂〈Ui〉

∂xk
− 〈uiuk〉∂〈Uj〉

∂xk
+ 2
ρ
〈prsij〉 + 2

ρ
〈pssij〉 − 2ν

〈
∂ui

∂xk

∂uj

∂xk

〉
, (2.19)

where sij is the fluctuating strain rate.
In (2.13), only the production and rapid pressure-strain terms depend directly on the

mean strain rate. As a result, if the strain rate is very strong, i.e. very rapid compared
to the time scales of the turbulence, this equation can be simplified by retaining only
Pij(k) and Π r

ij(k), while neglecting viscous dissipation and the nonlinear effects of
slow pressure and spectral transfer. The behaviour of the energy spectrum tensor
can then be described by inviscid RDT (Townsend 1976; Savill 1987). Although
in practice the strain rates in experiments and simulations are necessarily finite,
comparisons with RDT theory are still useful for a better understanding.

The use of a deforming domain, and hence a time-dependent set of wave vectors in
our simulations, requires some care when interpreting spectra. It would be useful to
relate the 1-D spectrum Eαα(kβ) to its equivalent representation E0

αα(k
0
β) as a function

of the pre-strain wavenumbers k0
β . This would clearly show how a set of modes (those

perpendicular to an initial k1) are affected by the strain. The integrals of these spectra
over the corresponding wavenumbers kβ and k0

β are both equal to 〈u2
α〉. At any time t

during the straining period, the current and pre-strain wavenumbers are related by

kβ(t)= k0
βBββ(t)/B0

ββ, (2.20)

where B0
ββ/Bββ(t) is the total deformation in the xβ direction. A change of variables

between the integrals in kβ and k0
β then gives the relation

E0
αα(k

0
β)≡ Eαα(kβ)Bββ(t)/B0

ββ . (2.21)
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FIGURE 3. Ring decomposition of wavenumber space for axisymmetric turbulence. The
axis of axisymmetry λ is in the k1 direction, and the ring is perpendicular to λ. The
longitude with respect to k2 is θ and the colatitude with respect to λ is φ.

Following AW, we present most of our 1-D spectral results in terms of the pre-strain
wavenumbers during the application of strain, and in terms of the post-strain
wavenumbers (which are fixed) during the relaxation period.

Statistics in axisymmetric turbulence are rotationally symmetric about a preferred
direction λ (Batchelor 1946), which in this study is the extensional direction. Figure 3
shows a decomposition of Fourier space motivated by this rotational symmetry,
such that spectral quantities are expressed as functions of k1 and the wavenumber
magnitude in the cross-sectional plane kr =

√
k2

2 + k2
3. We can also write kr = k sin φ,

where k = √k · k and 0 6 φ 6 π is the colatitude with respect to λ. The spectral
covariance E ij(k) defined earlier is a discrete version of the velocity spectrum tensor
Φij(k) (whose integral in wavenumber space gives 〈uiuj〉). We define the axisymmetric
spectrum tensor as

Aij(k1, kr)=
∫ 2π

0
Φij(k)kr dθ, (2.22)

from which the 1-D spectra can be recovered by

E ij(k1)= 2
∫ ∞

0
Aij(k1, kr) dkr, (2.23)

where the factor of 2 is used to collect contributions from both positive and negative
values of k1. Axisymmetric representations of the spectra are useful in studies of
rotating (Clark di Leoni et al. 2014) and stably stratified turbulent flows (Godeferd
& Staquet 2003). Evolution equations for the axisymmetric spectra and 1-D spectra
are readily obtained by integration of (2.13) over rings and planes in wavenumber
space, respectively. For isotropic turbulence, the contours of the axisymmetric energy
spectrum EA(k1, kr)≡ 1

2 Aii(k1, kr) multiplied by 1/ sinφ are circles in the (k1, kr) plane
(Mininni et al. 2012). In practice, the axisymmetric spectra are formed by summing
over Fourier modes residing in rings of finite thickness. Because the computational
space is Cartesian, the distribution of modes in rings at small kr is significantly uneven,
which can lead to some noise in contours of the axisymmetric spectra. A node-density
correction factor is applied in a manner similar to those used for 3-D spectra collected
into discrete spherical shells in wavenumber space (Eswaran & Pope 1988).
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3. Pre-simulation and the choice of numerical parameters
In our simulations we are interested in the effects of strain applied to a velocity field

that is physically well developed, well sampled and well resolved. To produce such an
initial state, we carry out a ‘pre-simulation’ of decaying isotropic turbulence evolving
from a Gaussian velocity field with a specified energy spectrum. The mean strain rate
is turned on when the turbulence shows clear evidence of a power-law decay in its
kinetic energy, and of non-Gaussianity in the statistics of velocity gradient fluctuations.
The initial energy spectrum chosen is of the form (Pope 2000, pp. 232–234)

E(k)=CK〈ε〉2/3k−5/3fL(kL)fη(kη), (3.1)

where fL(kL) controls the shape of the energy containing range, fη(kη) gives
exponential decay in the dissipation range, k is the wavenumber magnitude, CK
is the Kolmogorov constant (taken as 1.62 (Yeung & Zhou 1997)), 〈ε〉 is the mean
dissipation rate, L is a measure of the size of the large scales and η = (ν3/〈ε〉)1/4
is the Kolmogorov length scale. Other constants appearing in the model spectrum
functions include p0 = 2, β = 5.2, cη = 0.4 and cL = (1.262CK)

3 ≈ 8.55. With p0 = 2,
the fitting function fL(kL) gives E(k)∼ k2 for small k.

The non-cubic and deforming nature of the solution domain implies that both
large-scale sampling and small-scale resolution are dependent on time and direction.
The shape of the pre-simulation domain is illustrated in the left of figure 1. We
measure large-scale sampling by comparing the integral length scales with the shortest
side of the domain, and small-scale resolution by comparing the Kolmogorov scales
with the coarsest grid spacing. As the turbulence decays and the length scales grow,
large-scale sampling worsens, but small-scale resolution improves. To ensure that
the large scales are initially well sampled, we choose the spectrum parameter L to
be a small fraction of the shortest dimension L0

1. Resolution of the small scales in
cubic domains is often expressed by the non-dimensional parameters 1x/η and kmaxη.
Although good resolution requires 1x/η. 2 (corresponding to kmaxη & 1.5) (Donzis,
Yeung & Sreenivasan 2008), a larger initial value of 1x/η for a pre-simulation
is acceptable since the resolution improves as the turbulence decays. In this work,
we must consider directional resolution parameters ∆α/η (∆α ≡1xα is the grid
spacing in the xα direction), because the grid spacing in each direction varies. For the
pre-simulation, the grid spacing is coarsest in the x2 and x3 directions, so we specify
an initial value of η such that ∆2/η (which equals ∆3/η) takes an acceptable value.

Table 1 summarizes the pre-simulation initial conditions in this work. Run 1 is a
baseline, low Reynolds number simulation comparable to the lowest Reynolds number
experiment reported by AW. The modest size of this run allows us to perform multiple
independent realizations (Overholt & Pope 1996), which is useful for statistical
reliability since time averaging is not applicable. Runs 2–5 are effectively at the
same Reynolds number as Run 1, but designed to check the influence of the domain
size and grid resolution. In Runs 2 and 3, the domain size is unchanged, but the grid
spacing is refined by a factor of 2 first along the x1 direction, and then the x2 and
x3 directions. Run 4 shows, relative to Run 1, the effects of improved small-scale
resolution in the x1 direction accompanied by improved large-scale sampling in the
x2 and x3 directions. Run 5 presents a case in which the domain size is doubled in
all directions compared to Run 1, while the grid spacings are unchanged.

In Runs 6 and 7, we increase the Reynolds number by using the same domain
size (i.e. the same grid metrics) as Run 1, and refining the grid spacing to resolve
a smaller initial Kolmogorov scale. We also conduct two simulations on 40963 grids
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Run 1 2 3 4 5 6 7 8 9
Count 16 4 4 4 4 4 4 1 1

N1 512 1024 1024 1024 1024 1024 2048 4096 4096
N2 =N3 512 512 1024 1024 1024 1024 2048 4096 4096
B0

11 1 1 1 1 1/2 1 1 1 1/2

B0
22 = B0

33
1

2
√

2

1

2
√

2

1

2
√

2

1

4
√

2

1

4
√

2

1

2
√

2

1

2
√

2

1

4
√

2

1

4
√

2
R0
λ 39.7 39.6 39.0 39.7 39.7 67.7 113 112 113

L0
1/L 8 8 8 8 16 8 8 8 16
(L1/`11)0 16.7 16.8 16.6 16.7 33.4 18.3 19.0 19.1 37.5
(L2/`22)0 47.7 47.2 48.3 93.1 92.5 50.2 54.1 112.8 106.7
(∆1/η)0 1.31 0.65 0.65 0.65 1.31 1.31 1.31 0.65 1.31
(∆2/η)0 3.70 3.70 1.85 3.70 3.70 3.70 3.70 3.70 3.70

TABLE 1. Initial conditions for the pre-simulations. For each run, ‘count’ is the number
of independent simulations. In the first block, number of grid points and initial grid metric
factors are Nα and B0

αα , respectively. The second block lists the Taylor-scale Reynolds
number and indicators of large-scale sampling and small-scale resolution. Longitudinal
integral length scales given by `αα and η is the Kolmogorov length scale. Domain length
and grid spacing in the xα direction are given by Lα and ∆α , respectively. Length scales L
and η0 are inputs to the model spectrum function. Kinematic viscosity for all simulations
is ν = 2.8× 10−3 (arbitrary units).

(Runs 8 and 9) to investigate the influence of the domain size and grid resolution
on Run 7. Compared to Run 7, Run 8 gives improved small-scale resolution in the x1
direction, and improved large-scale sampling in the x2 and x3 directions. Finally, Run 9
improves large-scale sampling compared to Run 7 by doubling the domain length in
all directions.

Table 2 summarizes the state of each run at the end of the pre-simulation period,
just before strain is applied. The turbulence kinetic energy, dissipation rate and
Taylor-scale Reynolds number at this time (designated by subscript or superscript a)
are all (as a result of decay) lower than their initial values (designated by subscript
or superscript 0). Large-scale sampling has worsened by this time, as indicated
by the larger integral length scales, but small-scale resolution has improved. The
integral length scales approximately satisfy `11 = 2`21, which is indicative of isotropy.
Non-Gaussianity is evident in the skewness factors of longitudinal velocity gradients
reaching approximately −0.5, and the flatness factors reaching values that increase
with Reynolds number. It appears that u1,1 ≡ ∂u1/∂x1 is slightly more non-Gaussian
than u3,3 ≡ ∂u3/∂x3, which may be the result of better small-scale resolution in the
x1 direction compared to the x2 and x3 directions. In all runs, the ratios of transverse
to longitudinal velocity gradient variances are within 0.5 % of the isotropic value of
2. All components of the Reynolds stress anisotropy tensor are 3 × 10−3 or smaller,
showing that a state of isotropic turbulence is obtained despite the non-cubic shape
of the domain.

4. Application of strain
Following the pre-simulation we apply a time-dependent axisymmetric contraction

until the domain elongates by a factor of 4 in the x1 direction. Using the approach
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Run 1 2 3 4 5 6 7 8 9

Ka/K0 0.463 0.463 0.462 0.463 0.463 0.447 0.446 0.446 0.447
〈ε〉a/〈ε〉0 0.233 0.232 0.224 0.233 0.233 0.248 0.290 0.289 0.290
Ra
λ 38.1 38.1 38.1 38.1 38.1 60.9 93.4 93.4 93.8
(L1/`11)a 12.9 12.9 12.7 12.9 25.7 14.6 15.4 15.2 30.5
(L1/`21)a 25.5 24.8 25.2 25.3 50.6 28.0 31.0 30.7 62.4
(L2/`22)a 37.2 36.5 37.8 73.1 71.7 40.4 42.3 91.4 84.6
(∆1/η)a 0.90 0.45 0.45 0.45 0.90 0.92 0.97 0.48 0.96
(∆2/η)a 2.54 2.54 1.27 2.54 2.54 2.61 2.73 2.73 2.73
S(ua

1,1) −0.513 −0.509 −0.508 −0.513 −0.511 −0.516 −0.530 −0.530 −0.529
S(ua

3,3) −0.491 −0.489 −0.505 −0.490 −0.489 −0.492 −0.497 −0.499 −0.498
F(ua

1,1) 4.15 4.14 4.17 4.16 4.15 4.60 5.10 5.12 5.10
F(ua

3,3) 4.08 4.07 4.16 4.07 4.07 4.50 4.97 4.97 4.96

TABLE 2. Simulation parameters at the onset of straining, labelled with subscript
or superscript a. Parameters with subscript 0 taken from initial conditions for the
pre-simulations (see table 1 for R0

λ). In the second block `11 and `22 are longitudinal
integral length scales, and `21 is the transverse integral length scale in the x1 direction.
The domain does not deform during the pre-simulation, so La

1 = L0
1 and La

2 = L0
2. With

the shorthand ui,j = ∂ui/∂xj the third block shows the skewness (S) and flatness (F) of
longitudinal velocity gradients.

and parameters detailed in § 2.2, we apply mean strain rates characterized by a peak
non-dimensional strain S∗0= 25. In § 4.1 we present single-point moments, and in § 4.2
we study the evolution of the spectra.

4.1. Single-point moments
We first provide data in table 3 that summarizes the post-contraction state of each
run, to be followed by figures that show the evolution of important statistics over
the complete straining period. The post-contraction shape of the domains is as
shown in the right of figure 1, with a decrease in B11 and increase in B22 and B33
relative to their pre-contraction values in table 1. As the domain deforms and the
physical length scales of the turbulence evolve, large-scale sampling and small-scale
resolution (second block in table 3) change. The post-contraction domains are still
large compared with the integral length scales, indicating that large-scale sampling is
still adequate. It is worth noting that the ratio L1/`21 has dropped compared to its
pre-contraction value, despite a factor of 4 increase in L1. This implies a substantial
increase in the transverse integral length scale `21, which is consistent with the
formation of coherent longitudinal vortices in the extensional direction (Rogers &
Moin 1987). As expected, small-scale resolution worsens in the direction where
the domain is stretched (x1), but improves in the directions where the domain is
compressed (x2 and x3).

Continuing in table 3, the turbulence kinetic energy is amplified in all cases, with
the amplification ratio nearly independent of the Reynolds number. The dissipation
rate also increases, but less so at higher Reynolds number. It is clear that the
turbulence becomes anisotropic, as velocity fluctuations in the extensional and
compressive directions are suppressed and amplified, respectively. Anisotropy at
the small scales is also seen in the statistics of velocity gradient fluctuations, such
as the ratio of transverse to longitudinal velocity gradient variances, which differ
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Run 1 2 3 4 5 6 7 8 9

Bb
11 1/4 1/4 1/4 1/4 1/8 1/4 1/4 1/4 1/8

Bb
22 = Bb

33
1√
2

1√
2

1√
2

1

2
√

2

1

2
√

2

1√
2

1√
2

1

2
√

2

1

2
√

2
(L1/`11)b 60.1 59.6 59.1 60.3 121 75.3 83.9 81.4 168
(L1/`21)b 19.0 18.5 18.8 18.8 37.7 20.5 22.1 22.2 44.3
(L2/`22)b 24.1 23.6 24.8 47.6 46.6 26.3 27.1 57.9 54.3
(∆1/η)b 4.34 2.17 2.17 2.17 4.34 4.31 4.30 2.15 4.30
(∆2/η)b 1.53 1.53 0.77 1.53 1.53 1.52 1.52 1.52 1.52
Kb/Ka 1.56 1.57 1.57 1.57 1.57 1.57 1.59 1.59 1.59
〈ε〉b/〈ε〉a 2.13 2.12 2.13 2.13 2.13 1.85 1.54 1.54 1.54
〈u2

1〉b/〈u2
1〉a 0.201 0.199 0.200 0.201 0.202 0.222 0.244 0.246 0.244

〈u2
2〉b/〈u2

2〉a 2.25 2.26 2.24 2.25 2.25 2.24 2.26 2.26 2.26

〈u2
2,1〉b/〈u2

1,1〉b 4.27 4.27 4.27 4.28 4.27 3.05 2.27 2.28 2.27
〈u2

3,2〉b/〈u2
2,2〉b 2.98 2.98 2.98 2.98 2.98 2.96 2.90 2.90 2.90

S(ub
1,1) 0.0154 0.0497 0.0632 0.0447 0.0175 0.345 0.397 0.493 0.399

S(ub
3,3) −0.0591 −0.0594 −0.0579 −0.0596 −0.0613 −0.102 −0.178 −0.180 −0.178

F(ub
1,1) 6.55 6.85 6.90 6.73 6.53 9.72 11.2 12.7 11.2

F(ub
3,3) 3.43 3.42 3.43 3.43 3.43 3.57 3.82 3.85 3.82

TABLE 3. Post-contraction (subscript or superscript b) parameters and post- to
pre-contraction parameter ratios. See tables 1 and 2 for descriptions of symbols.

from the isotropic value of 2. Apparently, in the higher Reynolds number runs, the
ratio 〈u2

2,1〉/〈u2
1,1〉 becomes less anisotropic but 〈u2

3,2〉/〈u2
2,2〉 is nearly fixed at close

to 3, which (as we discuss further later in this subsection) is an indication of quasi
two-dimensionality in the cross-sectional plane.

Third and fourth moments of longitudinal velocity gradients are also included in
table 3. In 3-D incompressible isotropic turbulence, the skewness of the longitudinal
velocity gradient is negative, and related to the phenomenon of vortex stretching
(Batchelor 1953; Tavoularis, Bennett & Corrsin 1978). However, as reported by
AW and others (Mills & Corrsin 1959; Sjögren & Johansson 1998), we find that
axisymmetric contraction causes the skewness of ∂u1/∂x1 to undergo a change in
sign, with its magnitude increasing with the Reynolds number. In contrast, the
skewness of ∂u3/∂x3 remains negative but its magnitude is reduced compared to that
observed in isotropic turbulence. At the same time, we observe an increase in the
flatness of ∂u1/∂x1 and a decrease in the flatness of ∂u3/∂x3 during the contraction.
The flatness of ∂u1/∂x1 also increases with Reynolds number, which is consistent
with AW. A comparison of the post-contraction flatness of ∂u1/∂x1 between runs
with different resolution (Run 2 and 8 versus 1 and 7, respectively) suggests that
higher-order derivative statistics in this work are affected by finite resolution in the
extensional direction. However, we are mainly interested in lower-order quantities
such as spectra, for which the lower-resolution simulations are adequate. We show in
the Appendix that the major results from this paper are not affected.

It is also useful to compare DNS, which uses a finite strain rate, to RDT. Following
the pre-simulation, we evolve the Fourier coefficients of the velocity field according
to well-known relations for inviscid RDT (Townsend 1976; Lee & Reynolds 1985).
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FIGURE 4. (Colour online) Evolution of (a) K and 〈ε〉 normalized by initial values for
Runs 4, 6 and 8, (b) budget for dK/dt normalized by 〈ε〉a for Runs 4 and 8, and (c)
non-dimensional strain rates for Runs 4, 6 and 8. In (a), solid curves (red) for K(t)/Ka
for the three runs are almost coincident, and dashed curves (blue) are for 〈ε(t)〉/〈ε〉a, with
Rλ increasing in the direction of the arrow. In (b), dashed curves with open symbols are
for Run 4, and solid curves with filled symbols for Run 8:p and@ (blue) for production,
u andE (red) for minus the dissipation, andq andA (black) for overall rate of change.
In (c), mean strain rate normalized by large-eddy turnover time τ (upper red curves) and
Kolmogorov time scale τη (lower blue curves), with Rλ increasing in the directions of the
arrows.

Run 1 2 3 4 5 6 7 8 9

S(ub
1,1) −0.665 −0.663 −0.660 −0.665 −0.663 −0.683 −0.706 −0.706 −0.706

S(ub
3,3) −0.0247 −0.0221 −0.0245 −0.0257 −0.0260 −0.0271 −0.0251 −0.0253 −0.0255

F(ub
1,1) 5.08 5.06 5.05 5.08 5.07 5.64 6.26 6.26 6.24

F(ub
3,3) 4.18 4.17 4.28 4.18 4.17 4.67 5.16 5.16 5.16

TABLE 4. Post-contraction skewness and flatness of longitudinal velocity gradients
predicted by rapid-distortion theory.

Each velocity field is subjected to a 4 : 1 area ratio axisymmetric contraction. We
then ensemble-average statistics over all realizations for each run, e.g. over the
16 simulations comprising Run 1. RDT predicts Kb/Ka = 2.1 and 〈ε〉b/〈ε〉a = 5.5
for all runs, which are considerably different from the DNS results presented in
table 3. The extent of large-scale anisotropy is predicted well by RDT; it gives
bb

11 =−0.3 and bb
22 = 0.15 for all runs. There is more discrepancy between the DNS

and RDT when examining velocity derivative statistics. For example, RDT estimates
〈u2

2,1〉b/〈u2
1,1〉b = 8, which is markedly different from the DNS results. The velocity

derivative statistic 〈u2
3,2〉b/〈u2

2,2〉b, however, takes a post-contraction value of 3 with
RDT, which is very similar to the DNS results. Table 4 shows the RDT predictions
for higher-order velocity derivative statistics. While RDT fails to predict a positive
value for the skewness of ∂u1/∂x1, a small negative value of the skewness of ∂u3/∂x3
is consistent with the DNS at lower Reynolds numbers. The large increase in the
flatness of ∂u1/∂x1 at high Reynolds numbers, and the decrease in the flatness of
∂u3/∂x3 observed in the DNS are not predicted by RDT.

For information on the evolution of the turbulence during the period of axisymmetric
contraction, and to facilitate comparison with previous studies, it is useful to show
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results against the total deformation at a given time, rather than time itself. Figure 4
shows, as a function of L1(t)/L0

1 (which ranges from 1 to 4 for a 4 : 1 contraction
ratio), in (a) the evolution of turbulence kinetic energy and dissipation rate, in (b)
various terms in the turbulence kinetic energy budget and in (c) the non-dimensional
mean strain rates. To focus on the effects of the Reynolds number we have selected
data from Runs 4, 6 and 8 (see table 1). For homogeneous turbulence the turbulence
kinetic energy budget is governed by production and dissipation, as

dK
dt
=−〈uiuj〉∂〈Ui〉

∂xj
− 〈ε〉. (4.1)

It can be seen that both K and 〈ε〉 initially decay since it takes finite time for
production (initially zero) to grow to exceed the dissipation. Subsequently, as both
variables grow, the evolution of K is almost independent of the Reynolds number,
while dissipation grows less rapidly at high Reynolds number. Because of the form
of the strain rate profile (figure 2), both K and 〈ε〉 decrease towards the end of
the straining period when the strain rate is weak. The production term in frame (b)
is driven by the mean flow and is essentially the same for all Reynolds numbers
simulated. It is also dominant over dissipation during the straining period, which
explains why the kinetic energy evolution is nearly identical for all runs. The
non-dimensional strain rates in frame (c) indicate that the strain rates are strong
compared to the time scales of the large-scale motions, but actually weak from the
perspective of the small scales.

The production of turbulence kinetic energy by mean strain requires anisotropy in
the Reynolds stresses, which is expressed by the anisotropy tensor bij= 〈uiuj〉/(2K)−
δij/3, and its second and third coordinate-frame invariants. We use the definitions

η= (bijbji/6)1/2; ξ = (bijbjkbki/6)1/3, (4.2a,b)

where here η is not to be confused with the Kolmogorov scale. For isotropic
turbulence subjected to axisymmetric contraction the invariants satisfy

ξ =−η. (4.3)

Figure 5 shows for Runs 4 and 8, (a) the evolution of the Reynolds stresses, (b)
the evolution of the anisotropy tensor elements b11 and b22 and (c) the invariants ξ
and η. The results suggest that the large-scale anisotropy is completely determined
by the total deformation at any time t, but is independent of the Reynolds number.
Since the large-scale anisotropy depends only on the total deformation, the anisotropy
development is the same as observed in simulations with constant strain rates (Lee
& Reynolds 1985), and can be predicted almost exactly by RDT. Although (4.3) is in
principle exact, in numerical results it is not guaranteed if the large scales contributing
the most to the Reynolds stress tensor are not sampled well in a domain of finite size.
Our present results show that the large scales are sufficiently well sampled.

The development of anisotropy in the Reynolds stress tensor can be analysed
further using the Reynolds stress transport equation (2.19). Figure 6 presents the
terms in the balance equations for (a) 〈u2

1〉 and (b) 〈u2
2〉, using data from Runs 4

and 8. For the production terms, in this flow P11 < 0 whereas P22 > 0. The rapid
pressure-strain term quickly counteracts the anisotropy generated by the production
term. The slow pressure-strain term, on the other hand, becomes significant only
at later times, and is more important at higher Reynolds number. In frame (b) the
production effect is clearly the dominant term in the Reynolds stress budget for 〈u2

2〉,
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FIGURE 5. (Colour online) Evolution of (a) Reynolds stresses normalized by q2
a= 2Ka, (b)

components of the Reynolds stress anisotropy tensor and (c) anisotropy tensor invariants
for Run 4 (dashed curves with open symbols) and Run 8 (solid curves with filled symbols).
Symbolsp and@ (red) are for 〈u2

1〉/q2
a, b11 and ξ in each respective figure. Symbolsu and

E (blue) are for 〈u2
2〉/q2

a, b22 and η in each respective figure. Dashed lines in (c) are for
the two-dimensional isotropic limit.
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FIGURE 6. (Colour online) Reynolds stress budgets normalized by initial dissipation rate
〈ε〉a during the application of strain for Run 4 (dashed curves with open symbols) and
Run 8 (solid curves with filled symbols). Budget terms for d〈u2

1〉/dt are shown in (a) and
budget terms for d〈u2

2〉/dt in (b): s and C (red) are for production, q and A (magenta)
for rapid pressure strain, f and 6 (green) for slow pressure strain, u and E (blue) for
dissipation, and the sum of all budget terms is marked byp and@ (black).

being resisted only weakly by the rapid pressure strain at early times and viscous
dissipation at later times. In both frames of this figure the production terms (of either
sign) reach peak amplitude at intermediate times, which is a consequence of the time-
dependent strain rate and is different from results from simulations of constant strain
(Lee & Reynolds 1985).

Although large-scale statistics show little dependence on the Reynolds number,
small-scale statistics, such as the dissipation rate in figure 4(a), show a strong
Reynolds number dependence. It was already observed in table 3 that the small
scales become anisotropic during the straining period. The geometry of axisymmetric
contraction also suggests that vorticity components in different directions (ω1 versus
ω2 and ω3) will have different statistics. We therefore investigate the behaviour of
both vorticity and velocity gradient fluctuations below, with data given in the two
frames of figure 7, respectively.
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FIGURE 7. (Colour online) Evolution of (a) mean-square vorticities normalized by
dissipation rate and (b) velocity derivative statistics for Run 4 (dashed curves with open
symbols) and Run 8 (solid curves with filled symbols). In (a), p and @ (black) are for
ν〈ω2

1〉/〈ε〉a,u andE (red) for ν〈ω2
2〉/〈ε〉a andq andA (blue) for ν〈ω2

3〉/〈ε〉a. Let ui,j =
∂ui/∂xj. In (b),p and@ (red) are for 〈u2

2,1〉/〈u2
1,1〉,u andE (blue) for 〈u2

1,2〉/〈u2
2,2〉,f and

6 (magenta) for −〈u2
1,1〉/〈u2,3u3,2〉,q andA (green) for 〈u2

3,2〉/〈u2
2,2〉, ands andC (black)

for −〈u2
2,2〉/〈u2,3u3,2〉. Values for 〈u2

3,2〉/〈u2
2,2〉 and −〈u2

2,2〉/〈u2,3u3,2〉 in two-dimensional
isotropic turbulence marked by horizontal dashed lines at 3 and 1, respectively.

In homogeneous turbulence we can write

〈ε〉 = ν(〈ω2
1〉 + 〈ω2

2〉 + 〈ω2
3〉). (4.4)

Figure 7(a) shows, for Runs 4 and 8, the three mean-squared vorticities, normalized by
the viscosity and the pre-contraction dissipation rate. As expected from the geometry,
axisymmetric contraction amplifies and aligns vorticity in the extensional direction
while reducing vorticity in the compressive directions (Rogers & Moin 1987), but
the effects are weaker at higher Reynolds number. This dependence on the Reynolds
number can be understood by noting that (lower curves in figure 4c) as the Reynolds
number increases (in the order Runs 4, 6, 8) the value of the non-dimensional strain
rate Sτη becomes smaller. In other words, as the range of time scales in the flow
widens with increasing Reynolds number, the strain rate becomes weaker with respect
to the small scales. Hence, at higher Reynolds numbers, the fluctuating vorticity is
less responsive to the applied strain, as reflected in the weaker amplification of 〈ω2

1〉
in figure 7(a).

To further assess departures from local isotropy using statistics of the velocity
gradients, we can compare the simulation data with a number of relations that apply
for 3-D incompressible isotropic turbulence, such as (with α 6= β)

〈(∂uα/∂xβ)2〉 = 2〈(∂uα/∂xα)2〉, (4.5)
〈(∂uα/∂xα)2〉 =−2〈(∂uα/∂xβ)(∂uβ/∂xα)〉. (4.6)

Figure 7(b) shows the evolution of ratios formed from (4.5) and (4.6) during the
straining period. The velocity derivative statistics are initially isotropic, but depart
from isotropy as the strain is applied. The statistics are more anisotropic at the lower
Reynolds number because the strain rate is more rapid with respect to the small scales.
In their experiments, AW measured 〈u2

2,1〉/〈u2
1,1〉 for a wide range of Reynolds numbers
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(see figure 8 in AW). The post-contraction values for this statistic in the DNS are
similar to those reported by AW, and also remain closer to the isotropic value as the
Reynolds number is increased.

It is worth noting that figure 7(b) shows that during straining, 〈u2
3,2〉/〈u2

2,2〉 and
−〈u2

2,2〉/〈u2,3u3,2〉 approach asymptotic limits 3 and 1, respectively. This can be
explained by generalizing (4.5) and (4.6) to n-dimensional isotropic turbulence, where
n > 2. We have, for α 6= β (Pope 2000; Gotoh et al. 2007)

〈(∂uα/∂xβ)2〉 = (n+ 1)/(n− 1)〈(∂uα/∂xα)2〉, (4.7)
〈(∂uα/∂xα)2〉 =−(n− 1)〈(∂uα/∂xβ)(∂uβ/∂xα)〉. (4.8)

Substituting n = 2 into (4.7) and (4.8), we obtain the limiting values observed in
figure 7(b) for 〈u2

3,2〉/〈u2
2,2〉 and −〈u2

2,2〉/〈u2,3u3,2〉, respectively. This suggests that
the small scales under an axisymmetric contraction of sufficient strength tend to
asymptotically approach the limiting state of isotropic turbulence in two dimensions.
At the same time, a number of relations for velocity gradient statistics conforming
to a state of local axisymmetry (George & Hussein 1991) are well verified in our
DNS data. In other words, the post-contraction state of the small scales is one of
local axisymmetry with velocity gradients in the extensional direction becoming
asymptotically small compared to gradients in the compressive directions. (This is
supported by the line for the ratio −〈u2

1,1〉/〈u2,3u3,2〉 in the figure approaching almost
zero on the scales chosen.)

4.2. Spectral evolution
Results discussed above indicate that anisotropy in the mean flow and the large-scale
motions ultimately lead to strong anisotropy in the small scales. This observation
implies that isotropy in the flow is scale dependent, which is best explored through
spectral quantities in wavenumber space. We consider an axisymmetric representation
of the energy spectrum (§ 2.3), 1-D spectra like those measured in the experiments
of AW, and various terms in the spectral energy budget (based on (2.13)).

Figure 8 shows contour plots of the axisymmetric energy spectrum EA(k1, kr) for
Runs 4 and 8 before the straining period (a,d), half way through the straining period
(b,e), and at the end of the straining period (c, f ). If the turbulence is isotropic the
energy spectrum would depend only on k = √k2

1 + k2
r , which means isocontours

of EA(k1, kr) (after the normalization discussed in § 2.3) would be circles in the
(k1, kr) plane. This is indeed the case for the pre-contraction spectra in frames (a)
and (d), except that the shape of the contours is distorted near the simulation cutoff
wavenumbers, which are marked by the outermost black elliptical boundaries in
the plots. As the strain is applied (from the left column to the right column), the
spectra change significantly. The post-contraction energy spectra in frames (c) and
( f ) are highly anisotropic at all scales of motion (with non-circular contours), which
is consistent with the large-scale and small-scale anisotropy observed for single-point
moments in § 4.1. The contours in frame (c) for Run 4 show evidence of stronger
anisotropy than those in frame ( f ) for Run 8. This is in agreement with the results for
single-point moments, which showed that the small scales become more anisotropic
during the application of strain at lower Reynolds number. During straining, the
domain is lengthened in the x1 direction but shortened in x2 and x3. This results in
wavenumber distortion, where the wavenumbers in k1 decrease while those in k2 and
k3 increase. Close observation of figure 8 reveals that the cutoff wavenumber boundary
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FIGURE 8. (Colour online) Axisymmetric energy spectrum for (a–c) Run 4 and (d–f )
Run 8 (a,d) before the application of strain, (b,e) half way through straining (L1/L0

1 = 2)
and (c, f ) at the end of the straining period. Contour levels decrease by a factor of 10.
Spectra plotted against the instantaneously distorting wavenumbers, and multiplied by 2 to
recover K when integrating over kr and non-negative k1. Simulation cutoff wavenumbers
marked by outermost black boundary. Spectra normalized by sinφ= kr/k to obtain circular
contours in isotropic turbulence; data for kr = 0 omitted from plot.

for each simulation is distorted as the strain is applied. Wavenumber distortion causes
energy to accumulate in long-wavelength (low-wavenumber) modes in the extensional
direction, which is consistent with the formation of long coherent vortical structures
in the extensional direction (Rogers & Moin 1987).

To characterize the scale-dependent anisotropy between different velocity components,
we show in figure 9 the 1-D spectra of the u1 and u2 velocity fluctuations for low and
high Reynolds numbers in the DNS (top and middle rows, respectively), compared
with the highest Reynolds number data in the AW experiments (bottom row, from
AW figure 11, with permission). The spectra are, based on rationale discussed earlier
in § 2.3, all shown as functions of the initial (pre-contraction) wavenumbers. The
effect of strain on E0

11(k
0
1) is a decrease at low wavenumbers but an increase at high

wavenumbers. As the Reynolds number increases, a pronounced rightward shift is
seen to develop in the peak of k0

1E0
11(k

0
1) in both the DNS and experiment (red dashed

lines in the insets of frames (c) and (e)). The effect of the mean strain on E0
22(k

0
1)

is, in contrast, an increase in the spectrum at all values of k0
1, with a milder change

in the spectrum shape and a weaker Reynolds number dependence. The suppression
of 〈u2

1〉 and amplification of 〈u2
2〉 are also indicated by changes in the area under the

curves in the inset to each figure.
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FIGURE 9. (Colour online) Comparison of pre- and post-contraction longitudinal (a,c,e)
and transverse (b,d, f ) 1-D spectra, for DNS Run 4 at low Reynolds number (a,b), DNS
Run 8 at higher Reynolds number (c,d) and the high Reynolds number experiment of
AW (e, f ), all shown as functions of pre-contraction wavenumbers. Experimental data are
reproduced from figure 11 of AW by permission of the authors. Solid lines (black) are for
pre-contraction DNS or experiment, dashed (red) for post-contraction DNS or experiment
and dashed-dotted (blue) for post-contraction RDT. Insets in each frame show the same
spectra but multiplied by the wavenumber (e.g. k0

1E0
22(k

0
1)), such that the areas under the

curve on log–linear scales give the mean-squared velocities. For the DNS, the transverse
spectra E0

22(k
0
1) and E0

33(k
0
1) are averaged with each other when producing frames (b) and

(d). Such averaging is motivated by the axisymmetry of the turbulence.
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In figure 9 we have included inviscid RDT results for comparison. While the
theory appears to reasonably predict the shape of E0

11(k
0
1) at low wavenumbers, it

can be seen that the theory fails to capture the rightward shift in k0
1E0

11(k
0
1) at high

Reynolds number as discussed above, while it over-predicts the amplification of
E0

22(k
0
1) at low wavenumbers. This indicates the physical mechanisms neglected in

RDT, namely nonlinear energy transfer, slow pressure strain and viscous dissipation,
play a significant role in the evolution of the spectral structure of the Reynolds
stresses.

The roles and relative importance of physical processes governing the evolution of
the spectra described above can be studied using the spectral budget equation (2.13),
which was written for the case of a single Fourier mode. The balance equations for
the 1-D spectra parameterized by the initial wavenumbers are obtained by integrating
(2.13) over planes perpendicular to k1, and then dividing by the total deformation (like
in (2.21)). We then multiply the terms by k0

1 to study the evolution of the compensated
spectra (the insets in figure 9). We are interested in determining what causes the
rightward shift in the peak of k0

1E0
11(k

0
1) at high Reynolds numbers, and what causes

the general disagreement between the RDT and DNS spectra at high wavenumbers
in all simulations. In figure 10 the balance terms are shown at different times and
different Reynolds numbers. As expected for axisymmetric contraction, the production
term is negative for the spectrum of u1, but positive for the spectrum of u2. The rapid
pressure strain counteracts the generation of anisotropy by taking the opposite sign
of the production term, but a net tendency for anisotropy still persists. The nonlinear
term is negative for low k0

1 and positive for high k0
1, indicating that there is a forward

cascade of energy to high k0
1. This forward cascade opposes the tendency for energy

to pile up near the k0
1= 0 plane during straining (see figure 8). The overall magnitude

of the nonlinear transfer term is greater for k0
1E0

22(k
0
1) compared to k0

1E0
11(k

0
1), which

is likely due to the fact that 〈u2
2〉 is amplified during the straining, while 〈u2

1〉 is
suppressed.

In our simulations, the magnitude of the strain reaches a maximum and then
decreases. To see how this is reflected in the spectral budgets, we present data for
Run 8 at two deformations in figure 10(c–f ). The production and rapid pressure-strain
terms (which depend on the mean strain rate) in the bottom row are smaller than
those in the middle row. As the production terms weaken, the relative importance
of the nonlinear terms (especially at intermediate and high wavenumbers) increases.
This is also the case for the slow pressure-strain term, which peaks at intermediate
wavenumbers close to the peak observed for k0

1E0
11(k

0
1). We may conclude, therefore,

that the slow pressure strain, which is neglected in RDT theory, is the main
contributor to rightward shift in k0

1E0
11(k

0
1) both in our DNS and the experiments

of AW. The increasing importance of slow pressure strain at later times noted here
is also consistent with a similar feature in figure 6 addressed in § 4.1. On the other
hand, the slow pressure-strain term is not as important to the evolution of k0

1E0
22(k

0
1),

which (besides production) is heavily influenced by nonlinear transfer at intermediate
and high wavenumbers.

5. Relaxation of axisymmetric turbulence
The results in § 4 show that application of strain causes anisotropy at both the large

and small scales. In this section we examine the relaxation that occurs when the mean
strain is removed and the turbulence decays. We focus on varying degrees of return
to isotropy as seen in single-point moments and axisymmetric and 1-D spectra. We
also investigate the effects of nonlinear transfer and slow pressure fluctuations.
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FIGURE 10. (Colour online) Terms from (2.13) contributing to the evolution of the
1-D compensated spectra, normalized by the pre-contraction dissipation rate and shown
as functions of pre-contraction wavenumbers. (a,b) L1(t)/L0

1 = 2.5 from Run 4; (c,d)
L1(t)/L0

1 = 2.5 from Run 8; (e, f ) L1(t)/L0
1 = 3.5 from Run 8. Left and right columns

show data for k0
1E0

11(k
0
1) and k0

1E0
22(k

0
1), respectively. In all frames:A (black solid line) is

for production, C (magenta) for rapid pressure strain, E (green) for slow pressure-strain,
@ (blue) for nonlinear transfer, 6 (red) for minus the dissipation, and + (black dashed
line) for total rate of change. Data for k0

1E0
22(k

0
1) averaged with data for k0

1E0
33(k

0
1) due to

the axisymmetry of the turbulence.

Figure 11 shows the component energy ratios and Reynolds stress anisotropy tensor
information as functions of time since the end of strain, normalized by the time scale
τ = 2K/〈ε〉 at post-strain conditions. It is clear that anisotropy decreases significantly
in the earlier stages of relaxation, slightly more rapidly if the Reynolds number is
higher (Runs 6 and 8). However, the data also strongly suggest that the large scales
will either not return to isotropy fully or will take almost an indefinitely long time
to do so. This is consistent with the DNS of Davidson et al. (2012) and large-eddy
simulations of Chasnov (1995), which both showed persistent anisotropy at the large
scales for axisymmetric Saffman turbulence (E(k)∼ k2 as k→ 0). This consistency in
trend is perhaps not surprising, since our pre-simulation initial conditions are also of
the Saffman type (due to the choice p0= 2 in (3.1)). We have also checked for long-
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FIGURE 11. (Colour online) Relaxation of (a) Reynolds stresses normalized by q2
b= 2Kb,

(b) components of the anisotropy tensor, and (c) anisotropy tensor invariants for Runs 4
(s andC, in blue), 6 (u andE, in red), and 8 (p and@, in black). Upper curves are for
〈u2

2〉/q2
b, b22 and η in each figure, respectively. Lower curves are for 〈u2

1〉/q2
b, b11 and ξ

in each figure, respectively. Dashed lines at 0 in (b) and (c) denote values for isotropic
turbulence.
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FIGURE 12. (Colour online) Relaxation of (a) vorticity contributions to dissipation rate
and (b) velocity gradient statistics for Run 4 (dashed curves with open symbols) and Run
8 (solid curves with filled symbols). In (a), p and @ (black) are for ν〈ω2

1〉/〈ε〉b, u and
E (red) for ν〈ω2

2〉/〈ε〉b, and q and A (blue) for ν〈ω2
3〉/〈ε〉b. Let ui,j = ∂ui/∂xj. In (b),

p and @ (red) are for 〈u2
2,1〉/〈u2

1,1〉, q and A (green) for 〈u2
3,2〉/〈u2

2,2〉, s and C (black)
for −〈u2

2,2〉/〈u2,3u3,2〉, and horizontal line at 2 for three-dimensional isotropic turbulence.

time effects by extending Runs 1 and 5 to relaxation times several times longer than
shown in the figure. As the integral length scales grow during the extended relaxation
period, the axisymmetry property ξ =−η does not hold as well for the smaller domain
(Run 1), but a finite level of anisotropy is likely to persist even at asymptotically large
times.

The concept of local isotropy in turbulence suggests the small scales may become
isotropic during relaxation. Figure 12 shows the mean-square vorticity components
and several ratios of derivative covariances during relaxation for Runs 4 and 8. Since
these are small-scale quantities we have normalized time by the (post-contraction)
Kolmogorov time scale. In frame (a), 〈ω2

1〉 initially decreases rapidly, while 〈ω2
2〉

and 〈ω2
3〉 increase before decreasing. By approximately 20 τη, which for Run 8

corresponds to t/τb ≈ 0.22, the mean-square vorticities are almost equal (while the
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FIGURE 13. (Colour online) Relaxation of (a) skewness and (b) flatness of longitudinal
velocity gradients for Run 4 (dashed curves with open symbols) and Run 8 (solid curves
with filled symbols): p and @ (red) for statistics of ∂u1/∂x1 and u and E (blue) for
statistics of ∂u3/∂x3.

Reynolds stresses in figure 11 are still very anisotropic). In frame (b), velocity
derivative variance and covariance ratios also return to their isotropic value of 2.
Similar to AW (their figure 24), the ratio 〈u2

2,1〉/〈u2
1,1〉 initially undershoots, and then

increases toward the isotropic value.
For higher-order moments, figure 13 shows the post-contraction evolution of

skewness and flatness factors of the longitudinal velocity gradients. The general trend
is towards a skewness in the neighbourhood of −0.5, which is typical of isotropic
turbulence, and a flatness factor higher than 3 showing a noticeable increase with
the Reynolds number. For Run 4 the skewness and flatness factors show a transient
overshoot, which then gives way to the trend noted above. It is also interesting that,
as a measure of isotropy, the flatness factors of ∂u1/∂x1 and ∂u3/∂x3 become nearly
equal faster than the corresponding skewness factors. The relatively slow equilibration
of the skewness factors could be due to their connection with the energy cascade,
which also depends on the large scales.

The fact that the large scales and the small scales return to isotropy (at least
partially) at different rates in time suggest that, at a given time in the relaxation
phase, the spectra may display a series of non-trivial shapes. In figure 14 we present
the post-contraction evolution of the axisymmetric energy spectrum for Runs 4 and
8 (a–c and d–f, respectively), at three relatively early time instants corresponding
to t/τb = 0.05 (a,d), t/τb = 0.1 (b,e) and t/τb = 0.2 (c, f ). While the axisymmetric
spectra immediately following the contraction are highly anisotropic (figure 8c, f ), a
trend towards a more isotropic appearance (circular contours in the (k1, kr) plane) is
evident at high wavenumbers during relaxation. This relaxation occurs faster for Run
8 because it has a greater contrast in time scales between the large scales and the
small scales. Because the energy spectrum evolves only according to dissipation and
energy redistribution (through the nonlinear term), the increase in the axisymmetric
energy spectrum at high k1 implies that there is a strong energy transfer to higher k1
during the initial relaxation period. Consistent with large-scale statistics in figure 11,
we observe that anisotropy persists at low k1 and low kr during relaxation.

The strong energy transfer to higher wavenumbers in the extensional direction is
expected to have a significant effect on both longitudinal and transverse 1-D spectra,
which are shown in figure 15 for DNS Runs 4 and 8 (a,b and c,d, respectively)
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FIGURE 14. (Colour online) Relaxation of axisymmetric energy spectrum for (a–c) Run 4
and (d–f ) Run 8 at (a,d) t/τb= 0.05, (b,e) t/τb= 0.1, and (c, f ) t/τb= 0.2. Contour levels
decrease by a factor of 10. Spectra plotted against post-contraction wavenumbers and
multiplied by two to recover K when integrating over kr and non-negative k1. Simulation
cutoff wavenumbers marked by outermost black boundary. Spectra normalized by sin φ =
kr/k to obtain circular contours in isotropic turbulence; data for kr = 0 not plotted.

at different times (increasing in the directions of the arrows) during relaxation.
To facilitate comparison with experiment we have also included (with permission),
in e–f, experimental data from figure 19 of AW. The longitudinal spectrum E11(k1)

initially increases during relaxation (primarily at high wavenumbers), corresponding
to an increase of both 〈u2

1〉 (see figure 11a) and 〈(∂u1/∂x1)
2〉 during the early

relaxation period. In contrast, the transverse spectrum E22(k1) shows a decrease at
low wavenumbers accompanied by an increase at high wavenumbers, corresponding
to a reduction of 〈u2

2〉 and 〈u2
3〉 even though mean-square transverse velocity gradients

increase. At high Reynolds numbers the compensated spectrum k1E22(k1) in the inset
of frame (d) develops a ‘double-peak’ structure, which was a major finding in the AW
experiments (frame ( f )). The evolution of this part of the spectrum is non-monotonic
in time, with the feature being most prominent in at t/τb = 0.2 (frame (d) dark
blue). As noted by AW, this ‘double-peak’ structure during relaxation appears to be
a distinctive result of high Reynolds number. The observations here confirm that the
simulations are successfully reproducing key flow physics in the experiments. We can
address the physical mechanisms contributing to this double peak by analysing the
spectral energy budget, as below.
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FIGURE 15. (Colour online) Relaxation of (a,c,e) longitudinal and (b,d, f ) transverse 1-D
spectra, for (a,b) DNS Run 4, (c,d) DNS Run 8 and (e, f ) high Reynolds number AW
experiment. Experimental data are reproduced from figure 19 of AW by permission of the
authors. Insets multiply spectra by k1. Time (for the DNS) or downstream evolution (for
the experiments) increasing in directions of arrows. For DNS, curves at t/τb = 0 (black),
t/τb = 0.1 (red, not included in (c) log-log plot for clarity), t/τb = 0.2 (blue), t/τb = 0.4
(green), t/τb = 0.6 (light blue, not included in top row) and t/τb = 0.8 (magenta, not
included in (a)). For DNS, E22(k1) and E33(k1) averaged with each other for frames (b)
and (d) due to axisymmetry.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

56
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.566


486 M. P. Clay and P. K. Yeung

–0.1

0

0.1

0.2

(a) (b)

100 101 102 100 101 102

100 101 102 100 101 102

–0.4

–0.2

0

0.2

0.4

–0.25

0

0.25

0.50

–0.25

0

0.25

0.50(c) (d)

FIGURE 16. (Colour online) Terms from (2.13) contributing to the evolution of 1-D
compensated spectra for (a,b) Run 4 and (c,d) Run 8 at t/τb = 0.05 into relaxation,
normalized by dissipation rate 〈ε〉b. Terms for k1E11(k1) in (a,c) and terms averaged for
k1E22(k1) and k1E33(k1) in (b,d)E (green) for slow pressure strain,@ (blue) for nonlinear
transfer, 6 (red) for minus the dissipation and + (black dashed line) for total rate of
change.

As done in figure 10 for turbulence during the application of strain, we present
in figure 16 the balance of terms that govern the evolution of the 1-D compensated
spectra early in the relaxation period (t/τb = 0.05) for Runs 4 and 8. For both
runs, the evolution of k1E11(k1) (in frames (a) and (c)) is dominated by the
slow pressure-strain term (circles in green), which is positive over a wide range
of wavenumbers. The integral of the pressure-strain term gives the pressure-strain
correlation, which promotes isotropy by increasing 〈u2

1〉 while decreasing 〈u2
2〉 and

〈u2
3〉. For both k1E11(k1) and k1E22(k1), the nonlinear term (squares in blue) shows

the characteristics of a forward cascade in k1, being negative at low k1, but positive
at high k1. This forward cascade from low k1 to high k1 during relaxation is likely
a consequence of a prior accumulation of energy near the k1 = 0 plane during
the contraction (see figure 8 frames (c) and ( f ), and discussion for figure 14). A
comparison between the left and right columns of this figure shows that the nonlinear
term plays a more important role in the evolution of k1E22(k1) than for k1E11(k1). At
intermediate and high wavenumbers, the nonlinear transfer is strong enough to exceed
dissipation and pressure strain combined, leading to an increase in k1E22(k1) during
the early phase of relaxation. A comparison of frames (b) and (d) also indicates that
as the Reynolds number increases, nonlinear spectral transfer becomes stronger, while
the effects of viscous dissipation are shifted towards higher wavenumbers. Since (in
frame (d)) nonlinear transfer is the term of largest overall magnitude, it is a principal
contributor to the change in shape of the transverse spectrum observed in both the
AW experiments and our numerical simulations.
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While results on the balance terms for the compensated spectra in figure 16
explain the reduction in k1E22(k1) at low wavenumbers and the increase in k1E22(k1)
at high wavenumbers, the occurrence of a double-peak structure in k1E22(k1) at
higher Reynolds number is more subtle. It may be noted that a higher Reynolds
number gives a wider range of scales, and that results in figure 14 show that at
higher Reynolds number (frames d–f ) the high k1 region of the axisymmetric energy
spectrum increased quickly. A similar feature is seen in the transverse 1-D spectrum
(figure 15d), which exhibited a rapid increase at high wavenumbers early in the
relaxation period. This is in contrast with a slower increase of the spectrum at high
wavenumbers for the lower Reynolds number case shown in figure 15(b). In other
words, the double-peak structure can be interpreted as the result of a slower decrease
of E22(k1) at low k1 combined with a faster increase at high k1, provided the contrast
in time scales between these two processes is sufficiently strong, thus requiring high
Reynolds number.

The formation of two peaks in k1E22(k1) also depends on what processes influence
the wavenumbers between the two peaks. For Run 8 this wavenumber range is
approximately 2. k1 . 10. If a forward cascade of energy occurs in k1, we expect the
curve T22(k1) to undergo a change in sign, which is evident in figure 16(d) at k1 ≈ 5
(although the figure plots k1T22(k1)). The wavenumber location of this change in sign
is nearly fixed during the relaxation period, and is located between the two peaks
that emerge in k1E22(k1). In this wavenumber range as the nonlinear term is close to
zero, the pressure strain and dissipation terms become more important. Hence, while
the strong decrease in the spectrum at low wavenumbers and the rapid increase in the
spectrum at high wavenumbers are primarily results of strong nonlinear interactions,
the formation of two clearly visible peaks in k1E22(k1) depends subtly on pressure
strain and dissipation effects in the wavenumber region between the two peaks. This
effect is likely to become more prominent at higher Reynolds numbers which will
support an even wider range of scales.

As suggested throughout this section, the small scales become isotropic during
relaxation, while the large scales appear to retain a significant degree of anisotropy
for a very long time. The scale-dependent degree of return to isotropy was first
observed for the axisymmetric energy spectrum in figure 14, where contours of
kinetic energy at high wavenumbers became nearly circular for the higher Reynolds
number simulation. To assess the scale-dependent anisotropy quantitatively we can
also compare with theoretical relations for spectra in isotropic turbulence, such as

E22(k1)= (1/2)[E11(k1)− k1 dE11(k1)/dk1], (5.1)
E(k)=−k d[E11(k)/2+ E22(k)]/dk. (5.2)

It is convenient (Jiménez et al. 1993; Yeung & Zhou 1997) to form the ratio of
the right- to left-hand side of (5.1), and to compare the actual 3-D spectrum with
a result calculated from the 1-D spectra using (5.2). The derivatives in (5.1) and
(5.2) are obtained using a simple central difference scheme, although some noise
from numerical differentiation is inevitable. Figure 17 presents the spectral isotropy
results for Run 8 focusing on the early relaxation period. In frame (a), we plot the
isotropy coefficient formed from (5.1) at three times (increasing in the directions of
the arrows) during relaxation corresponding to t/τb = 0, t/τb = 0.05 and t/τb = 0.2.
The 1-D spectra are initially very anisotropic (steep red curve), as indicated by the
lack of a plateau at 1 for the isotropy coefficient. By t/τb = 0.2 into the relaxation
period, the isotropy coefficient forms a plateau of height close to 1 over a wide
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FIGURE 17. (Colour online) Post-contraction spectral isotropy for Run 8. In (a), isotropy
of 1-D component spectra measured with (5.1) at (time increasing in the directions of the
arrows) t/τb=0 (red, steepest curve), t/τb=0.05 (green, intermediate curve) and t/τb=0.2
(blue, plateau at 1 present); dashed line at 1 is for isotropic turbulence. In (b), measured
(dashed blue) 3-D energy spectrum compared with calculated spectrum using (5.2) (solid
red) at t/τb = 0.2.

range of wavenumbers, suggesting that the 1-D spectra are becoming isotropic at
intermediate and high wavenumbers. In frame (b), the energy spectrum calculated
using (5.2) agrees well with the measured energy spectrum for k & 30 as early as
t/τb = 0.2 into the relaxation period. The anisotropy at low wavenumbers seen in
both frames shows that the large scales return to isotropy more slowly, as expected.

6. Conclusions
In this paper we presented a numerical investigation of isotropic turbulence

subjected to irrotational axisymmetric contraction and subsequent relaxation. A series
of direct numerical simulations with grid resolution up to 40963 have been conducted.
Special care was taken to mimic the flow physics in the wind tunnel experiments of
Ayyalasomayajula & Warhaft (2006), which used an axisymmetric contraction with a
4 : 1 area ratio. The development of anisotropy and the physical mechanisms behind
scale-dependent anisotropy during the contraction and subsequent relaxation are of
fundamental interest.

Although homogeneous turbulence subjected to spatially uniform mean velocity
gradients can be simulated in a solution domain moving with the mean flow, time-
dependent mean strain rates are necessary to produce flow conditions corresponding
to experiments in spatially evolving wind tunnels. Accordingly, we have developed a
technique to specify a time-dependent strain rate based on the convective time for fluid
travelling along the wind tunnel centreline. The resulting strain rates in the DNS are,
in non-dimensional form, similar to the strain rate histories in the AW experiments.
Before applying the strain, a pre-simulation is first carried out with a specified
initial energy spectrum to obtain physically realistic conditions of unforced isotropic
turbulence. The Reynolds numbers simulated in this work are limited by numerical
constraints on large-scale sampling and small-scale resolution, which are compounded
by the non-cubic aspect ratio of the solution domains. A domain sufficiently large
along its shortest dimension compared to the integral length scales is required to
ensure that the numerical solution remains statistically axisymmetric at all times.

As expected, axisymmetric contraction leads to anisotropy in the Reynolds stress
tensor. Velocity fluctuations are suppressed in the extensional direction but amplified
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in the compressive directions. The degree of anisotropy is independent of Reynolds
number but is a function of the total strain applied. The small scales also become
anisotropic. Mean-square vorticity in the extensional direction is enhanced (figure 7),
and changes are observed in the skewness of the longitudinal velocity gradients. Rapid
distortion theory (RDT) predicts anisotropy at the large scales well but not at the
small scales, which implies that nonlinear effects excluded in RDT play an important
role. The axisymmetry about the x1 direction motivates the use of spectra extracted as
functions of k1 and the wavenumber magnitude in the transverse plane kr =

√
k2

2 + k2
3.

The axisymmetric energy spectrum becomes anisotropic at all scales of motion during
the application of strain, and shows that energy is accumulated in long-wavelength
(low k1) modes in the x1 direction (figure 8). The effect of strain on the longitudinal
1-D spectrum of u1 fluctuations is a decrease at low wavenumbers but an increase
at high wavenumbers (figure 9). At high Reynolds number the compensated form of
this spectrum shows a rightward shift to higher wavenumbers as a consequence of the
nonlinear effects of slow pressure strain.

Following the removal of the mean strain, the small scales relax faster than the
large scales. The contrast in relaxation time scales becomes more apparent as the
range of time scales in the flow increases with increasing Reynolds number. Statistics
of velocity gradients show a return to local isotropy, whereas a residual level of
anisotropy in the Reynolds stresses appears to persist indefinitely. The axisymmetric
energy spectrum at high Reynolds number quickly becomes isotropic at high
wavenumbers (small scales), whereas at low Reynolds number the spectrum is slow in
its return to isotropy (figure 14). In close correspondence with the AW experiments,
the compensated transverse spectrum k1E22(k1) undergoes a qualitative change at
higher Reynolds number, where a ‘double-peak’ structure emerges at intermediate
times during relaxation (figure 15d). Analyses of the spectral budget following the
contraction (figure 16) indicate that the transverse 1-D spectrum is dominated by
nonlinear energy transfer to high k1 wavenumbers, and that slow pressure strain
and viscous dissipation also play a role in establishing the double-peak structure
in k1E22(k1). The formation of the double-peak structure requires that the high
wavenumbers (small scales) relax very quickly compared to the low wavenumbers
(large scales), and thus requires a high Reynolds number and a wide range of scales.

In summary, the motivation for this work was to see whether DNS could reproduce
the experimental finding by AW that turbulence under axisymmetric contraction
and subsequent relaxation undergoes a qualitative change as the Reynolds number
is increased. We also wanted to use the detail available in DNS to help explain
the underlying physical mechanisms controlling these flows. Through a series
of computations using a time-dependent strain rate formulated to mimic the AW
wind tunnel, the numerical simulations are successful in reproducing and helping to
explain the experimental observations. The behaviour of turbulence under irrotational,
axisymmetric straining is a canonical problem (Lumley & Newman 1977) for which
there is a continuing need for data at high Reynolds number (Warhaft 2009). The
results of this study have implications for engineering devices such as nozzles and
diffusers where high Reynolds number turbulent flows are typically subjected to
axisymmetric contraction, relaxation or expansion. The mixing of passive scalars,
especially small temperature fluctuations, in these flows (Gylfason & Warhaft 2009)
is also a subject of both theoretical significance and practical interest.
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Appendix. Influence of domain size and grid resolution
We showed in figure 15 that DNS of isotropic turbulence subjected to axisymmetric

contraction at high Reynolds number reproduce key features of the 1-D spectra
measured by AW (most notably the double-peak structure in k1E22(k1)). It is important
to check that these results are not contaminated by the size of the computational
domain or the grid resolution. In this Appendix we compare the relaxing 1-D spectra
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for the highest Reynolds number case on the different grids provided by Runs 7, 8 and
9. Run 7 is the baseline configuration on a 20483 grid, while Runs 8 and 9 employ
40963 grid points. Run 8 improves upon Run 7 by doubling the domain length in the
x2 and x3 directions (improving large-scale sampling), and halving the grid spacing in
the x1 direction (improving resolution in x1). On the other hand, Run 9 improves upon
Run 7 by doubling the domain length in all directions, which improves large-scale
sampling in all directions. In figure 18 we overlay the longitudinal and transverse
spectra for Runs 7 and 8 (a,b) and Runs 7 and 9 (c,d) at the same instants of time
during relaxation that were used in figure 15(c,d) for Run 8 alone. As expected, in
frames (a) and (b) Run 8 shows results advancing further into the high-wavenumber
dissipation range, while in frames (c) and (d) Run 9 shows results extending to a
lower range of wavenumbers. Most importantly, results at intermediate wavenumbers
show little difference between Runs 7 and 8 and likewise between Runs 7 and 9. This
demonstrates the most important conclusions from this work, including the emergence
of a double-peak structure in k1E22(k1) during relaxation, are numerically robust and
not compromised by either finite domain size or finite grid spacing.

REFERENCES

AYYALASOMAYAJULA, S. & WARHAFT, Z. 2006 Nonlinear interactions in strained axisymmetric
high-Reynolds-number turbulence. J. Fluid Mech. 566, 273–307.

BATCHELOR, G. K. 1946 The theory of axisymmetric turbulence. Proc. R. Soc. Lond. A 186,
480–502.

BATCHELOR, G. K. 1953 The Theory of Homogeneous Turbulence. Cambridge University Press.
BATCHELOR, G. K. & PROUDMAN, I. 1954 The effect of rapid distortion of a fluid in turbulent

motion. Q. J. Mech. Appl. Maths 7, 83–103.
BROWN, M. L., PARSHEH, M. & AIDUN, C. K. 2006 Turbulent flow in a converging channel: effect

of contraction and return to isotropy. J. Fluid Mech. 560, 437–448.
CHASNOV, J. R. 1995 The decay of axisymmetric homogeneous turbulence. Phys. Fluids 7, 600–605.
CHEN, J., MENEVEAU, C. & KATZ, J. 2006 Scale interactions of turbulence subjected to a straining-

relaxation-destraining cycle. J. Fluid Mech. 562, 123–150.
CHOI, K.-S. & LUMLEY, J. L. 2001 The return to isotropy of homogeneous turbulence. J. Fluid

Mech. 436, 59–84.
DAVIDSON, P. A., OKAMOTO, N. & KANEDA, Y. 2012 On freely decaying, anisotropic, axisymmetric

Saffman turbulence. J. Fluid Mech. 706, 150–172.
DOMARADZKI, J. A. & ROGALLO, R. S. 1990 Local energy transfer and nonlocal interactions in

homogeneous, isotropic turbulence. Phys. Fluids A 2, 413–426.
DONZIS, D. A., YEUNG, P. K. & SREENIVASAN, K. R. 2008 Dissipation and enstrophy in isotropic

turbulence: resolution effects and scaling in direct numerical simulations. Phys. Fluids 20,
045108.

ESWARAN, V. & POPE, S. B. 1988 An examination of forcing in direct numerical simulations of
turbulence. Comp. Fluids 16, 257–278.

GENCE, J. N. & MATHIEU, J. 1979 On the application of successive plane strains to grid-generated
turbulence. J. Fluid Mech. 93, 501–513.

GEORGE, W. K. & HUSSEIN, H. J. 1991 Locally axisymmetric turbulence. J. Fluid Mech. 233,
1–23.

GODEFERD, F. S. & STAQUET, C. 2003 Statistical modelling and direct numerical simulations of
decaying stably stratified turbulence. Part 2. Large-scale and small-scale anisotropy. J. Fluid
Mech. 486, 115–159.

GOTOH, T., WATANABE, Y., SHIGA, Y., NAKANO, T. & SUZUKI, E. 2007 Statistical properties of
four-dimensional turbulence. Phys. Rev. E 75, 016310.

GUALTIERI, P. & MENEVEAU, C. 2010 Direct numerical simulations of turbulence subjected to a
straining and destraining cycle. Phys. Fluids 22, 065104.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

56
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.566


492 M. P. Clay and P. K. Yeung

GYLFASON, A. & WARHAFT, Z. 2009 Effects of axisymmetric strain on a passive scalar field:
modelling and experiment. J. Fluid Mech. 628, 339–356.

JIMÉNEZ, J., WRAY, A. A., SAFFMAN, P. G. & ROGALLO, R. S. 1993 The structure of intense
vorticity in isotropic turbulence. J. Fluid Mech. 255, 65–90.

KROGSTAD, P.-Å. & DAVIDSON, P. A. 2010 Is grid turbulence Saffman turbulence? J. Fluid Mech.
642, 373–394.

LEE, C.-M., GYLFASON, Á., PERLEKAR, P. & TOSCHI, F. 2015 Inertial particle acceleration in
strained turbulence. J. Fluid Mech. 785, 31–53.

LEE, M. J. & REYNOLDS, W. C. 1985 Numerical experiments on the structure of homogeneous
turbulence. Department of Mechanical Engineering, Stanford University, report TF-24.

CLARK DI LEONI, P., COBELLI, P. J., MININNI, P. D. & DMITRUK, P. 2014 Quantification of the
strength of inertial waves in a rotating turbulent flow. Phys. Fluids 26, 035106.

LIU, S., KATZ, J. & MENEVEAU, C. 1999 Evolution and modelling of subgrid scales during rapid
straining of turbulence. J. Fluid Mech. 387, 281–320.

LUMLEY, J. L. & NEWMAN, G. R. 1977 The return to isotropy of homogeneous turbulence. J. Fluid
Mech. 82, 161–178.

MILLS, R. R. & CORRSIN, S. 1959 Effect of contraction on turbulence and temperature fluctuations
generated by a warm grid. NASA Tech. Rep. 5-5-59W.

MININNI, P. D., ROSENBERG, D. & POUQUET, A. 2012 Isotropization at small scales of rotating
helically driven turbulence. J. Fluid Mech. 699, 263–279.

OVERHOLT, M. R. & POPE, S. B. 1996 Direct numerical simulation of a passive scalar with imposed
mean gradient in isotropic turbulence. Phys. Fluids 8, 3128–3148.

PEARSON, J. R. A. 1959 The effect of uniform distortion on weak homogeneous turbulence. J. Fluid
Mech. 5, 274–288.

PIESSENS, R., DE DONCKER-KAPENGA, E., ÜBERHUBER, C. W. & KAHANER, D. K. 1983
QUADPACK: A Subroutine Package for Automatic Integration. Springer.

POPE, S. B. 2000 Turbulent Flows. Cambridge University Press.
REYNOLDS, A. J. & TUCKER, H. J. 1975 The distortion of turbulence by general uniform irrotational

strain. J. Fluid Mech. 68, 673–693.
ROGALLO, R. S. 1981 Numerical experiments in homogeneous turbulence. NASA Tech. Memo. 81315.

NASA Ames Research Center.
ROGERS, M. M. & MOIN, P. 1987 The structure of the vorticity field in homogeneous turbulent

flows. J. Fluid Mech. 176, 33–66.
SAFFMAN, P. G. 1967 The large-scale structure of homogeneous turbulence. J. Fluid Mech. 27,

581–593.
SAGAUT, P. & CAMBON, C. 2008 Homogeneous Turbulence Dynamics. Cambridge University Press.
SARKAR, S. & SPEZIALE, C. G. 1990 A simple nonlinear model for the return to isotropy in

turbulence. Phys. Fluids A 2, 84–93.
SAVILL, A. M. 1987 Recent developments in rapid-distortion theory. Annu. Rev. Fluid Mech. 19,

531–575.
SJÖGREN, T. & JOHANSSON, A. V. 1998 Measurement and modelling of homogeneous axisymmetric

turbulence. J. Fluid Mech. 374, 59–90.
SPEZIALE, C. G. 1991 Analytical methods for the development of Reynolds-stress closures in

turbulence. Annu. Rev. Fluid Mech. 23, 107–157.
TAVOULARIS, S., BENNETT, J. C. & CORRSIN, S. 1978 Velocity-derivative skewness in small

Reynolds number, nearly isotropic turbulence. J. Fluid Mech. 88, 63–69.
TOWNSEND, A. A. 1976 The Structure of Turbulent Shear Flow, 2nd edn. Cambridge University

Press.
UBEROI, M. 1956 Effect of wind-tunnel contraction on free-stream turbulence. J. Aero. Sci. 23,

754–764.
WARHAFT, Z. 1980 An experimental study of the effect of uniform strain on thermal fluctuations in

grid-generated turbulence. J. Fluid Mech. 99, 545–573.
WARHAFT, Z. 2009 Why we need experiments at high Reynolds numbers. Fluid Dyn. Res. 41,

021401.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

56
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.566


Turbulence under axisymmetric contraction 493

YEUNG, P. K., BRASSEUR, J. G. & WANG, Q. 1995 Dynamics of direct large-small scale couplings
in coherently forced turbulence: concurrent physical- and Fourier-space views. J. Fluid Mech.
283, 43–95.

YEUNG, P. K. & ZHOU, Y. 1997 Universality of the Kolmogorov constant in numerical simulations
of turbulence. Phys. Rev. E 56, 1746–1752.

ZUSI, C. J. & PEROT, J. B. 2013 Simulation and modeling of turbulence subjected to a period of
uniform plane strain. Phys. Fluids 25, 110819.

ZUSI, C. J. & PEROT, J. B. 2014 Simulation and modeling of turbulence subjected to a period of
axisymmetric contraction or expansion. Phys. Fluids 26, 115103.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

56
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.566

	A numerical study of turbulence under temporally evolving axisymmetric contraction and subsequent relaxation
	Introduction
	Mathematical formulation and numerical approach
	Solution algorithm in a deforming, anisotropic domain
	A time-dependent strain as a model for experiment
	Spectral evolution and rapid-distortion theory

	Pre-simulation and the choice of numerical parameters
	Application of strain
	Single-point moments
	Spectral evolution

	Relaxation of axisymmetric turbulence
	Conclusions
	Acknowledgements
	Appendix.  Influence of domain size and grid resolution
	References




