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Chemical reaction networks describe interactions between biochemical species. Once an underlying
reaction network is given for a biochemical system, the system dynamics can be modelled with
various mathematical frameworks such as continuous-time Markov processes. In this manuscript, the
identifiability of the underlying network structure with a given stochastic system dynamics is studied.
It is shown that some data types related to the associated stochastic dynamics can uniquely identify
the underlying network structure as well as the system parameters. The accuracy of the presented
network inference is investigated when given dynamical data are obtained via stochastic simulations.

Key words: Chemical reaction networks, identifiability, stochastic simulation, network inference,
Gillespie algorithm

2020 Mathematics Subject Classification: 60J27 (Primary); 62M10, 92C42, 92E20, 93B30
(Secondary)

1 Introduction

To study the properties and dynamics of a system of reacting biochemical species, a network rep-
resentation is often used to describe the interactions between the chemical species involved. A
reaction network represents the system behaviour with reactions (directed edges) between com-
plexes (nodes) [7, 14]. Each reaction in a reaction network indicates loss or gain of the amount
of the corresponding chemical species. Systems of ordinary differential equations (ODEs) are
traditionally used for modelling the time evolution of concentrations of chemical species in
reaction network theory [13, 3]. Since biochemical systems may contain chemical species with
low copy numbers, stochastic approaches are often used for modelling their behaviour [12].
Stochastic models of homogeneous (space independent) chemical reaction networks are written
as continuous-time discrete space Markov chains [1, 2].

In some applications, the underlying network structure may be unknown but information on
the associated dynamics is given [9, 19]. The main focus of this paper is to identify the unknown
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FIGURE 1. (a) The solution of ODE (1.3) with initial condition x;(0) = 0. (b) Variance of the number of
molecules of chemical species X; for the chemical system (1.1) (red solid line) and the chemical system
(1.2) (blue dashed line).

network structure of a stochastic reaction system using dynamical information. Identifiability
of reaction systems has been studied under deterministic ODE-based modelling by Craciun and
Pantea [9] and Szederkényi et al. [29]. They present examples of reaction systems that admit
the same deterministic dynamical system but have different network structure and parameters. In
Figure 1, we illustrate this lack of identifiability using two simple reaction systems. They both
include one chemical species X, which is subject to two chemical reactions:

first reaction system: g —s Xi, Xi LN @, (1.1)
second reaction system: ? A 4X,, X Lo (1.2)

Denoting x;(¢) the concentration of the chemical species X; and using mass-action determinis-
tic description, the time evolution of both reaction systems (1.1) and (1.2) is described by the
same ODE:

dx;

5 =l (1.3)

Solving the ODE (1.3) with the initial condition x;(0) = 0, we obtain x,(f) = 1 — exp[—¢], which
is plotted in Figure 1(a). Since both reaction systems (1.1) and (1.2) contain only reactions
of zero and first order, we can analytically solve the chemical master equation correspond-
ing to the stochastic model [15, 18]. We obtain that the mean number of molecules, (X7), is
for both systems given as a solution of the ODE system (1.3). In the case of the first reac-
tion system (1.1), X; is Poisson distributed at every time ¢ [12, 18]. Therefore, the variance
(Xf) — (X7)? is equal to the mean (X;) =1 —exp[—¢]. In Figure 1(b), we show that it dif-
fers from the variance obtained using the second reaction system (1.2), which is given as
(X2) — (X1)? = (5 — 2 exp[—1] — 3 exp[—24]),2.

Our example illustrates that the dynamics obtained by the ODE model (1.3) cannot be used
to distinguish between reaction systems (1.1) and (1.2) and the reaction network is therefore
not identifiable in the deterministic context. However, since their stochastic models do differ
(as shown in Figure 1(b)), we have potential to use the stochastic data to distinguish between
the reaction systems (1.1) and (1.2). This peculiar behaviour is not restricted to our illustrative
example. Plesa et al. [28] showed that any reaction network can be redesigned in such a way
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that the deterministic dynamics are preserved, while the controllable state-dependent noise is
introduced into the stochastic dynamics. In this way, one can systematically obtain a family of
reaction networks, which have qualitatively different stochastic dynamics, but they are described
by the same deterministic model [28]. In applications, the long-term dynamics of some gene
regulatory networks (involving multiple timescales) can consist of a unique attractor at the deter-
ministic level (unistability), while the long-term probability distribution at the stochastic level
may display multiple maxima (multimodality) [10, 25].

In this paper, we explore how the discrete nature of the associated mass-action stochastic
system can help uncover the underlying reaction network. For a given continuous-time Markov
chain (CTMC), we quantify the amount of transition rate information needed to uniquely identify
the underlying network and the system parameters. For practical implementation of network
inference, the presented approach can be used to infer the underlying reaction network with
transition data obtained from stochastic simulations. The accuracy of this network inference idea
is also investigated.

For each reaction, the reaction intensity determines the likelihood of the reaction taking place.
The reaction intensity is proportional to a positive constant; the so-called rate constant. The num-
bers 1/4 and 1 in our illustrative reaction systems (1.2) are examples of rate constants. The rate
constants can alter the system behaviour significantly and correspond to qualitative differences
between deterministic and stochastic descriptions, for example, for systems close to bifurcations
of deterministic ODEs [11, 27]. When the reaction network topology is given, the rate constants
often need to be estimated as missing parameters. Numerous different statistical and mathemat-
ical techniques have been employed in the literature for parameter estimation using dynamical
data, such as information theory [19], Bayesian statistics [8, 16, 5, 33], system identification
theory [31], machine learning [4], and tensor-structured parametric analysis [22].

In addition to parameter estimation, the underlying network topology is also often unknown
or only partially known. There have been a number of methods developed in the literature to
infer network information [6, 21, 32]. For instance, Wang et al. [32] study deterministic net-
work inference using multiplex flow cytometry experimental data and toric systems theory.
Chattopadhyay et al. [6] proposed a novel inference method for stochastic reaction systems with
convex polytopes, which are formed by combinations of reaction vectors captured within a short
time window. Other papers focus on statistical information and Bayesian analysis to infer net-
works of correlations among species [21, 17, 23, 24, 30], but, to our knowledge, there is no
previous work that characterises when the transition data of a stochastic system can be used to
completely identify the underlying reaction network.

The underlying network structure of a dynamical system may not be uniquely identified if a
CTMC is restricted to a subset of the state space because of a conservation law. In this case,
the stochastic system can be associated with two different reaction networks, as illustrated in
Example 3.2. In Section 3, we prove that the network topology and the system parameters can be
uniquely identified provided that we have full dynamic information in a sufficiently large finite
region of the state space.

To formulate our results, we begin by introducing our notation in Section 2. In Section 3, we
present the main algorithm that uses the transition rates of a given CTMC to infer the underlying
network structure and parameters. In Section 4, we show that a general CTMC with polynomial
transition rates can be identifiable as a mass-action reaction system. In Section 5, we investigate
how accurately the underlying network structure and system parameters can be identified using
given stochastic dynamical information about the transition rates.
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2 Notation and terminology

In this section, we introduce our notation and basic definitions that are used throughout the rest
of our manuscript.

2.1 Reaction networks

A reaction network (S, C, R) consists of a collection of species S, complexes C, and reactions R.
Each reaction is of the form:

d d
D ki — > ¥, @1
i=1 i=1

where X;,i=1,2,...,d, are species, and linear combinations Zflzl yiX; and Zle ViX; of species

with non-negative integers y; are complexes. We interchangeably denote by y = (v1, 12, . . ., V4)

a complex Zflzl y:X;. In the same way, we denote by y — y’ the reaction (2.1).

Example 2.1 The typical enzyme-substrate system can be described with a reaction network:

K1
X1 +X = X3 5 X+ X,

K2

where the species X, X;, X3 and X, represent the enzyme, substrate, enzyme-substrate com-
plex and product, respectively. For this system, we have S ={Xj, X5, X3, X4}, C={X; +
Xo, X3, X1 + X3} and R ={X] + X, —> X3, X5 —> X + X5, X5 —> X; + X4}. Each reaction in R
is associated with the corresponding rate constant «1, x; and «3.

The time evolution of the concentration of species X; € S is described by a system of ODEs as:
dx ,
0= 2 oy GO -y,
y—>yYeR
where fy_,y are positive functions representing the ‘weight’ of the reaction y — y’ at each state.

Considering mass-action kinetics, we have

Jyoy () = Ky X,
where u' =%, " for vectors u and v with non-negative entries. The positive constant k.
forms the reaction rate for the reaction, and it constitutes one of the parameters of the reaction
network. We include this reaction rate by placing it above the arrow of the associated reaction

y — Y’ as in Example 2.1.

2.2 Stochastic description of reaction networks

We model the number of molecules of each chemical species in a reaction network by a CTMC
defined on the d-dimensional integer lattice:

78y={xeZ|x;>0fori=1,2,...,d} 2.2)
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Using X(7) = [X1(¢), Xo(0), . . . , X4(¢)] to denote the number of molecules in a reaction network
(S,C, R), the corresponding transition rates are defined as:

PX(t+An=x+z|X(@O)=x) = Y dyy(x) A+ o(AD),
y>VeR
y-y=z
where o(Af) = 0, as At— 0. We denote by Z={z=y —y:y—y € R} the set of the tran-
sition vectors of the CTMC X(#). The function Ay_,, > 0 is called the intensity of the reaction
y — Y and it satisfies

Ayoy(x) >0 ifand onlyif x; > y; foreachi=1, 2, ..., d. (2.3)

We say that a reaction y — y' € R is turned off at x if Ay_,y/(x) = 0. Otherwise, we call a reac-
tion y —y € R is charged at x. Using (stochastic) mass-action kinetics, we define, for each
y—>yeR:
d
dyoy () = kyoyx¥,  where u™ =] Jui(w; — 1)+ (i —vi + 1) (2.4)

i=1

for vectors u, v € Zéo.

Let K= {\y_y :y— Yy € R} be the collection of given intensities for a reaction network
(S,C,R). Then the associated CTMC is fully characterised by the four tuple (S,C, R, K).
Furthermore, since S and C can be fully determined using R, the reaction system is fully charac-
terised with R and K. So in the rest of the paper, we let (R, ) represent both a reaction network
and the associated CTMC, and we call (R, K) a (stochastic) reaction system.

A reaction network (R, K) is a subnetwork of another reaction network (R’, ') if R C R/
and Ay_y =iy, € K for eachy -y € R, where Ay and 1|, are the reaction intensities
of (R, K) and (R/, K'), respectively. We denote this relation as (R, K) C (R, K'). If two sys-
tems (R, K) and (R’, K') are identical, then (R, K) C (R’,K) and (R, K) C (R/, K'), which we
shortly denote by (R, K) = (R/, K').

2.3 Reaction order and ordering for Z¢,

As indicated in Section 2.1, we use vectors to represent complexes. Hence, for y € Z‘;O and
zeZ suchthaty +z € Zd}o, we denote by y — y + z a reaction whose source complex is y =
Zle y:X; and the product complex is y +z = Zle(y,- + z;)X;. For example, for y=(1,2) and
z=(—1, 1), the reaction y — y + z represents X + 2X, — 3X,. For ve Zéo and an integer N,
we define

Sy = {x e 2%, | x satisfies [|x||; <N}, (2.5)
Syw = {xe Zéo | x satisfies v- x =N}, (2.6)

where - is the canonical inner product in the Euclidean space. Transition rates of a given CTMC
on those sets will play a critical role in the main algorithm of this paper for inferring an under-
lying network structure. Given two vectors u € Zéo andve ngo’ we define the lexicographical
ordering for Zéo by

u < v if and only if there is & such that u; < vy and u; = v; for all i < k. 2.7)

https://doi.org/10.1017/50956792520000492 Published online by Cambridge University Press


https://doi.org/10.1017/S0956792520000492

870 G. Enciso et al.

In particular, the d-dimensional simplex Sy has n elements which we enumerate in the
lexicographical order, that is,

2

Sy ={x', x

N+d>. 2.8)

, ..., X"}, where X' <¥ ifi<j and n=< 4
A reaction y — y’ is of order N if ||y||; = N. A reaction system (R, K) is of order N if the order
of all reactions in R is at most N. A reaction y — Yy’ is of v-order N if v.-y=N. A reaction
system (R, K) is of v-order N if the v-order of all reactions in R is at most N. For example, the
reaction system in Example 2.1 is of order 2. However, if we use v= (0, 1, 1, 1), then the reaction
system in Example 2.1 is of v-order 1. In general, if v=(1, 1, ..., 1), the order and the v—order
of a reaction are the same.

3 Inference and identifiability of stochastic reaction systems

Main results of this section are stated as Theorems 3.1, 3.3 and 3.5.

3.1 Network inference using the transition rates

Our goal is to construct a reaction system (R, ) for given transition rates of a CTMC. First, we
show that the knowledge of transition rates on a sufficiently large part of the state space uniquely
determines the underlying reaction system.

Lemma 3.1 Let (R, K) and (R, K) be two reaction systems of order Ny and N, respectively.

Suppose that there exists N > max{N;, N»} such that the two mass-action stochastic models
associated with (R, KC) and (ﬁ, K) have the same transition rates on Sy. Then, (R, K) = (ﬁ, K)

Proof Let X(¢) and X(f) be the CTMCs obtained using stochastic mass-action description of
(R, K) and (R, K), respectively. We denote by Ay_y and Ay_,y the transition rates of reactions
y — y’ associated with (R, K) and (R, K), respectively. We denote states in Sy by (2.8). To
prove the lemma by contradiction, we suppose that (R, K) # (R, K). Since the order of each
reaction y — y’ in RUTR is less than or equal to N, it can be represented as x* — x* +z for
some transition vector z and for some x* € Sy. Since (R, K) # (R, K), there exists a transition
vector z such that reaction ¥ — x/ + z is the first reaction (in the lexicographical ordering) which
is formulated differently in reaction systems (R, K) and (R, K). In other words, we have x' —
X +zeRNR and Ay, 2 = Ayi_syisg for each i <j. Then at ¥/ € Sy, the transition rate for z
of the two systems are different, which is a contradiction to the assumption that both stochastic
systems share the same transition rates on Sy. O

Our main result is formulated as Theorem 3.1 below, but before we state this theorem, we begin

with a simple example illustrated in Figure 2.

Example 3.1 Consider d = 2 and assume that the CTMC has a single transition vector z = (1, 1).
Suppose that we are given data on transition rates A*(x) of a CTMC defined on Zéo as the red
numbers indicated in Figure 2. To construct the reaction network, we use S, = {x', x?, ..., x%}
defined by (2.5) and (2.8), i.e.

x'=(0,0), x*=(0,1), x*=(0,2), x*=(1,0), x’=(1,1), x*=(2,0).
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Xo
A
Red = A*(z1, 22), and Blue = X~ (1, 29).
4,2
x*=(0,2) @
2,2
x?=(0,1)¢
x° = (1,1)
2,0 2,2 2,2
x! = (0,0) @ . . X1
x! = (1,0) x% = (2,0)

FIGURE 2. The procedure of inferring the underlying reaction system in Example 3.1. The red value at
each state is the given transition rate associated with the transition vector z= (1, 1), indicated by black
arrows. The blue is the value of A’~! updated at the previous state. Red dots indicate the states where
A*(x1,x2) — A7, x2) > 0.

Let A°=0, R® =@ and K° = ¢J. We iteratively define A/, R’ and K using given information at
x/, fori=1,2,...,6. The outcome of this procedure is the transition rate function A = A%, a set
of reactions R = RS, and a kinetic set & = }C® such that

Z Aysy(X) =A(x) =A%(x) foreachxeS,. (3.1)

y—>YEeER

Since A*(x!) — A%(x') =2 > 0 at x! =(0, 0), the reaction ) — X; + X, must be included in R
with the reaction intensity Ag_ x, +.x,(x) = 2. So we let

M) =2, R'={0— X; + x>} and  K'={lxi0x=2}

At the next state x> = (0, 1), we have A*(x?) — A!'(x?) = 0, hence no additional reaction needs to
be included in R. Hence, we put A2 =A!, R? =R! and K? = K. Since A*(x*) — A2(x*)=2>0
at x> = (0, 2), the reaction 2X, — X; 4+ 3X, must be included in R with the reaction intensity
)»2)(2_»(1_;,_3)(2 (x) =x2(x, — 1). So we let

VX =2+x00-1), R ={0-X+X,2X— X +3X)

and K = {)L@_> X440 (X) =2, Aoy, x43x5,(X) =x2(x2 — 1)}. We iterate this procedure until the
last state x®=(2,0) €S, as shown in Figure 2. Then, the outcome (R, K) is the following
reaction system:

B X +X, 26— X 43X, X +X 2K 42X,
and the transition rate in the directionz= (1, 1) is

AMX) = A x40, (X) + Aoxy o x +3x, (X) + Ay 41024, +2x, (X)

=2+x00n —1)+x1x;.
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We have observed in Example 3.1 and Lemma 3.1 that a mass-action system of order N =2
can be characterised with the transition rates on Sy. Next, we generalise this observation with a
simple algorithm. Using the lexicographical order (2.8) of Sy, for a given transition vector z and
the associated transition rate A}, we iteratively define A = 0 and

ME) =271 x) + x™) fori=1,2,...,n, where o= =
X

(3.2)

Note that A;(x)=3",c, ¢, x®), and the term ¢l x®) can be associated with the mass-action
intensity of a reaction X’ — x' 4z as long as c; > 0. Hence if c; >0 for each i, we can find a
mass-action system that has the same transition rates as A}.

Theorem 3.1 Let X(¢t) be a CTMC defined on the state space Zéo with the transition rate
Ap Zéo — [0, 00) for each transition vector z € Z C 7¢, where | Z| < co. Suppose that the con-
stant ¢ in (3.2) is non-negative for each z € Z and X' € Sy, for i=1,2,...,n, where we use
notation (2.8). Then for each integer N > 0, there exists a unique mass-action reaction system
(R, K) such that

(i) the order of the reaction system (R, K) is less than or equal to N, and
(ii) for each tranmsition vector z € Z, if 1;(x") > 0 for some x' € Sy, then
M= > dyy(x) forallxeSy,

y—>yeR
y-y=z

where Ay_,y is the reaction intensity of y - y' € R.

Proof The uniqueness of (R, ) follows from Lemma 3.1. To prove existence, we denote
states in Sy by (2.8). We fix z € Z, and let A} be the associated transition rate function of X().
Then, let

R*={x' > x'+z | where i satisfies ¢, > 0}, and

ol (3.3)
Kt = {)H‘,‘_)’(,'_l_z()()=C’z X(x) ‘ X —>x'+ze RZ}

Then, we prove that A;(x*) = 17(x*) for each x* € Sy, where A}(x") is given by (3.2) and 7 is

given by (2.8). Note that for any & < j, there is an i such that xf‘ < xﬁ so that x*™) = 0. Hence,

)
e =206+ D T =1k, (3.4)
Jj=k+1
Therefore, for each k&
k
2 (x) = XKD kT (k) = b (xk) = A2 (xk),

where the last equality follows by (3.4). Repeating construction (3.3) for each transition vector
z e Z,we put

R=JR* and K=[]JK~

zeZ zeZ

https://doi.org/10.1017/50956792520000492 Published online by Cambridge University Press


https://doi.org/10.1017/S0956792520000492

Identifiability of stochastically modelled reaction networks 873

By the construction, for each transition vector z € Z, we have

NEO=M0= Y AoyX),
y—>yeR
y—=y =z
for each x € Sy, where Ay_,y is the intensity of a reaction y — y’ in (R, K). The order of (R, K)
is less than or equal to N since the order of each reaction in R is less than or equal to N. O

Remark 3.1 The advantage of Theorem 3.1 is that we do not require any algebraic structure on
Sy. Since the mass-action intensity of a reaction is a polynomial, transition rates on an arbitrary
set A can be used to infer the underlying reaction network and parameters using a canonical
polynomial fitting approach. To do that, however, certain algebraic structure on A is required.
More details about network inference with polynomial fitting are provided in Section 4.

Remark 3.2 If the transition rates A} of a given CTMC X(t) are given by an order N mass-
action system, then c; > 0 for each transition vector z and i=1,2,...,n, and we can uncover
the underlying reaction network uniquely by the algorithm illustrated in Figure 2.

3.2 Identifiability of CTMCs

For a CTMC associated with a given reaction system, one of the main questions is identifiability
of the underlying reaction system using the information on the CTMC. We formalise this idea
more rigorously.

Definition 3.2 For a CTMC X(¢) with the state space S, the CTMC X(¥) is identifiable if there is
a unique reaction system (R, ) such that

1. eachy — y' € R is charged in at least one state x € S,

2. the state space of the CTMC associated with (R, K) contains S, and

3. the associated mass-action CTMC with (R, K) admits the same transition rates on S as X(¢)
admits.

Otherwise, X(7) is not identifiable with a reaction system.

For a CTMC X(¢) associated with an order N reaction system, the uniqueness of Theorem 3.1
implies that X(7) is identifiable as long as enough information on the transition rates of X(¥) is
ensured. We begin with a lemma for identifiability of reaction systems.

Lemma 3.2 Let X (¢) and X;(¢) be two d-dimensional CTMCs associated with mass-action sys-
tems (R1, K1) and (R,, K2) of order Ny and N,, respectively. Suppose that Ni > N,. Suppose
Surther that Xi(t) and X,(t) have the same transition rates at each state X € Sy,. Then,
(R2, K2) C (R1, Ky).

Proof We apply Theorem 3.1 to the transition rates of X, () on Sy, to identify a unique order N’
reaction system (R’, K') such that N’ < N, and the associated CTMC under mass-action kinetics
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has the same transition rates on Sy, as the transition rates of X (¢). Then by the construction in
the proof of Theorem 3.1, reactiony — y’ € R’ ifand only if y — y’ € R is of order K for some
K < N,. That is, R’ only contains those reactions in /R| whose order is less than or equal to N,.
Furthermore, the reaction intensity of each reaction y — y’ € R’ is equal to the reaction intensity
of y —> y' € Ry. Therefore, (R', K') C (R, K1). Note also that since X;(¢) and X,(¢) have the
same transition rates on Sy,, by uniqueness shown in Lemma 3.1, we have (R, K') = (R, K,)
because the order of both reaction systems are less than or equal to N, and the associated CTMCs
have the same transition rates on Sy, . O

Lemma 3.2 ensures that if two reaction systems have the same transition rates, then the one with
lower order is a subsystem of the other. Using this fact, we obtain identifiability of a reaction
system.

Theorem 3.3 Let X(t) be a CTMC associated with an order N reaction system (R, K) with the
state space S. If Sy C S, then X(?) is identifiable.

Proof First of all, suppose that there exists a reaction system (R, K) of order N where N < N
such that the associated mass-action system satisfies the conditions (1)—~(3) in Definition 3.2.
Then Lemma 3.2 implies that (R, K) C (R, K). Since N < N, there exists a reaction § — ¥ of
order N that belongs to R \ R. Let z= ¥ — ¥. Then at state § € Sy,

Yo ey @ = D Ay () 2 Ay > 0,
y=>YeR y—>yeR
y-y=z Yy —y=z

where Ay_y and Ay_y are the reaction intensity associated with a reaction y — y’ of (R, K) and
(R, K), respectively. Therefore it contradicts to the fact that (R, K) has the same transition rates
on each state x € Sy as X(¢). For the same reason, there does not exists a reaction system, which
has higher order than N, satisfies the conditions (1)—(3) in Definition 3.2.

In conclusion, the only reaction network satisfying the conditions (1)—~(3) in Definition 3.2 is
(R, K) because uniqueness among reaction systems of order N is guaranteed by Lemma 3.1 and
(R, K) satisfies the condition (1)—(3) in Definition 3.2. O

In practical situations, it is often the case that an associated mass-action CTMC X(¢) is given,
but the underlying reaction system (R, K) is unknown. However, it is reasonable to assume that
the order of (R, K) does not exceed a relatively small number N for general biochemical system
(for example, many biochemical systems are at most bimolecular, hence we could set N = 2).
Under this assumption, X(¢) is identifiable as long as enough information about the transition
rates is given. The case of the unknown order is a consequence of Theorems 3.1 and 3.3 and is
formulated as the following corrollary.

Corollary 3.1 Let a CTMC X(t) be a mass-action stochastic system associated with an unknown
order N reaction system (R, KC) with the state space S. Suppose that N <N for some positive
integer N. Suppose further that S5, C S. Then X(?) is identifiable. Moreover, using the transition
rates of X(¢), the true network (R, KC) can be explicitly inferred.
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3.3 Identifiability of reaction systems with conservation laws

If the transition rate of a Markov process is given over a proper subset A C Sy for given N > 0,
then two distinct reaction systems of order N may be constructed having the same transition
rates over A. Since A is the proper subset of Sy, we have A C {x',x?,...,x"} C Sy where
m < n. Given the transition rates on {x',x?,...,x"} and considering x¢ > x” such that x¢ € Sy,
the mass-action reaction intensity associated with a reaction x; — X, + Z is zero at each state in
{x',x2,...,x"}. Hence by adding or removing x, — X; + 1, we obtain different reaction systems
that have the same transition rates on A.

Next, we consider other situations where the underlying reaction system of a CTMC is not
uniquely determined. Suppose a given CTMC X(¢) associated with a stochastic reaction network
of order N admits a conservation law, i.e. there exists v € Zéo such that v - X(¥) = v - X(0) for any
time ¢ > 0. In this section, we simplify our discussion by considering that the vector v has all non-
zero components, that is, v € ZZO. Then the state space of X(¢) is confined to a finite hyperplane
Sy of ZZO. In this case, one of the main questions is whether the information about the transition
rates over a single hyperplane is sufficient to uniquely infer the underlying reaction system.

In this section, we show how to construct a reaction network of order N with given transi-
tion rates over a single hyperplane Sy y, see the definition (2.6). We further show that when a
given reaction system (R, K) is of order N, then the underlying reaction network is not uniquely
identified with given transition rates on a single hyperplane Sy - such that N < N'.

Theorem 3.4 Letzc 7% ve Z‘io and N > 0. Let M(X) be a given non-negative function defined
on Sy such that M(x) > 0 for at least one x € Sy y. Then there exists a mass-action reaction
system (R*, K*) of v-order N such that the transition rates at each x € Sy y are equal to A(X).
That is

Z Aysy(X)=A(X) foreach xeS,y. 3.5
y—>y eR?

Proof The key idea of the proof is that (under the mass-action kinetics) every reaction of
v-order N is charged at a single state x € Sy y and turned off elsewhere in Sy . So we will
collect all reactions x — x + z for each x € Sy y as long as A(x) > 0. We define

RZ:{X—>x+z|A(x)>O, xeSv,N}, and

Ax
K% = {Ax_)xﬂ(w) = %)) w® for any w € Zio ’ Ax)>0, xe SV,N}.
x =
Since v € Zio, for any two distinct states x and x’ in Sy , there is an index & such that x; > x;.
Therefore, the reaction x — x + z € R* is turned off at x’ if and only if x # x’. This implies that
for any x € Sy v such that A(x) > 0:
A(x)
W x(x) = )‘1X~>X+Z(x) = Z )\,y*)y/(x).

y—>y eR?

AX)=

Equation (3.5) is also valid for any x € S, y satisfying A(x) = 0, because we have (x - x+z) ¢
R* and each X' — x’ +z € R, is turned off at x. O
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Theorem 3.4 implies that for a given CTMC defined on a hyperplane S, y, we can construct
a reaction network of v-order N such that the associated mass-action CTMC admits the same
transition rates on Sy y. Using this, we prove that a CTMC associated with a conservative reaction
system of v-order N is not identifiable if the transition data of the CTMC are only given on S,
for some N’ > N.

Theorem 3.5 Let (R, K) be a mass-action reaction system that admits a conservation law with
veZd, such that v-(y —y)=0 for each y —y € R. Suppose that the v-order of (R,K) is
N. Let X(t) be the CTMC associated with (R, K) such that v - X(0) =N’ and N’ > N. Then, the
CTMC X(t) is not identifiable.

Proof Because of the conservation law, the state space of X(¢) is Sy v, defined by (2.6), because
v - X(#) = v - X(0) for any time ¢ > 0. For a fixed transition vector z in the set of transition vectors
Z of X(t), we denote by A,(x) the transition rate of X(¢) at x € Sy 7. Then for each x € Sy y,
we have

()= Y Aoy,
y—>y/€R
y-y=z

where Ay_.y is the intensity of reaction (y — y’) € R. Since A, is the transition rate of a mass-
action reaction system of v-order equal to N, there exists x* € Sy y such that (x* — x*+z) €
R. Therefore, for X' =x* + (N' — N)/v1,0,0,...,0) € Sy, we have A5(X') = Ayryx 42(X) >
0. This means that there exist at least one X’ € Sy »» such that A,(x’) > 0. Hence using Theorem 3.4
with 1, and z, we can construct a reaction system (R*, K*) of v-order N'. Then, we have

Aa(X) = Z xyey/(x)a

y—>y eR?

where Xy_,y/ is the intensity of reaction y — y’ in (R*, K*). Applying Theorem 3.4 in the same
way for all transition vectors z € Z, we define

R= U R*, and K= U K~
zeZ zeZ
Then, we have

Aa(X) = Z xyey’(x): Z xyey’(x),

y—y eR? y—=yeR
Y-y=2

for each x € Sy 7 and for each transition vector z of X(#). This implies that the CTMC associated
with (R, K) has the same transition rates on S, y, which is the state space of X(z). Since (R, K)
is of v-order N, the two reaction systems (R, ) and (R, K) are distinct. Hence, X(f) is not
identifiable. O

We illustrate Theorem 3.5 using the following example.
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(a) ‘ ‘ ‘ ‘ (b)
4 —— Reaction system (3.6) 1 -
— = Reaction system (3.8) =
;] <o08

5 0.6
X
¢ 0.
2
§ 0.2 —— Reaction system (3.6)
— =Reaction system (3.8)
0 0.5 1 15 2 2.5 0O 0.5 1 1.5 2 25
Time t Time ¢

FIGURE 3. (a) The mean number of molecules of the chemical species X, for the chemical system (3.6) (red
solid line) compared with the result for the chemical system (3.8) (blue dashed line). (b) Time evolution
of the variance of the number of molecules of the chemical species X;. We use the same initial condition
X(0) = (N, 0), where N =4, for both systems. The results for the reaction network (3.6) are calculated by
equation (3.9), while the results for the reaction network (3.8) are estimated as averages over 107 realisations
of the Gillespie SSA.

Example 3.2 Let X(¢) be the CTMC associated with the mass-action reaction system:

1
X — X% (3.6)
1
Note that this system admits a conservation law such that v-X=X;(0)+ X5(0) where
v=(1,1) e Z2,. With X(0) = (2, 0), the transition rates of X(¢) at its state space Sy, are

A,n(2,0)=A1,-1(0,2) =2, and AL, D =Aq—pn(1, 1)=1. (3.7

Note that the v-order of the reaction system (3.6) is 1. Using Theorem 3.4, we construct the
following reaction system of v-order 2 with the same transition rates (3.7) on Sy »:

2X <—1>_X1+X2 —]><_ 2X,. (3.8)
1 1
The CTMC associated with the reaction system (3.8) admits the same transition rates on Sy,
as X(¢) does. However, these two reaction systems exhibit different dynamical behaviours if we
consider them on a different hyperplane S, y as we show in Figure 3 for N = 4. Considering the
initial condition X(0) = (¥, 0), the mean and variance of the number of molecules of X; of the
reaction system (3.6) are given by [12]:

X)) = %V (14 exp[—21]), (X2 — (X)) = % (1 — exp[—41]). (3.9)

Using N =4, we plot (3.9) as the red solid lines in Figure 3, where we compare them with the
results calculated for the reaction system (3.8) by averaging over 107 realisations of the Gillespie
stochastic simulation algorithm (SSA).

Remark 3.3 If'we consider the same hyperplane, Sy, as in Example 3.2, we can also construct

an identifiable network if the conditions of Theorem 3.5 are not satisfied. For example, replacing
the reaction system (3.6) with the reaction system.
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K]
2X1 <:> 2X2 .
K2
and letting X(0) = (2, 0), the state space is {(2,0), (0,2)} C Sy with v=(1, 1). Then the CTMC
X(¢) is the only reaction network of the v-order 2 with the same transition rates on Sy, that is,
the CTMC X(t) is identifiable.

4 Reaction networks for Markov processes with polynomial rates

In Section 3.1, we showed that if the transition rates of a CTMC are given at each state in Sy for
some N, then we can uniquely identify an order NV stochastic reaction system that has the same
transition rates on Sy. In this section, we explore the case where the transition rates of a CTMC
are known on arbitrary states, which are not necessarily belonging to Sy. For a d-dimensional
CTMC, we will use the transition rates at (compare with (2.5) and (2.8)):

N+d
n:|SN|:< d )

different states to uniquely identify an order N stochastic reaction system that has the same
transition rates at the given states.

Lemma 4.1 Let X(f) be a CTMC defined on Zéo with the finite set of transition vectors Z.
Suppose for each transition vector 7 € Z, the transition rates of X(t) are given in finite set A, C
74, Then there exists a CTMC X(t) with polynomial transition rates such that for eachz € Z:

A(X) = Ay (X) for each x € A,, “4.D

where A, is the given transition rate of X(t), and &, is a polynomial transition rate of X(t).
Moreover, assume that we have |A,| =n = |Sy| for some positive integer N, and denote the
elements of A, as a', a%, ..., a" and elements of Sy by (2.8). Define a matrix M € 7" with
entries:

My=a""  for i=12....nj=12...n

If the matrix M is invertible, then )\, is a unique degree N polynomial.

Proof We can find a polynomial A, such that (4.1) is satisfied because the set 4, is finite for
each transition vector z € Z and | Z| < co. Suppose that matrix M is invertible. Then, for each
z € Z, we define ¢ € R” by

.

c=M""b, where b= (A,(a"),A,(a%),...,1,(a")) . (4.2)
Then the degree N polynomial 2,(x) is uniquely written as:
ha(X) = Z ¢ X, 0
j=1

For a given CTMC, our final goal of this section is to identify a unique mass-action stochastic
system that has the same transition rates as the given CTMC admits. By applying Lemma 4.1,
we can construct a CMTC whose transition rates are polynomials and have the same values
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as the given transition rates. However, not every CTMC with polynomial rates is associated
with a mass-action reaction network. Negative coefficients cause problems as it is the case of
polynomial ODE models which cannot be written as chemical reaction systems [26]. In the case
of CTMC, the situation is even more restrictive. To formulate the theorem characterising which
CTMC with polynomial transition rates can be identified as a mass-action reaction system, we
define D;(1) = min { yl-1 , y%, e yf} for a polynomial A(x) such that
n .
Ax)= Z C; x™) for some elements y e Zéo and for some constants ¢; > 0. 4.3)
j=1

Example 4.1 Let us consider polynomial:

Axr,x2) = (x1 + Dxa(x, — 1) =xa(x — 1) +xixo(x2 — 1).
Then, we can write A(x) = Zle ¢ x¥), where y! = (0,2), y>=(1,2) and ¢=1forj=1,2.
Hence, D;(A) = min{y}, %} = 0 and D,(1) = min{y}, 3} = 2.

Theorem 4.1 Let X(f) be a CTMC defined on Zéo with the set of transition vectors Z. Suppose
that each transition rate \, of X(f) associated with z € Z is a polynomial of degree N such that

n
A(X) = Z ¢ x¥) for some constants ¢ =0, (4.4)
j=1

where n = |Sy| and elements of Sy are denoted by (2.8). Suppose further that
|zil < Di(Az) ifzi <0. (4.5)
Then there exists a unique mass-action reaction system such that the associated mass-action

stochastic model is equal to the CTMC X(t).

Proof Let z € Z be fixed. Then, the associated transition rate A, is given by (4.4). Let ¥ € Sy
be such that ¢; > 0 on the right-hand side of equation (4.4). We want to find a chemical reac-
tion with the associated mass-action intensity equal to ¢; x™). Such a reaction is given by
¥ — ¥/ + z provided that every component of ¥’ + z is non-negative. However, this follows from
our assumption (4.5), which implies that

X4z 2Di(h)+2z>0, forall i=1,2,...,d, j=1,2,...,n
Therefore, we define
R ={¥ >¥ +z|¢>0} and K* = {)»x,-_)x;ﬂ(x):cj x®) |¢; > 0}.
Then,

)\-z(x) = Z )"xfex/'Jrz(x)-

Y —>Y+z2eR,

Considering R* and K* obtained for each z € Z, we define R =J,.z R* and K=, - K*.
The associated CTMC for (R, K) has the same transition rates as X has. Uniqueness follows
since the decomposition (4.4) is unique. O
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Suppose a given CTMC satisfies the conditions in Lemma 4.1 and that the transition rates of
the CTMC satisfy the conditions (4.4) and (4.5) in Theorem 4.1. Then we can infer a reaction
network whose associated CTMC has the same transition vectors and the same transition rates at
each state in A4, for each transition vector z. We demonstrate this using the following example.

Example 4.2 Let X(#) be a CTMC defined on Zéo. Suppose that it is known that X(f) admits
three transition vectors z' = (1,0), z> = (—1, 1) and z* = (0, —1). We are also given information
on the transition rates of X(¢) as:

2,1(10,10)=1,
2,2(10,10)=20,  A.(9,11)=18,  1,(9,10)=18, (4.6)
A3(8,11)=33, A3(8,100=30,  A,x(7,11)=33.

Using Lemma 4.1, we first find a CTMC X(¢) with polynomial transition rates. Using the notation
of Lemma 4.1 for the first transition vector z!, we have 4,1 = {(10, 10)} such that n =1 = |S|,
matrix M is scalar M =1 and “vector’ b is a scalar as well, b= 4,1 (10, 10) = 1 . Thus, the poly-
nomial transition rate A1 is a constant given by (4.2) as A,1 = M ~'b = 1. Considering transition
vectors z* and z°, we have

A, =1{(10,10), (9,11), (9,10)}, and A, = {(8,11), (8, 10), (7, 11)}.

Since |S;| = 3, we find a linear transition rate A,> (resp. A,3) of X(#) that has the values (4.6) at
A, (resp. A,3). The 3 x 3 matrix M is given as:

1 10 10 1 11 8
M=|[1 11 9|, respectively, M=|[1 10 8
1 10 9 1 11 7

Since both matrices are invertible, we can calculate ¢ by (4.2), where b = (20, 18, 18) T, respec-
tively b=(33,30,33)". We obtain ¢e=M"'b=(0,0,2)" for the transition vector z> and
c=M"'b=(0,3,0)" for the transition vector z>. Therefore, we obtain

Ap=1, Ap(X)=2x, Ap(X) =3x;.

Next, we find a reaction network whose associated mass-action dynamics is equal to the CTMC
X(?). The conditions (4.4) and (4.5) of Theorem 4.1 are satisfied for all three transition vectors

z', 7% and Z*. Thus, the unique reaction system is

b -5 x 2 x = 0.

Example 4.3 Consider the reaction system (3.6) introduced in Example 3.2. Let z= (1, —1) be
one of the two transition vectors of the CTMC X(¢). Given the transition rates (3.7) on Sy, the
first-order reaction X; — Xj is not identified using Theorem 4.1, because matrix M associated
with states Sy, is the singular matrix:
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5 Inference of reaction networks using temporal data

Theorem 3.1 states that we can use transition rates and transition vectors of a mass-action
stochastic reaction system to uncover the underlying network structure. However, in applica-
tions, we are not given directly the transition rates, but instead only temporal data consisting
of states and transition times between them. For example, for an (a priori unknown) underlying
network:

X 52X, Xi+X 52X,
we are given transition data of the associated CTMC X(¥) such as:
XO0)=(1,1), X(r1)=(,1), X(r2)=(1,2),..., and 71=02, n,=1.1,...,

where 7; is the i-th transition time. Thus, to apply results of the previous section, we need to
use such time series to estimate the transition vectors (1, 0) and (—1, 1) and the corresponding
transition rates A(1,0)(x) =x; and A_1,1)(X) = x1x2.

Suppose that we are given O sample trajectories of the CTMC X(¢) consisting of the states
of the system X'(z}), fori=1,2,..., O, recorded at times t;, where k= 1,2, ..., ¢(i), and g(i)
denotes the number of time points in the i-th time series. Assuming that the given time series
includes all reaction events, the time of the k-th transition of the CTMC X'(¢) is equal to ‘L']é. Then,
all possible transition vectors z of the system can be uncovered (as long as they are present in the
recorded time series) by collecting the transitions X(z} )= Xi(z}) forallk=1,2,...,4(i) and
i=12,...,0.

Next, we estimate the transition rates at each state x using the sample trajectories. Let CTMC
X(?) be associated with reaction system (R, K) and let Z be the finite set of transition vectors.
Then, using the random time representation [20, 2], we have

XO=XO0)+) Y, ( /0 t AZ(X(S))ds) z

zeZ
where Y, are independent unit Poisson processes. Therefore,
1
E X =X)= —, here A(x)= A (X),
(e | X =0 =70, W ()= 1(x)
zeZ
and

Aa(X)
Ax)

P(X(rk+1):x+z | X(rk):x) = (5.1
To estimate 1,(x) at each state x, we identify the data points when this state was reached by defin-
ing Gx = {(i, k) | X'(t{) = x and k < q(i)}. Then, for each state x and for each transition vector z,
we use

A(X) P (X(txr1) =x+2 | X(1) =)

AX)=

Ag(X) = —
A(x) E(tis1 | X(te) =%)

N Z(i,k)er ]l{xi(r,i+1)—xi(r,§):z}

) : (5.2)
Z(i,k)er Tt

where we assume that |G| is sufficiently large to get a good approximation.
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Example 5.1 Let (R, K) be the following one-species mass-action reaction system:
3 10 1 2
3 = 4 — 0 — X1 = 2X,.
For the transition ‘vector’ z = 1, the transition rate of the associated CTMC X(¥) is
Az(xl) =1 +2X1 + 3)61()61 - 1)()61 - 2)

Using the Gillespie SSA, we generate Q = 10? independent sample time trajectories of this sys-
tem each of which contains ¢(i) = 10° transition times 7} and the corresponding states X{(z}),
for k=1,2,...,103 and i=1,2,...,10% Applying (5.2), we obtain for the state x; =4 the
estimated transition rate A,(4)=80.871, which compares well with the true transition rate
Az(4) = 81.

5.1 Distance between two reaction systems

For a given (unknown) mass-action reaction system (R, ), suppose we know the number of
species and the order of the network. Suppose further that we use transition data associated with
(R, K) to estimate the transition rates of (R, ) by equation (5.2). Then, we can use the estimated
transition rates to infer a reaction system (R, K) by applying Theorem 3.1. In this section, we
discuss how we can measure the accuracy of the inferred reaction system (R, K) by comparing
to the original system (R, K).

Definition 5.1 For two reaction systems (R, K) and (R, K) defined on Zéo, their distance at
time ¢ is defined as the total variance distance as ||p(-, t) — p(-, £)| rv, where p(x, t) = P(X(f) = X)
and p(x, 1) = P(X(f) = x) are the probability distributions of the stochastic systems X(z) and X
associated with (R, KC) and (R, KC), respectively. In particular, we measure the similarity of the
two reaction systems on a finite set U with their distance at time ¢ with respect to a finite set U,
which we define as:

1
dv=>5 D |px0=p(x,0)].

xeU

An alternative distance can also be defined by measuring the difference between the reaction
intensities of (R, ) and (R, K) over a fixed finite set.

Definition 5.2 For two reaction systems (R, ) and (R, K) defined on Zéo, let X(7) and X(7) be
the associated CTMCs with the set of transition vectors Z and Z, respectively. Let further that
A, and A; be the transition rates associated with transition vectors z € Z and z € Z, respectively.
Then for a fixed finite set U, we define

81, = max { max_|A,(x) — Az(X)
xeU |zeznZz

, Max A,(X), max Xz(x)} )

zeZ 7eZ
Both the distances 8y and 8/, measure the similarity of two reaction systems confined to a finite
set U. For a given (unknown) reaction system of order N, we can apply Theorem 3.1 to infer a
network system using the transition data over U = Sy. Then we can test with either 8y or 87, how
close the inferred network is to the original reaction system. The following example demonstrates
this process.
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FIGURE 4. (a) Mean values of X;(¢) and X,(¢) of the reaction network (5.3) (red lines) and the inferred
reaction network (5.4)—(5.5) (blue lines) obtained by averaging over 10* realisations of the Gillespie SSA
with initial condition X;(0) =1 and X,(0) = 1. The average number of transitions by the reactions (5.5) in
R\ R is denoted by K. (b) The variance of X;(¢) and X;(¢) estimated from the same time series.

Example 5.2 Consider the following mass-action reaction system of order 3:

1 1
Xl (:) Qa X2 (:> gﬂ
1 1 (5.3)

X +X —> 0 -5 X +X — 2X, +2X,

We use the Gillespie SSA to simulate the reaction system (5.3) until we collect 15.625 x 10°
sample transition times r,i for each state X’ € S3, where j=1,2,...,10. Then we estimate the
transition rates by (5.2) and apply Theorem 3.1 with the estimated transition rates over S;. We
obtain the mass-action reaction system which contain both original reactions (with modified rate

constants):
0.9999 1.0025
Xl <~ ®9 X2 <«~——= @;
1.0008 0.9996 (5.4)
0.9994 1.0002 1.0027

2X1 +X2 —_— ) — X] +X2 —_— 2X1 +2X2,
and additional reactions (with relatively small rate constants):

0.0022 0.0013 13x10™4 53x1074

2X1 +X2 —_— X] +X2 X2 2X2 3X2 55
5.2x10~4 49x10~4 (5-5)
2X1 EE—— Xl, 2X1 EE— 2X1 +X2,

where the reactions in (5.5) are the reactions in R\ R. To compare the original reaction
system (5.3) with the inferred reaction system (5.4)—(5.5), we first estimate the distance §y
by computing the empirical measures with 10* realisations of the Gillespie SSA. We obtain
3y =0.0083 (for a larger set U’ = Sjq9, we get 8y = 0.0244). The alternative distance 8{] can
also be computed using the mass-action intensities of the reaction systems as 8/, = 0.0090 (for
the larger set U’ = S;q9, we get 8{/, =331.9268). Mean trajectories of species X; and X; in the
original reaction system (5.3) and the inferred reaction network (5.4)—(5.5) are shown in Figure 4.

Remark 5.1 As shown in Example 5.2, the distance Sy is robust to the size of U because
this distance is defined using the probability densities. However, the distance 8, is sensitive

https://doi.org/10.1017/50956792520000492 Published online by Cambridge University Press


https://doi.org/10.1017/S0956792520000492

884 G. Enciso et al.

to the choice of the set U since the transition rates 7,(x) and 7;(x) rapidly increase as ||x||; is
increased.

5.2 Error analysis

For a given CTMC, the true underlying network structure and the true parameter values are often
unknown. Thus, the distance between the true network and the estimated network cannot be
calculated. Using the central limit theorem, however, we can find confidence intervals for given
stochastic simulation data to ensure that the alternative distance 87, is less than some bound. Let
(R, K) be a given reaction system and let 1,(x) be the transition rate of the associated CTMC.
Note that

Ja(0) = P (X(ze) = x 42 | X(m) = %) A(%)

as shown in (5.1), where A(x) = ) ,_ = A,(X) is the total intensity of the CTMC X(¢). Thus, letting
AX) = |Gyl/ (Z(i,k)er T} +1) be the sample mean of the total intensity, we define the sample
transition rate for a transition vector z as:

—(i.k) T

A, (X)= ]l{xi(fli+1)7xi(fli)=z} A(X).

Then, the sample mean of the transition rate ,(x) can be computed as:

1 1 —(ik)
D Lixic, -xiepa MO E D).

(X)) =
’ |Gyl (i,k)eGx xl (i,k)eGx

Then by the central limit theorem, for ¢ > 0:

NI

P ()\z(x) —& gxz(x) gkz(x)+5) ~ P (_8«/ |G| Eq/ |Gx|) ,

<Z<
0(X) 02(X)

where

1 —(i k) _ 2

0= > (50 -%w)
|Gyl — 1 (i,k)eGx

is the sample variance, and Z is an independent standard normal random variable. Thus, we can

formulate the following proposition on confidence intervals.

Proposition 5.1 Let (R, K) be a reaction system. For a finite subset U C Zio, let 1,(X) and
02(x) be the sample mean and the sample variance for each transition vector z € Z and x € 4,
respectively. For some 0 < « < 1, suppose that € > 0 satisfies

£> Zao'z(x)

VIGK

where [—z4,z4] is the (1 — a)-confidence interval of a standard normal random variable,

ie. P(—z4 < Z<zy)=1—«, where Z is the standard normal random variable. Then for the

inferred reaction system (R, KC) obtained by Theorem 3.1 with the sample transition rates Az(X),

the distance 8!, between (R,K) and (R,K) is less than & with (1 —a)Z! x 100% accuracy,
where Z is the set of transition vectors of the CTMC associated with (R, K).

foreachz € Z and for eachx € U, (5.6)
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Example 5.3 Consider again the inferred reaction system (5.4)—(5.5) in Example 5.2. Note that
we have the sample transition rates A,(x) at each state x € S; and for each transition vector z.
Hence, we can calculate the sample variance. We obtain

x (0,00 (,0) @1 ... (3,0

z (L) (L) (=L0) ... (=1,0)
72(x) 1002 09984 20073 ... 2.9975
o,(x) 2.007 29966 8.0045 ... 2.9972

Since six transition vectors are inferred in Example 5.2 (i.e. |Z| = 6) and (1 — &)® = 0.95 with
a =0.0085, we choose z, ~ 2.4 such that P(—z, < Z <z,;) =1 — « with the standard normal
random variable Z. Hence, if we let

£=0.0172= max z,0,(x)|Gyx| /%,
xeS3,zeZ

then the distance 5é3 between the given system and the estimated reaction system is less than
0.0172 with 95% accuracy.

6 Discussion

In this paper, we have explored identifiability of reaction systems. Identifiability of a stochastic
reaction system (R, K) holds if this is the only set of reactions that produces its transition rates
on the corresponding state space. Therefore, identifiability of a reaction system must be verified
prior to inference of a network structure and parameter estimation. Using the fact that a mass-
action system is fully characterised with the transition rates on a certain finite region, we have
proved that any stochastic mass-action system of order at most N is identifiable as long as the
associated state space contains Sy .

Using the mass-action property, we have also proposed an algorithm that enables us to infer
the underlying reaction network and the associated parameters with the transition data of a
given CTMC. In the case that the transition data are given by stochastic simulations, we have
investigated how to approximate the true transition data, and in turn, how to infer an estimated
underlying network. Then by using the confidence intervals, we can measure the accuracy of the
estimated underlying network comparing to the true network.

The presented network inference method relies on the exact transition data consisting of the
transition vectors and the transition times. Hence, this method is not directly applicable to data
that consist of partial information of the system at discrete time points. However, we have shown
that as the transition information and confidence on transition rate estimates increases, the dis-
tance between the actual and approximated networks tends to decrease. Given that increasingly
precise measurements are being made for specific reaction networks in experimental studies, we
expect that the presented method can be used in the future to infer underlying networks and
kinetic parameters for realistic biological systems.
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