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Abstract

On a now orthodox view, humans and many other animals possess a “number sense,” or
approximate number system (ANS), that represents number. Recently, this orthodox view
has been subject to numerous critiques that question whether the ANS genuinely represents
number. We distinguish three lines of critique – the arguments from congruency, confounds,
and imprecision – and show that none succeed. We then provide positive reasons to think that
the ANS genuinely represents numbers, and not just non-numerical confounds or exotic sub-
stitutes for number, such as “numerosities” or “quanticals,” as critics propose. In so doing, we
raise a neglected question: numbers of what kind? Proponents of the orthodox view have been
remarkably coy on this issue. But this is unsatisfactory since the predictions of the orthodox
view, including the situations in which the ANS is expected to succeed or fail, turn on the kind
(s) of number being represented. In response, we propose that the ANS represents not only
natural numbers (e.g., 7), but also non-natural rational numbers (e.g., 3.5). It does not repre-
sent irrational numbers (e.g., √2), however, and thereby fails to represent the real numbers
more generally. This distances our proposal from existing conjectures, refines our understand-
ing of the ANS, and paves the way for future research.

1. Introduction

On a now orthodox view, humans and many nonhuman animals possess a number sense,
or approximate number system (ANS), that affords a primitive and prelinguistic capacity to
represent number. This hypothesis is supported by a large, and ever-growing, body of
experimental research. But, at its core, the orthodox view is dogged by two significant
challenges.

First, many deny that the ANS actually represents number. Instead, critics claim that the
ANS merely represents non-numerical confounds (Gebuis, Cohen Kadosh, & Gevers, 2016;
Leibovich, Katzin, Harel, & Henik, 2017) or exotic substitutes for number, such as “numeros-
ities,” “quanticals” (Núñez, 2017), or “pure magnitudes” (Burge, 2010). Consequently, a cloud
of uncertainty hangs over the orthodox view. Perhaps, there is no number sense after all?

Second, even if the ANS does represent number, a question remains: What kind(s) of num-
ber does it represent? Proponents of the orthodox view have been remarkably coy on this issue.
The default hypothesis seems to be that the ANS represents natural numbers – that is, positive
whole numbers (e.g., 7) – but this is rarely made explicit. An alternative is that the ANS repre-
sents real numbers, which include not only natural numbers, but also rational numbers (e.g., ½)
and irrational numbers (e.g., √2) (Gallistel & Gelman, 2000). There are other options as well,
such as the hypothesis that the ANS represents rational but not irrational numbers. Choosing
among these is important since the predictions of the orthodox view, including the situations
in which the ANS is expected to succeed or fail, turn on the kind(s) of number being repre-
sented. Thus, without a clear sense of what the ANS represents, the orthodox view remains
vague and underspecified.

The present treatment addresses both challenges on behalf of the orthodox view. After
introducing the ANS in more detail and issuing some clarifications (sect. 2), we distinguish
and address three lines of critique that have motivated skepticism about the ANS and its
capacity to represent number – critiques which we label the arguments from congruency, con-
founds, and imprecision (sects 3–5). We then highlight positive reasons for thinking that the
ANS literally represents numbers, of a sort familiar from the math class, rather than ersatz
numbers (e.g., “numerosities”) (sect. 6). In so doing, we raise the neglected question: numbers
of what kind? In answer to this question (sect. 7), we marshal evidence that the ANS represents
both natural numbers and non-natural rational numbers. At the same time, we argue that the
ANS fails to represent irrational numbers, and thus fails to represent the real numbers more
generally. This distances our proposal from existing conjectures, refines our understanding of
the ANS, and paves the way for future research on this topic.
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2. The ANS

The ANS is a primitive and prelinguistic numerical system that is
marked by a distinctive performance profile. For while the ANS
facilitates computations over (sometimes quite large) numerical
quantities, its numerical discriminations are imprecise and con-
form to Weber’s Law. As such, discrimination deteriorates as
the ratio between two numbers approaches 1:1. Thus, 8 is easier
to discriminate from 10 than 10 is from 12 even though the abso-
lute difference in number is the same. Meanwhile, 10 is as easy to
discriminate from 5 as from 20. In each case, discriminability is
determined by the ratio of the two quantities.

This performance profile distinguishes the ANS from other
psychological systems that facilitate primitive numerical computa-
tions. For example, it distinguishes the ANS from a “parallel indi-
viduation” or “small number” system which facilitates precise
numerical discriminations, but only among sets involving four
items or less (Feigenson, Dehaene, & Spelke, 2004; Margolis,
2020; but see Cheyette & Piantadosi, 2020). For, unlike the paral-
lel individuation system, the ANS’s numerical discriminations are
imprecise (they are ratio sensitive) and they are not limited to
small sets of items (the system might recognize that 30 dots are
more than 20 dots). Furthermore, it distinguishes the ANS from
a “texture density system.” This is a system which, unlike the
ANS, enables organisms to discriminate sets that are too crowded
to parse, and (thus) perceived as texture (Burr, Anobile, Togoli,
Domenici, & Arrighi, 2019). Crucially, the texture density sys-
tem’s performance is not predicted by Weber’s Law but by a psy-
chophysically distinct square root law, revealing a marked
difference in its signature limitations (Anobile, Cicchini, &
Burr, 2016; Cicchini, Anobile, & Burr, 2016; Zimmermann, 2018).

2.1 Empirical motivations

The postulation of an ANS is not uncontroversial. Various critics
deny that the system exists or that it genuinely represents number.
Instead, they maintain that the relevant mechanisms and pro-
cesses simply track non-numerical magnitudes, such as areas
and densities, or recherché alternatives to number, such as
“numerosities,” as opposed to numbers themselves. In sections 3–5,

we examine such critiques in detail. But, before we do, it is useful
to consider some of the evidence that has (rightly or wrongly) moti-
vated positing an ANS in the first place. Our focus will be on land-
mark studies and experimental paradigms that put naive readers in a
position to appreciate where critics of the ANS are coming from, and
where their critiques go wrong. For more comprehensive recent sur-
veys, see Anobile et al. (2016), Anobile, Arrighi, Castaldi, and Burr
(2021); Gebuis et al., 2016, Nieder (2016, 2020), and Odic and
Starr (2018).

2.1.1 Infant studies
In the early 2000s, various studies yielded evidence that young
human infants can reliably track the numerical properties of
large sets, albeit imprecisely and in accord with Weber’s Law.
For example, Xu and Spelke (2000) habituated 6-month-old
infants to visual arrays containing either 16 or 8 dots. When
habituated to an 8-dot array, infants recovered interest when pre-
sented with a 16- or 4-dot array, but not a 12-dot array.
Meanwhile, infants habituated to a 16-dot array dishabituated
to a 32- or 8-dot array, but not a 24-dot array. Because confound-
ing variables such as brightness, density, and dot size were con-
trolled for (Fig. 1a), these findings were interpreted as showing
that 6-month-old infants can reliably discriminate the approxi-
mate number of items in two sets provided they differ by a suit-
ably large ratio (e.g., 1:2). Subsequent studies suggested that these
discriminative capacities improve with development. For instance,
9-month-olds were found to reliably discriminate sets that differ
by a ratio of just 2:3 (Lipton & Spelke, 2003). In each case, perfor-
mance decreased as the numerical ratio approached 1:1, irrespec-
tive of the sets’ precise cardinal values.

2.1.2 Cross-modal infant studies
Cross-modal studies bolster the suggestion that these results
reflect a genuine sensitivity to number. In one study, Izard,
Sann, Spelke, and Streri (2009) found neonates capable of match-
ing numerical quantities across sets even when they were pre-
sented with a number of seen items and a number of heard
sounds (Fig. 1b). This complicates attempts to explain these find-
ings in terms of a mere sensitivity to non-numerical confounds.
After all, neonates in Izard et al.’s study could not have relied
on (say) the size of seen items, or the total area of a seen set,
when identifying a match, because properties of this sort could
not have been heard. Nor could they have relied on the total vol-
ume or duration of heard stimuli, because properties of this sort
could not have been seen. As such, these findings provide evi-
dence that infants are able to abstract away from low-level con-
founds to track the numerical properties of sets they observe.
And because controls indicated that these abilities are (again)
ratio sensitive, they further implicate an ANS.

2.1.3 Preschooler studies
Of course, infants are notoriously difficult to study, requiring the
use of indirect measures such as looking time. But preschoolers
can simply be asked which of two stimuli has “more” dots or
tones, and because they are too young to reliably count, they
appear to rely on an ANS when answering. In a striking illustra-
tion of this, Barth, La Mont, Lipton, and Spelke (2005) showed
that preschoolers could not only reliably answer which of two
visual stimuli had “more” (e.g., red dots vs. blue dots), but that
they were roughly as good at doing this across modalities (e.g.,
dots vs. tones) as within a single modality. This suggests that pre-
schoolers’ numerical competences are not tied to modality-
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specific confounds. Once again, the numerical ratio between sets
predicted performance, implicating an operational ANS in these
children.

2.1.4 Adult studies
Studying adults adds a wrinkle to these investigations because
most adults can use language to count, bypassing the ANS and
its distinctive signature limitations. But when Barth, Kanwisher,
and Spelke (2003) presented numerical stimuli too quickly for
them to be explicitly counted, adults behaved like children.
They discriminated stimuli in accord with Weber’s Law under
both intra- and inter-modal conditions. Similar results obtained
during verbal shadowing tasks, where adults attempt to press a
button a pre-specified number of times while repeating a word,
such as “the,” to prevent them explicitly counting button presses.
In studies of this sort, errors in the total number of button presses
increase in proportion to the pre-specified number of target
presses and are, therefore, predicted by Weber’s Law (Cordes,
Gelman, Gallistel, & Whalen, 2001). So, again, these studies are
indicative of a system with the performance profile of an ANS.

2.1.5 Adaptation studies
Burr and Ross (2008) adapted adult observers to a large or small
number of dots by having them stare at a display for 30 s (Fig. 1c).
They then presented them with new displays of dots. Observers
who had adapted to a large number of dots underestimated the
number of dots on the new display, while observers who had
adapted to a small number of dots overestimated the number of
dots on the new display. Observers also reported consciously
experiencing the aftereffect: subsequent displays appeared more
or less numerous. Although some have argued that these effects
involve adaptation to density rather than number (Dakin,
Tibber, Greenwood, Kingdom, & Morgan, 2011; Durgin, 2008),
recent studies control for density and other confounds

(DeSimone, Kim, & Murray, 2020; Fornaciai, Cicchini, & Burr,
2016). Indeed, some research suggests that numerical adaptation
effects occur between auditory and visual stimuli and are thus
cross-modal (Arrighi, Togoli, & Burr, 2014).

2.1.6 Dumbbell studies
In a different paradigm, subjects were presented with two visual
arrays of items (squares or circles in Franconeri, Bemis, &
Alvarez, 2009; dots in He, Zhang, Zhou, & Chen, 2009) and
thin lines. Their task was to say which array had more items,
ignoring the lines. When the lines connected two items (effec-
tively turning pairs of items into single dumbbell-shaped objects),
subjects underestimated how many items were in the array (see
Fig. 1d). Franconeri et al. also showed that introducing a small
break in the lines would substantially decrease this “dumbbell
effect.” Because displays with small breaks and displays of items
connected with thin lines differ only slightly with respect to
total surface area, spatial frequency, and other non-numerical
magnitudes, these studies are (again) indicative of a genuine sen-
sitivity to the number of objects observed.

2.1.7 Number neurons
Finally, all of these results can be linked to findings at the level of
neural implementation. Neurons in the intraparietal sulcus (IPS)
of monkeys respond selectively to specific numbers (Nieder,
2016). Thus, specific neurons in the IPS respond preferentially
when one perceives seven items. Interestingly, their response pro-
file is noisy. Thus, neurons which are tuned to seven often fire
when one observes six or eight items and occasionally when
one observes five or nine items. Indeed, noise levels increase
with numerical quantity. This is what we might expect of neurons
implementing an ANS because it seems to naturally explain why
conformity to Weber’s Law emerges at the behavioral level.

Figure 1. (a) Xu and Spelke habituated infants to arrays
of dots and found that dishabituation would occur
when test stimuli contained a number of dots that
differed by a sufficiently large ratio. Because several
confounds were equated in habituation displays (e.g.,
dot size) or test displays (e.g., density), this suggests a
sensitivity to number itself. Reprinted from Xu and
Spelke (2000, p. B5), Figure 1, Copyright © 2000, with
permission from Elsevier. (b) Izard et al. familiarized
neonates to a number of heard sounds before present-
ing them with visual arrays containing a number of
items that either matched or failed to match the num-
ber of heard sounds. Neonates looked longer at visual
arrays containing a number of items that failed to
match the number of sounds they had been familiarized
to. Reprinted from Izard et al. (2009, p. 10383), Figure 1,
in line with PNAS’s licensing agreement. (c) Burr and
Ross instructed subjects to fixate on the dot in the top
panel for 30 s, at which point the bottom panel was pre-
sented. Subjects reported that the display on the left
appeared less numerous than the display on the right.
Reprinted from Burr and Ross (2008), Supplementary
Data, Copyright © 2008, with permission from Cell
Press. (d) He et al. showed that connecting dots with
thin lines substantially decreased the number of dots
arrays were estimated to contain. Reprinted from He
et al. (2009, p. 510), Figure 1, Copyright © 2009, with per-
mission from Springer Publishing Company.
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2.2 Clarifications

The preceding remarks do not provide a comprehensive overview
of research on the ANS. Nor do they prove its existence. They
simply provide readers with an initial sense of the vast, and seem-
ingly convergent, evidence that has motivated positing an ANS in
humans that represents number. The rest of this paper will be
devoted to defending and extending this conjecture. But, before
we proceed, it’s important to clarify our aims.

2.2.1 Auxiliary claims
There are certain hypotheses that frequently accompany the pos-
tulation of an ANS which we can set aside for current purposes.
These include hypotheses that the ANS is innate, that it is phylo-
genetically widespread, and that it is homologous across certain
species. We can also remain largely neutral on the format of
ANS representations (Beck, 2015, 2018; Clarke, forthcoming),
the informational resources it accesses in its computations
(Mandelbaum, 2013; Margolis & Laurence, 2008), and the details
of its neural implementation (Lucero et al., 2020; Nieder, 2016).
Our question is simply whether the ANS represents numbers,
and if so, numbers of what kind?

2.2.2 Referents versus modes of presentation
We should distinguish the referents of ANS representations (what
they represent) from their modes of presentation (how they repre-
sent). By analogy, the gustatory system plausibly represents
sodium chloride (NaCl) concentrations. But it is a further ques-
tion whether it represents NaCl concentrations as such – that is,
as comprising molecules constituted by sodium and chloride
atoms. Perhaps it is better to say that the gustatory system repre-
sents NaCl under the mode of presentation salty. We will argue
that the ANS represents numbers (i.e., that numbers serve as
the referents of the ANS), but under a unique mode of presenta-
tion that respects the imprecision inherent in the ANS (sect. 6).
This will allow us to avoid a commitment to exotic entities such
as “numerosities” without losing sight of the important differ-
ences between ANS representations and the precise numerical
concepts that emerge later in development.

2.2.3 Perceiving numbers
Some may wonder how the ANS could refer to numbers given
that numbers are abstract objects, not located in space or time.
This worry might seem especially acute given that the ANS
often operates perceptually (as in the adaptation studies intro-
duced above). For how could anyone perceive the number
seven? To clarify, note that philosophers standardly take percep-
tion to have an object–property structure. Perceptual states refer
to objects, which are concrete particulars, and attribute properties
to them. To perceive an object as red and square is to attribute the
(abstract) properties of redness and squareness to a spatiotempor-
ally located object. Among other virtues, this allows us to say what
different perceptual states have in common. For example, the per-
ception of a red apple and the perception of a red barn door con-
cern different particulars but are alike insofar as both attribute
redness. On this standard picture, abstract objects enter percep-
tual content through the attribution of properties, not through
reference to objects. Likewise, if the ANS refers to numbers, it
does so by enabling numbers to enter into contents via property
attribution, not as objects of perception. Therefore, your ANS
might enable you to perceive the collection of apples on the
table as being seven in number, but it wouldn’t enable you to

perceive the number seven itself – on its own, as it were – as
an object.

2.2.4 Direct versus indirect models of the ANS
Consider two distinct approaches to modeling the ANS. On a
direct approach, the ANS fulfills its numerical function by indi-
viduating entities in the world and then counting these up. For
instance, Dehaene and Changeux (1993) propose that the ANS
performs an initial process of “normalization,” which identifies
individual items independently of confounding variables, such
as size and density. A later “accumulator” stage of processing
then sums these, such that number is estimated. By contrast, an
indirect approach eschews the initial individuation of items in
favor of heuristic processes that derive number from continuous
magnitudes. Thus, Dakin et al. (2011) and Morgan, Raphael,
Tibber, and Dakin (2014) propose that numerical quantity is esti-
mated in visual perception on the basis of spatial frequency infor-
mation at high and low bandwidths and is recovered in one step
from information about area and density.

Although we believe that various phenomena, such as the
dumbbell effects and cross-modal comparisons discussed in sec-
tion 2.1, implicate a direct model of ANS processing (Anobile
et al., 2016), at least in part, we do not consider this issue settled.
It is, thus, important to stress that our defense of an ANS with
genuine number content does not presuppose a direct model.
This bears emphasizing because critics sometimes assume that
if indirect models of the ANS are correct, then the ANS could rep-
resent nothing more than the continuous magnitudes (e.g., areas
and densities) on which its computations would be based. This is
a mistake. Perceived depth is computed on the basis of cues such
as binocular disparity, motion parallax, and retinal accommoda-
tion. But, of course, the visual system represents depth, and not
( just) these cues. Correspondingly, the ANS might function to
represent number even if its numerical estimations are based on
a diverse range of continuous magnitudes and not on a represen-
tation of the individuals it functions to enumerate (Halberda,
2019). To suppose otherwise is to confuse what the system is
doing (e.g., functioning to track and represent numbers – the
computational level description with which we are concerned)
for a specific account of how it does this (an algorithmic level
description; Marr, 1982).

With these clarifications in view, we will now address three cri-
tiques which have targeted the ANS’s alleged capacity to represent
number (sects 3–5), offer positive reasons to think the system
does represent number (sect. 6), and consider the specific kinds
of number that it represents (sect. 7).

3. The argument from congruency

One reason critics doubt the existence of an ANS, with numerical
content, derives from numerical congruency effects, where numer-
ical judgments are influenced by the perception of irrelevant mag-
nitude types. For instance, when subjects compare Arabic
numerals and decide which picks out a larger number, their reac-
tion times are influenced by font size. Therefore, when the larger
numeral is printed in a larger font (a “congruent” trial), they
answer more quickly than when numerals are identical in size
(a “neutral” trial). And when the smaller numeral has a larger
font (an “incongruent” trial), they are slower and less accurate
(Gebuis, Herfs, Kenemans, de Haan, & van der Smagt, 2009;
Gebuis, Kenemans, de Haan, & van der Smagt, 2010; Henik &
Tzelgov, 1982). Similar effects occur in non-symbolic tasks
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(Fig. 2). Thus, subjects tasked with determining whether one dot
display is more or less numerous than another are influenced in
comparable ways by things such as average dot diameter, density,
convex hull (the smallest convex area enclosing all the dots), and
brightness (Cohen Kadosh & Henik, 2006; Dakin et al., 2011;
Gebuis & Reynvoet, 2012a, 2012b; Leibovich & Henik, 2014).

The argument from congruency proposes that these effects under-
mine the existence of an ANS that genuinely represents number
(Gebuis et al., 2016; Leibovich et al., 2017). For if there were an
ANS which represents number, we would expect relevant numerical
judgments to be based entirely on its outputs. Thus, irrelevant
non-numerical magnitudes should be ignored. But the existence of
congruency effects suggests that (often) they’re not. Or as Gebuis
et al. (2016, p. 22) put it: If relevant numerical judgments are influ-
enced by the perception of non-numerical magnitudes, then

why would there be an ANS system that can extract “pure numerosity”?
What would be the use of having a system that can tell us exactly
which cue [sic] at the passport control contains less people when it in
the end adjusts this accurate answer in a possibly incorrect answer [sic]
when for instance the length of the people in the cue [sic] is taken into
account?

From the perspective of optimal design, Gebuis et al. propose that
it makes little sense for a dedicated ANS to exist if its outputs are
influenced by confounding variables in this way.

This objection presupposes that the ANS isn’t governed by an
indirect model that makes use of non-numerical cues such as con-
vex hull and length. If it were, the ANS would obviously be influ-
enced by those cues. But perhaps this is a safe assumption.
Standard indirect models do not appeal to these cues, and nor,
of course, do direct models.

Still, the argument faces other difficulties. An initial problem is
that it overgeneralizes. It’s well known that congruency effects
affect judgments of uncontroversially perceptible magnitudes.
For instance, judgments of duration exhibit congruency effects
on size (Lourenco & Longo, 2010; Xuan, Zhang, He, & Chen,
2007), luminance (Xuan et al., 2007), length (Casasanto &
Boroditsky, 2008), and distance (Sarrazin, Giraudo, Pailhous, &
Bootsma, 2004). Therefore, if congruency effects demonstrate
that numerical quantities are not represented by the ANS, then
by parity of reasoning they would demonstrate that paradigmati-
cally perceptible magnitudes (such as duration and distance) are
not perceptually represented either.

To compound matters, congruency effects tend to be symmet-
ric. For while numerical judgments are influenced by area and
density, judgments of area and density are similarly influenced
by number. Indeed, number often influences judgments of area
and density at least as much as vice-versa (Cicchini et al., 2016;

Savelkouls & Cordes, 2020; but see Yousif & Keil, 2020). So, if
the fact that numerical judgments are influenced by area and den-
sity shows that number is not represented by an ANS, there
should be equal or greater evidence that area and density are
not represented either. In this way, the argument from congru-
ency leads to an implausible skepticism about the perceptual rep-
resentation of magnitudes quite generally.

These considerations indicate that the argument from congru-
ency fails, but where does it go wrong? The argument errs in
assuming that congruency effects are even in tension with the
existence of an ANS, as we understand it. If there is an ANS
which serves to represent numerical quantities, the observation
of continuous magnitudes might introduce biases at the initial
encoding stage, influencing the inputs the ANS receives, or at
decision/response stages, altering outputs of the system. For
example, at the response stage, congruency effects might reflect
a Stroop-like byproduct of competition for a single response. In
classic versions of the Stroop task, color and semantic processing
compete for a single behavioral response (Johnson, 2004).
Numerical and non-numerical magnitudes might compete for a
behavioral response in similar ways (see Picon, Dramkin, &
Odic, 2019).

Alternatively, at the decision stage, congruency effects might
reflect a useful strategy. For given Weber’s Law, the ANS is not
perfectly precise. To counteract that imprecision, subjects might
make use of correlations among numerical and non-numerical
magnitudes, perhaps in a Bayes’ optimal way (Petzschner,
Glasauer, & Stephan, 2015; see also Martin, Wiener, & van
Wassenhove, 2017). As Content, Velde, and Adriano (2017,
p. 20) note, “Continuous dimensions are indeed most often cor-
related with number in our experience of the world. No wonder
that we would tend to use them, when possible, in comparing
collections.”

Gebuis et al. (2016, p. 22) object that while “the majority of
studies show that larger sensory cues cause an overestimation
[in number] and smaller sensory cues an underestimation, excep-
tions exist.” For instance, Gebuis and Reynvoet (2012a) found
that total surface area was sometimes inversely correlated with
numerical estimation. This is something Gebuis et al. (2016) con-
sider an embarrassment for proponents of the ANS who try to
explain away congruency effects in terms of biases, because biases
should (allegedly) be the same on all occasions. But we are not
sure how puzzling this really is for proponents of the ANS. A
Bayes’ optimal inference might be expected to treat different mag-
nitudes differently, and to even treat the same magnitudes differ-
ently in different contexts (the same premise does not always
license the same conclusion!). But, even if this were not so,
such considerations only appear more puzzling for skeptics of
the ANS. The fact remains that numerical judgments are generally

Figure 2. After fixation, subjects saw a display of dots briefly flashed on a screen. When the question mark appeared, they had to estimate the number of dots
flashed by typing a number on their keyboard. The displays to the right of the arrow show examples of the stimuli that were used in this estimation task. Gebuis
and Reynvoet found that numerical estimations were strongly influenced by non-numerical confounds, such as convex hull (a large convex hull disposed subjects to
overestimate the total number of dots). Reprinted from Gebuis and Reynvoet (2012c, p. e37426), Figure 1, in line with PLoS ONE’s adopted CC BY License.
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reliable on tasks of the sort under consideration. But it is not clear
how this could be if those number judgments simply result from a
sensitivity to non-numerical magnitudes (as skeptics maintain)
and these are only insufficiently correlated with the numerical
quantities in question. For example, if total surface area is some-
times positively, and other times negatively, correlated with
numerical judgments, it is doubtful that numerical judgments
(which are generally reliable) could simply be grounded in a sen-
sitivity to total surface area.

4. The argument from confounds

The argument from congruency is unpersuasive. However, a more
pressing objection concerns the fact that number cannot be pre-
sented to subjects independently of confounding variables. For
instance, a visual display containing nine dots also contains
dots with an average diameter, cumulative area, convex hull,
and density. Similar points apply to heard or felt sets.
Consequently, there has always been the worry that number
isn’t represented in studies of the above sort, only confounding
variables. The argument from confounds claims that experimental
attempts to evince an ANS with genuine numerical content are
thereby undermined (Gebuis et al., 2016; Leibovich & Henik,
2013; Leibovich et al., 2017).

There are actually two readings of this argument. On a strong
reading, it’s deemed impossible to adjudicate between the hypoth-
esis that subjects represent numerical quantities in addition to
various non-numerical confounds and the hypothesis that they
merely represent these confounds. By contrast, a weak reading
of the objection holds that while it may not be impossible to
distinguish these hypotheses, it’s sufficiently difficult that there
is currently no empirical justification to favor the number sense
hypothesis over a leaner alternative.

We see no reason to accept the argument in its stronger incar-
nation. Theories in science are always underdetermined by the
data, and the selection of one theory over another often requires
an inference to the best explanation (Duhem, 1914). Therefore, in
psychology, there may never be a single experiment that elimi-
nates all potential confounds. This does not rule out a science
of the mind, however. It simply invites us to consider multiple
studies in tandem and to ask whether these better support one
hypothesis over viable alternatives. The postulation of an ANS
with number content is unexceptional in this regard. For while
number is an abstract property that cannot be observed in isola-
tion (Halberda, 2019), the same is true of many properties which
are plausibly represented by the pre-linguistic mind, including
causation (Kominsky & Carey, 2018) and agency (Gergely &
Csibra, 2003). In each case, these hypotheses can be assessed

against plausible alternatives. For to the extent that alternatives
are undermined in controlled experiments, researchers can legit-
imately increase their credence in the relevant conjectures.

This leaves the weaker reading of the objection. To appreciate
its force, consider studies that examine our visual perception of
number by presenting arrays of dots on a screen. Some such stud-
ies choose one potential confound – say, total surface area – and
keep it constant while number varies. Critics such as Leibovich
et al. (2017, p. 4) correctly observe that this always leaves other
confounds uncontrolled for (Fig. 3). For example, if total surface
area is kept constant while number increases, average dot-size will
need to decrease (see DeWind, Adams, Platt, & Brannon, 2015 for
a precise characterization of these tradeoffs). Consequently, find-
ing that subjects discriminate a difference fails to establish
whether they are tracking number or average dot-size.

Other studies vary non-numerical magnitudes across trials,
such that no one confound correlates with number throughout
the whole experiment. Thus, half the trials might keep total sur-
face area constant while the other half keep average dot-size
constant (Dehaene, Izard, & Piazza, 2005; Halberda, Mazzocco,
& Feigenson, 2008). Alternatively, each of a range of non-
numerical magnitudes might be varied across trials such that,
throughout the experiment, they are congruent on half of the tri-
als and incongruent on the other half (Barth et al., 2005; Nys &
Content, 2012). But, while these controls suggest that subjects
do not rely on a single confounding magnitude, Gebuis et al.
(2016, pp. 23–24) and Leibovich et al. (2017, pp. 4–6) object
that subjects could still be switching between cues throughout
the experiment or relying on multiple confounds. For instance,
when total surface area is held constant or made incongruent
with number, they might rely on average dot-size; and when aver-
age dot-size is held constant or made incongruent with number,
they might rely on total surface area. In this way, subjects might
behave as if they are sensitive to number when they are only sen-
sitive to non-numerical confounds.

We accept that this is conceivable, but we deny that it provides
reasonable grounds for doubt. This is because a plausible skepti-
cism about the ANS cannot be ad hoc. It cannot rest on a piece-
meal strategy of finding one set of confounds to account for
behavior in one trial, a second set of confounds to account for
behavior in another trial, and so on. What is needed is a positive
proposal that explains how some function of confounds, or some
principled strategy for switching between these, accounts for what
appears to be number-tracking behavior across a wide range of
trials and experiments. Skeptics of an ANS fail to provide one.
Instead, they simply observe that numerical judgments are influ-
enced by non-numerical magnitudes – that is, that they are sub-
ject to congruency effects. But, as we saw in section 3, these effects

Figure 3. Attempts to control for one non-numerical confound often
leave other confounds uncontrolled for. For example (top row), if
two displays differ in number and the size of each item is constant,
then the more numerous display must have a larger cumulative area.
Reprinted from Leibovich and Henik (2013, p. 2), Figure 1, in line with
Frontier’s CC BY License.
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are fully compatible with the existence of an ANS that represents
number.

To compound matters, experimental findings undermine the
objection. Take the dumbbell effect discussed in section 2.1. As
we explained then, connecting seen items with a thin line substan-
tially reduces judgments of their number, while introducing a
small break in these lines substantially reduces the effect
(Franconeri et al., 2009; He et al., 2009; Kirjakovski &
Matsumoto, 2016; see also Fornaciai & Park, 2018). Given that
displays with and without a small break are nearly identical
with respect to non-numerical confounds, these studies suggest
that number is tracked and represented, and that performance
is not simply a function of tracking non-numerical confounds
as critics allege. We have found no discussion of these studies
by those who remain skeptical of the ANS and its capacity to rep-
resent number.

Additionally, some studies reveal that the relevant sensitivity to
number differs markedly from our sensitivity to non-numerical
magnitudes. Indeed, DeWind et al. (2015) compared how num-
ber, size, and spacing of dots affect relevant numerical judgments
and found that judgments were more sensitive to number than to
size or spacing. This suggests that number itself is represented.
(For a reply, see Leibovich et al., 2017, p. 10, and for a rebuttal
to this see Park, DeWind, & Brannon, 2017 and Tomlinson,
DeWind, & Brannon, 2020.) Similarly, Cicchini et al. (2016)
had subjects judge the area, density, and number of dots in visual
displays, and found that number judgments are more sensitive
than area and density judgments. Again, this suggests that sub-
jects do not simply represent area and density, but also numerical
quantity (see also Odic, 2018; Savelkouls & Cordes, 2020).

Against this, it has been suggested that when perceived area is
distinguished from mathematical area, number estimation is no
longer shown to be more sensitive (Yousif & Keil, 2020).
However, even here, the authors agree that “number estimation
cannot be fully explained by perceived area” and that “the
human visual system is certainly able to extract number.” They
only question whether number is being directly computed – an
issue which is orthogonal to present concerns (see sect. 2.2).

Finally, we have already observed that cross-modal studies nat-
urally eliminate potential confounds. As discussed in section 2.1, a
static array of seen dots and a sequence of heard tones lack prop-
erties in common that could serve as a plausible crutch on which
to base numerical comparisons. For while dots have a cumulative
area, average diameter, and convex hull, tones have none of these
properties. Because numerous studies demonstrate success in
cross-modal tasks (Arrighi et al., 2014; Barth et al., 2003, 2005;
Izard et al., 2009), this (again) undermines the argument from
confounds.

Skeptics of the ANS do recognize this latter point. For
instance, Leibovich et al. (2017) note that cross-modal studies
provide “[a] very strong line of evidence supporting the ANS”
(p. 5). But while they proceed to question whether cross-modal
studies on infants show that the ANS is innate, we can bracket
these worries because we aren’t focusing on the issue of innate-
ness. For our purposes, a more relevant response comes from
Gebuis et al. (2016). They acknowledge the existence of number
studies in human adults demonstrating cross-modal adaptation
(Arrighi et al., 2014) and cross-modal comparison (Barth et al.,
2003; Tokita & Ishiguchi, 2012). They also acknowledge that
these bear the hallmark of ANS-based comparisons. In spite of
this, they claim that such studies “do not present a clear result”
(p. 27). They reason that if number were represented amodally,

there should be no cost to cross-modal comparisons. But while
the existence of some such cost remains under dispute (contrast:
Barth et al., 2003; Gebuis et al., 2016; Tokita, Ashitani, &
Ishiguchi, 2013), its discovery should not alarm proponents of
an ANS. In intra-modal tasks, numerical comparisons are likely
facilitated by confounding (typically, congruent) magnitudes
(see sect. 3). Meanwhile, inter-modal tasks leave little opportunity
for facilitation – after all, a static array of seen dots and a sequence
of heard tones will lack properties in common that could serve to
inform or bias numerical comparisons. In any case, it is the fact
that cross-modal numerical comparisons are successfully executed
at all that speaks in favor of an ANS.

In reply to all of this evidence, it might be argued that if indi-
rect models of ANS computation are correct, then there has to be
some description of what the ANS is doing that only appeals to
non-numerical magnitudes. Therefore, given that we want to
remain agnostic as between direct and indirect models (see sect.
2.2), what justifies us in holding that the ANS represents number
rather than the mishmash of non-numerical magnitudes that
would feature in that (hypothetical) description?

Earlier, we drew an analogy with depth, which is computed on
the basis of diverse cues, such as binocular disparity, motion par-
allax, and accommodation. Even so, we said that people perceive
depth, and not just these cues. It’s important to appreciate why we
said that. The reason is that representation of depth offers a uni-
fying explanation that the motley of cues cannot. On one occa-
sion, the visual system might rely primarily on binocular
disparity to compute the depth of an object; on another occasion,
it might rely primarily on motion parallax; on a third occasion, it
might rely primarily on convergence; and so on. Appealing to a
common representational kind in each case (representation of
depth) allows us to provide a coherent, unified account of one’s
ability to judge depths in these and other circumstances, and it
supports largely accurate predictions regarding the judgments
you will make about depths on the basis of what you perceive.
In short, it supports generalizations. It also helps explain why
you are sensitive to these cues in the first place; that is, it helps
explain what function they are serving. The hypothesis that the
ANS represents number enjoys the same advantages over the
hypothesis that the system merely represents a mishmash of non-
numerical magnitudes to which a hypothetically adequate indirect
model would appeal.

5. The argument from imprecision

This brings us to what is, perhaps, the most prominent critique of
the ANS’s capacity to represent number: the argument from
imprecision. While this argument has a more philosophical flavor
than the preceding objections, it has been repeated several times,
often by scientists. We’ll begin by outlining and critiquing a
generic version of the argument, before examining two specific
incarnations of the argument, due to Carey (2009) and Núñez
(2017). Once again, we’ll suggest that, as things stand, the argu-
ment fails to undermine the hypothesis that the ANS represents
number.

5.1 The generic version

The argument from imprecision begins from the observation that
the ANS is imprecise. When it processes a collection of 23 entities,
say, it does not reliably produce a representation of exactly 23. If it
did, we would have no difficulty discriminating collections of 23
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from collections of 22. But, given Weber’s Law, we know that dis-
crimination suffers as the ratio between magnitudes approaches
1:1. Thus, ANS representations must be imprecise in some way
or another. But numbers themselves are not imprecise. The num-
ber 23 is exactly one more than 22 and exactly one less than 24.
The number 23 even differs from 23.00000000000001 by a precise
amount (exactly 0.00000000000001). So (the argument goes), the
ANS fails to represent numbers.

As stated, this argument is invalid. From the premise that the
ANS represents imprecisely and the premise that numbers are
precise it simply doesn’t follow that the ANS fails to represent
numbers. To illustrate, consider that non-numerical magnitudes
such as distance, duration, and weight are also precise. There is
a fact of the matter about exactly how heavy a given person is,
and a fact of the matter about how much heavier/lighter one per-
son is than another. But, while non-numerical magnitudes, such
as weight, can be represented precisely, they needn’t be. You
can represent Jones as “240 pounds” or “as heavy as an NFL line-
backer.” In either case you are representing Jones’ weight; what
differs is how precisely you are doing so. Prima facie, the same
is true of number. You can represent the number of coins in
your pocket precisely as “exactly six” or imprecisely as “approxi-
mately six,” or “several” (cf. Ball, 2017, p. 126).

Why, then, do so many theorists find the argument from
imprecision compelling? The answer, we suspect, lies in a tacit
commitment to the sensitivity principle. In broad strokes, the sen-
sitivity principle holds that representing an entity requires sensi-
tivity to its essential properties. But this principle can be read in a
number of ways.

On a strong reading, it might be fleshed out as follows:

The Strong Sensitivity Principle: if X has properties p1…pn essentially, then
representing X requires being sensitive to all of p1…pn.

If true, this would render the above argument valid. For if we were
to grant that numbers are essentially precise, acceptance of this
strong sensitivity principle would license the conclusion that a
capacity to represent numbers requires sensitivity to this preci-
sion. Because this is something that the ANS does not provide,
acceptance of the principle could thereby license the conclusion
that the ANS fails to represent number.

The trouble is, this strong version of the sensitivity principle
is false. To illustrate, note that while water is essentially H2O,
representing water does not require sensitivity to the property
of being composed of two hydrogen atoms and an oxygen
atom. You can think about how much you’d like a glass of
water without knowing anything about the chemical composition
of the water you desire. Similarly, gold is essentially the element
with atomic number 79, but thinking that you’d like a gold
watch does not require any sensitivity to atomic numbers. In
fact, you needn’t even be sensitive to the difference between
gold and fool’s gold. Many people who are ignorant of chemistry
and metallurgy nevertheless think about water and gold (Burge,
1982; Putnam, 1975).

A similar point applies to perception. It seems to be an essen-
tial property of continuous magnitudes that they are dense; that
between any two distances, durations, or weights, there is always
a third. But, while perception represents these magnitudes, it has
a limited resolution that prevents it being sensitive to their
denseness. In representing motion, for example, the visual system
relies on Reichardt detectors that cannot distinguish continuous
from discrete changes in position (Green, 2018). That’s why a

string of Christmas lights that turn on in succession give rise to
an illusion of motion (the phi phenomenon).

For this reason, proponents of the argument from imprecision
must weaken their reading of the sensitivity principle. To this end,
they might propose some version of the following:

The Weak Sensitivity Principle: if X has properties p1…pn essentially, then
representing X requires being sensitive to some of p1…pn.

This weakened sensitivity principle enjoys prima facie plausibility.
After all, it is perhaps plausible to suppose that the capacity to
represent X requires sensitivity to some of X’s essential properties
even if it doesn’t require sensitivity to all of these. For what else
could make it the case that X is being represented rather than
some other entity, Y?

The trouble is, even if this is granted, the weak sensitivity prin-
ciple fails to fix the argument from imprecision. Even if represent-
ing numbers requires sensitivity to some essential properties of
numbers, it doesn’t follow that representing numbers requires
sensitivity to the specific property of being precise. As a result,
proponents of the argument from imprecision still require an
(as yet unstated) reason for thinking that sensitivity to numerical
precision is necessary to represent number.

Can a convincing reason be provided? While we can’t rule it
out, we have a hard time envisioning what it would look like.1

Nor do we find any hints in the writing of those advocating the
argument from imprecision. To illustrate, we will now consider
two prominent incarnations of the argument, before turning to
some positive reasons for thinking that the ANS represents
numbers.

5.2 Carey on imprecision

Carey (2009, p. 295) invokes two versions of the argument from
imprecision to maintain that the ANS is “not powerful enough
to represent the natural numbers.”2 While these arguments have
prima facie appeal – in fact, one of us endorsed them in earlier
research (Beck, 2015) – they are unsound.

First, Carey contends that ANS representations “fail to capture
small numerical differences between large sets of objects” (ibid.,
p. 294). For example, she writes that “the difference between
eight and nine is not experienced at all” because eight and nine
“cannot be discriminated” (ibid., p. 295). But, as Halberda
(2016) points out, this erroneously presupposes that discrimina-
bility is binary. In fact, discriminability decreases smoothly as
ratio increases, so there is no simple cut-off after which differ-
ences are not discriminated. In theory, even 999 and 1000 may
be discriminated above chance given enough trials.

Furthermore, Carey assumes that if subjects aren’t sufficiently
sensitive to small differences between natural numbers (e.g., eight
vs. nine), then they cannot represent natural numbers. But short
of presupposing the problematically strong version of the sensitiv-
ity principle, it’s unclear what justifies this assumption. The visual
system represents distances even though it’s relatively insensitive
to small differences between these (e.g., 80 vs. 81 cm). This is
because, there is nothing problematic in the thought that a precise
distance (e.g., 80 cm) might be represented imprecisely. The same
holds for number. To suggest otherwise is to mistake what the sys-
tem represents (e.g., integers) for how it represents this (e.g., pre-
cisely or imprecisely).

Carey’s second argument is that because the ANS treats five
and six as more similar than four and five, it “obscure[s] the
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successor function,” and thus cannot represent natural numbers
(Carey, 2009, p. 295). Here, the suggestion is that a capacity to
represent natural numbers requires a sensitivity to the successor
function because the successor function is essential to natural
numbers. But, again, this argument seems to presuppose the
strong sensitivity principle, which should be rejected. For, short
of providing some (as yet unspecified) reason for thinking that
a sensitivity to the successor function is necessary to represent
numbers, it fails to follow that a system (such as the ANS),
which is insensitive to this, fails to represent number, even if it
is granted that the successor function is an essential feature of
number.

5.3 Núñez on imprecision

Núñez (2017) introduces his version of the argument from impre-
cision by noting that the ANS’s numerical discriminations are
“rarely exact” (p. 417) – they conform to Weber’s Law. But, as
he sees it:

A basic competence involving, say, the number “eight,” should require
that the quantity is treated as being categorically different from “seven,”
and not merely treated as often – or highly likely to be – different from
it. (ibid.)

Thus, Núñez proposes that the ascription of genuine numerical
content to an ANS would require that it quantify “in an exact
and discrete manner” lest this amount to nothing more than
“loose” talk (p. 418). Because this is something that the ANS
does not do, Núñez proposes that the ANS does not represent
numerical quantities at all.

To be clear, Núñez is not proposing that the ANS is an approx-
imate number system which represents numerical quantities inex-
actly. He is denying that it produces any numerical content
whatsoever. This is evident in his “crucial distinction” between
cognition that is “numerical” and cognition that is merely “quant-
ical” (a term Núñez invents). Among other things, “quantical”
cognition denotes “quantity-related capacities” that do not meet
the requisite level of precision to qualify as genuinely numerical.
Thus, Núñez urges that unless a system meets the requisite level of
precision, it would be inappropriate to suppose it represents any-
thing more than non-numerical quantities.

In saying this, Núñez lumps the ANS’s representations with
perceptual representations of other magnitudes, such as duration,
brightness, distance, and chemical concentrations. All of them are
on a par. They are all “quantical.” But note that, in making this
suggestion, Núñez fails to explain why a capacity to represent
number requires a sensitivity to their precise nature. In this
way, Núñez fails to address the challenge posed to proponents
of the argument from imprecision in section 5.1.

On a charitable reading, it might be acknowledged that an
appeal to “quantical” dimensions does, at least, offer an alternative
to the view that the ANS represents numbers. Thus, it may seem
attractive to those who are antecedently skeptical of the ANS’s
capacity to represent number. For this reason, it’s important to
stress that this is an unhelpful way of understanding matters.
For one, an appeal to “quanticals” obscures a crucial distinction
in this context. This is because, numerical quantities are higher
order in that they can only be assigned relative to a sortal – a cri-
terion for individuating the entities being counted (Frege, 1884).
If we want to determine how many shoes are in your closet, it’s
not enough to open your closet and round up your shoes. We

also need to decide whether we’re counting individual shoes,
pairs of shoes, or types of shoes. By contrast, if we want to
know how much the shoes in your closet weigh, or what their
total volume is, there is nothing further we need to do once
we’ve identified the set of shoes. As Burge (2010, p. 472) notes,
numerical quantities thus have a “second-order character” that
non-numerical quantities lack. As such, it’s important to recog-
nize that the ANS represents properties with this second-order
character even though its representations are imprecise.

To illustrate, recall the dumbbell studies by He et al. (2009)
and Franconeri et al. (2009). When items are connected by thin
lines, they are judged to be less numerous than when lines do
not connect the items or contain small breaks. This indicates
that the ANS takes a stand on how the entities in the array are
individuated when they are being enumerated. Thus, it is not
merely estimating the size of a first-order quantity. Rather, the
ANS is sensitive to the second-order character of number.
Because this second-order character is essential to number, it fol-
lows that the weak sensitivity principle is satisfied. There is at least
one essential property of number to which the ANS is sensitive.

Appealing to the “quantical” obscures this feature of ANS rep-
resentation because even first-order quantities qualify as “quant-
ical” in Núñez’s sense. To see why this should matter, consider
a recent study by Plotnik et al. (2019). Here, elephants were pre-
sented with pairs of buckets containing sunflower seeds. These
had opaque, perforated lids, allowing elephants to smell, but not
see, their contents. Plotnik et al. found that elephants would pref-
erentially select the bucket containing a greater quantity of sun-
flower seeds, albeit imprecisely and in accord with Weber’s Law
(Fig. 4). On this basis, they took their results to corroborate stud-
ies indicating the existence of an ANS in these creatures (e.g., Irie,
Hiraiwa-Hasegawa, & Kutsukake, 2019). But note, while this
might be so, it neglects a simpler possibility: Elephants were sim-
ply sensitive to the intensity of the odor emanating from the buck-
ets, leading them to approach the bucket with the stronger odor
(and hence more seeds). On this account, Plotnik et al.’s findings
would be orthogonal to the presence or absence of an ANS with
genuine numerical content; they would simply demonstrate these
creatures’ formidable capacity for olfaction.3

In studies with humans, non-numerical confounds have been
carefully controlled for (see sect. 4). By contrast, Plotnik et al. fail
to distinguish between the hypothesis that elephants represent
number and the hypothesis that they represent odor. But it’s a
substantive question which is correct. And it’s a question we
would wish to answer whether or not the relevant discriminations
are imprecise. This is because there’s a basic distinction between
representing a first-order magnitude, such as odor, and an ability
to abstract away from this to represent a higher-order numerical
magnitude. Núñez’s approach obscures this important distinction
because even odor representations are imprecise and quantitative,
and thus satisfy his criteria for being “quantical.”

6. Number versus numerosity

We have now considered three arguments which purport to
undermine the conjecture that the number sense represents num-
ber and found no reason to reject this conjecture. We have also
uncovered considerations that seem to support it. For instance,
we have seen that ANS representations track second-order prop-
erties of concrete pluralities (albeit imprecisely) as opposed to
first-order quantities. It should also be noted that ANS represen-
tations enter into arithmetic computations such as greater-than
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and less-than comparisons, addition, subtraction, multiplication,
and division (Barth et al., 2005, 2006; Barth, Baron, Spelke, &
Carey, 2009; McCrink & Spelke, 2010, 2016; McCrink, Spelke,
Dehaene, & Pica, 2012). Pending a convincing argument to the
contrary, these considerations indicate that the ANS literally rep-
resents some kind of numerical magnitude.

Even so, it’s crucial not to lose sight of the limitations inherent
in the ANS that make its representations so different from the
precise number concepts most human adults have at their dis-
posal. There is a conceptual change that occurs when children
acquire the capacity to count and properly use number words
in their native language (Carey, 2009). There is also a deficit in
human adults who retain an ANS but do not have access to pre-
cise number concepts – for example, because their community is
bereft of natural number terms (Gordon, 2005; Pica, Lemer, Izard,
& Dehaene, 2005), or because they suffer damage to their prefron-
tal cortex (Lemer, Dehaene, Spelke, & Cohen, 2003).

It is vital to acknowledge and mark this difference. But we
should distinguish two ways of doing so. According to the first
approach, these two types of representation differ because they
represent different things. Whereas precise number concepts rep-
resent literal numbers (e.g., positive integers), imprecise ANS rep-
resentations merely represent “numerosities,” which are a kind of
ersatz number. According to the second approach, these two types
of representation differ not in what they represent – both literally
represent numbers of a sort familiar from the math class – but in
how they do so. That is, they have different modes of presentation.
In the remainder of this section, we’ll argue that this second
approach is preferable.

It is notable that, throughout the ANS literature, the term
“number” is assiduously avoided in favor of the neologism
“numerosity.” We suspect that this reflects an assumption that,
strictly speaking, the ANS represents numerosities, not numbers.
But what is a numerosity? Despite widespread employment of the
term, ANS researchers almost never say. Apart from Núñez’s
appeal to “quantical” dimensions, which we criticized above, we
know of only one other proposal that clearly distances numeros-
ities from numbers: Burge’s (2010) conjecture that these are “pure
magnitudes.”

Burge is skeptical that the ANS represents numbers but finds
himself frustrated by psychologists’ woolly use of the term

“numerosity,” calling it “a hedge term used to apply to number-
like properties” (Burge, 2010, p. 472). To gain clarity, Burge rec-
ommends drawing inspiration from the ancient Greek theory of
magnitudes attributed to Eudoxus and reported by Euclid.

According to Eudoxus, magnitudes divide into two species,
continuous and discrete. Continuous magnitudes include length,
weight, and duration. Discrete magnitudes include natural num-
bers. In addition, Eudoxus recognized the genus of these two spe-
cies, pure magnitudes, which he used to account for (what we
would now call) irrational numbers, such as √2. The
Pythagoreans had noted that the diagonal of a square cannot be
expressed as the ratio of two whole numbers. Eudoxus’ theory
of pure magnitudes was intended to provide a way to express
such quantities. Burge speculates that the ANS represents pure
magnitudes, which support basic arithmetic operations, but do
not differentiate between discreteness and continuity. He writes,
“I conjecture that the early Greeks articulated and formalized
basic animal and childhood capacities when they theorized
about magnitudes and ratios in a way that is unspecific as to
whether the magnitudes are numbers or continuous quantities”
(Burge, 2010, p. 483).4

The thing is, the ANS refers to a second-order property of col-
lections (see sect. 5.2). It attributes a quantity relative to a way of
sorting or individuating particulars. But, as the genus of discrete
and continuous magnitudes, pure magnitudes do not differentiate
between magnitudes that have a second-order character (e.g., nat-
ural numbers) and magnitudes that lack such a second-order
character (e.g., length). Pure magnitudes are, thus, poorly suited
to capturing the contents of ANS representations.

But if numerosities aren’t pure magnitudes then what are they?
The simple fact is, no one has any idea. And that seems like good
reason to avoid positing numerosities as the contents of ANS
representations. Better to say that the ANS represents numbers
of a familiar sort.5

In saying this, we avoid a curious double standard that plagues
discussions of the ANS. For, as we have already noted, perceptual
representations of non-numerical magnitudes, such as distance,
duration, and weight, are also imprecise and governed by
Weber’s Law. But we have not come across a single passage
which concludes that we thereby represent “distancosity,”
“durationosity,” or “weightosity.” And for good reason.

Figure 4. Elephants smelled two buckets containing sunflower seeds
(a) with opaque, perforated lids (b). After they made their selection
(c), the lid was removed, and they could eat the seeds (d). Elephants
generally chose the bucket with a greater number of seeds, which
(presumably) also had the more intense odor. Illustration by
Nuttayapond Doungcharoen. Reprinted from Plotnik et al. (2019,
p. 12567), Figure 1, in line with PNAS’s licensing agreement.
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Although no one knows what a distancosity, durationosity, or
weightosity would be, distance, duration, and weight are respect-
able and familiar entities in our scientific ontology. The impreci-
sion inherent in our discrimination of non-numerical magnitudes
is thus not taken to prevent distance, duration, or weight from
being represented; it’s merely taken to modify the way in which
they are represented. Taking the ANS to represent number rather
than numerosity allows for greater consistency with our treatment
of non-numerical magnitudes.

At this point, it would be nice if we could support our proposal
with a naturalized theory of content that explains why the ANS
represents number rather than numerosity. But we don’t have
one, and the leading theories on offer (e.g., Neander, 2017; Shea,
2018) aren’t pitched at the right level of granularity. This being
said, our search for the referent of a representation should be biased
toward entities we have independent reason to posit in our scien-
tifically informed ontology. Among other virtues, this allows psy-
chological explanations invoking representational content to be
integrated with explanations from other sciences, such as biology.
We are, thus, in agreement with Burge when he counsels that the
visual system of the frog should be taken to represent flies rather
than undetached fly parts because undetached fly parts “are not
kinds that ground biological explanations of the frog’s needs and
activities” (Burge, 2010, p. 322; see also p. 466). Since biological
explanations appeal to numbers, not numerosities, we find reason
to favor the conjecture that numbers are the referents of ANS rep-
resentations, and not numerosities as others propose.

Finally, it bears emphasizing that there is no need to invoke
peculiar entities such as numerosities to make sense of differences
between ANS representations and precise number concepts.
These differences can simply be captured by appeal to their
modes of presentation. As Frege (1892) observed, two names
can refer to the same object even though they differ in what we
intuitively think of as their meanings. Thus, while both
“Hesperus” and “Phosphorus” refer to Venus, they have different
modes of presentation. It was a substantive empirical discovery
that the names co-refer. And what goes for names, goes for men-
tal representations (Burge, 2005; Dummett, 1981; Evans, 1982;
Peacocke, 1992). This is clearly true in thought – the
Babylonians’ concepts Hesperus and Phosphorus had distinct
modes of presentation. Similarly, modes of presentation differ
between perception and thought. As Peacocke (1986) noted,
knowing the length of a piano in feet and inches may not settle
whether it will fit along a wall in your living room even if
you’re looking straight at the wall. The reason is not that the prop-
erty you entertain in thought differs from the property you enter-
tain in perception, but that you entertain the property in different
ways – that is, under different modes of presentation. This is also
the most natural thing to say about how ANS representations dif-
fer from precise number concepts.

In fact, there is independent reason to think that ANS repre-
sentations and precise number concepts differ substantially in
their mode of presentation. That is because the representations
involved have different formats. The fact that the ANS obeys
Weber’s Law indicates that its representations are analog, like a
mercury thermometer (Beck, 2015, 2018, 2019; Clarke,
forthcoming). Precise number concepts, by contrast, have a non-
analog, language-like format. Differences in format spawn differ-
ences in mode of presentation (Beck, 2013) but are compatible
with sameness of reference. Just as both an analog watch and a
digital watch represent time, both the ANS and our precise num-
ber concepts represent number – albeit in different ways.

In saying this, we do not assume that precise number concepts
are ontogenetically grounded in the ANS. For example, we do not
claim that learners acquire precise number concepts by mapping
them onto their ANS representations. In fact, there are reasons to
be skeptical of this claim (Carey & Barner, 2019). Such reasons
largely derive from the mismatch in format and precision between
ANS representations and precise number concepts. But, as we’ve
seen, that mismatch in format and precision does not require a
mismatch of reference; on the contrary, it is better characterized
by a mismatch in mode of presentation.

This is important to recognize because researchers sometimes
suggest that the ANS can directly ground precise number con-
cepts if, and only if, it represents numbers. For example:

if the ANS represents numbers, then its representations can directly link to
our processing of symbolic numbers. If something like pure magnitudes…
are represented, then the ANS has to bridge a gap to be relevant to sym-
bolic number tasks. (Buijsman, 2021, p. 304)

But this is a mistake. A gap needs to be bridged whether or not
the ANS represents numbers.

Are we just playing a linguistic shell game? Is there a substan-
tive difference between saying that the ANS represents numerosity
(not number) and saying that it represents number but with a dif-
ferent mode of presentation than precise number concepts?

The difference is substantive. There is a clear difference
between systems that represent distinct quantities, such as a
clock and a thermometer, and systems that represent the same
quantity in different ways, such as a digital clock and an analog
clock. Researchers who take the ANS to represent non-numerical
or faux-numerical quantities are simply mischaracterizing the
ANS. This has practical implications, such as a tendency to over-
look the second-order character of ANS representations and to
underestimate what it takes to tap the ANS itself (as in Plotnik
et al., 2019). It also leads number researchers on a fool’s errand –
searching for, and attempting to illuminate, mysterious properties,
such as “quanticals.” But, if we are right that the ANS represents
number, researchers can halt the wild goose chase and refocus
more fruitfully on factors that contribute to the unique mode of pre-
sentation found in ANS representations, such as their format,
imprecision, and computational role.

Strange as it is to have to say: the number sense represents
number.

7. What kind(s) of number?

We have now argued that the ANS represents numbers of a famil-
iar variety: Extant arguments to the contrary are unpersuasive
(sects 3–5) and there is positive reason to endorse the conjecture
(sect. 6). But this raises the neglected question noted in section 1:
numbers of what kind?

Before proceeding, we should stress that there are various
things one might be asking with this question. So, to clarify,
we’ll be asking how fine-grained the numbers represented by
the ANS are. Thus, we’ll be asking whether the ANS represents
natural numbers, which are relatively coarse-grained (sect. 7.1),
real numbers, which are extremely fine-grained (sect. 7.2), or
rational numbers, which have an intermediate grain (sect. 7.3).
In so doing, we’ll remain neutral on whether the ANS is commit-
ted to a specific axiomatization, analysis, or ontology of the num-
bers it represents. We’ll also remain agnostic about whether we
should think of the ANS as representing precise numbers
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(7, 1.5, etc.), precise numbers with a confidence estimation
attached (Halberda, 2016), numerical intervals (5–9, 1.25–1.75,
etc.) (Ball, 2017), or probability distributions over numerical
intervals. While interesting and important, these questions are
orthogonal to whether the ANS represents natural, real, or ratio-
nal numbers. Since the question of whether the ANS represents
natural, real, or rational numbers already bears on the computa-
tions an ANS performs and facilitates, answering this question
would constitute a substantial contribution to our understanding
of the ANS.

7.1 Natural numbers

To begin, let’s consider the conjecture that the ANS represents
natural numbers, or positive integers. While rarely defended
(but see Ball, 2017), this conjecture seems to be assumed by
those who maintain that precise integer concepts derive from
the ANS (Dehaene, 2011; Nieder, 2017; Park & Brannon, 2013;
Piazza, 2011; Starr, Libertus, & Brannon, 2013; Wagner &
Johnson, 2011). Indeed, once one concedes that the ANS repre-
sents numbers, the conjecture that the ANS represents natural
numbers may seem to constitute the default hypothesis. On this
view, the ANS functions to represent whole numbers, such as 7
and 8, and not comparatively esoteric numbers, such as √2,
whose initial identification constituted major mathematical
discoveries.

While we are skeptical that the ANS grounds precise integer
concepts (Carey & Barner, 2019), there is strong reason to think
the ANS does represent positive integers. We say this because,
as we have seen, the ANS functions to keep count of whole
items, at least in paradigm cases. Exactly what these items
might be varies from stimulus to stimulus, or even as a result of
shifting attention. Thus, the ANS might represent the number
of visual objects in an array, or objects of a certain type (such
as closed shapes, or circles, or red circles as opposed to green
ones, and so forth). Or, rather than representing material objects,
it might represent a number of events, such as rabbit jumps
(Wood & Spelke, 2005), or auditory items in a sequence, such
as tones or phonemes heard. In each case, the ANS functions to
represent the number of whole items in the relevant set. Because
the number of whole items in a given set is expressed by a positive
integer, we conclude that, at a minimum, the ANS represents pos-
itive integers.

7.2 Real numbers

In one of the few discussions to address the kinds of number the
ANS represents, Gallistel and Gelman (2000) defend a striking
hypothesis: The ANS goes beyond representing natural numbers
by representing real numbers, which include not only integers,
but also rational numbers, which can be expressed as a ratio of
integers (e.g., 1.5), and irrational numbers, which cannot be so
expressed (e.g., √2). In fact, Gallistel and Gelman conjecture
that the ANS primarily represents irrational numbers, because
“all but a negligible fraction of [the real numbers] are irrational”
(p. 59). This is a remarkable result. Is it correct?

If the ANS represents irrational numbers then, all things being
equal, we would expect this to be manifested in ANS-governed
behavior. But Gallistel and Gelman do not point to any behavioral
evidence of this sort; nor do we know of any. For while there is
ample evidence that the ANS represents whole numbers, we
know of no evidence that it represents √2, say. As it stands,

the hypothesis that the ANS represents irrational numbers
would seem unsupported by existing evidence.

Why, then, do Gallistel and Gelman endorse the hypothesis?
They reason as follows. First, because duration is a continuous
magnitude, they infer that it cannot be represented by anything
discrete. Therefore, the neural magnitude that represents duration
must be continuous. Next, drawing on evidence in rats (Church &
Meck, 1984), they infer that numbers are represented by neural
“magnitudes indistinguishable from those which represent dura-
tion” (Gallistel & Gelman, 2000, p. 62). Thus, the ANS must
also use a continuous neural magnitude. Finally, because real
numbers are continuous, but integers are not, they conclude
that the ANS must represent real numbers rather than just
integers.

This argument is problematic on various fronts. First, while
duration is a continuous magnitude, it is unclear whether dura-
tion’s continuity is reflected in the grain of duration representa-
tions. Just as there is a dearth of evidence that the ANS
represents irrational numbers, such as √2, there is a dearth of
evidence that durations such as √2 s are represented by compa-
rable mechanisms. So, while duration representations may be
very fine-grained, there is no evidence that they are genuinely
continuous (Laurence & Margolis, 2005, p. 223, n. 7). Gallistel
and Gelman may be led to think otherwise because they take
Weber’s Law to be evidence of vehicles that are continuous neural
magnitudes. But, so long as the right type of noise is introduced,
Weber’s Law can be explained by discrete neural vehicles, such as
the number of neurons firing above some threshold within a given
population (Beck, 2015; Maley, 2011).

Second, Gallistel and Gelman’s argument rests on the mistaken
assumption that the content of a representation mirrors its for-
mat. Thus, they assume that if duration is represented as contin-
uous, then the vehicle employed must be continuous too; and if
the vehicles employed by the ANS are continuous, then the con-
tent of the ANS is a continuous number line (reflecting the real
numbers). But, as Laurence and Margolis (2005) point out in a
compelling critique of Gallistel and Gelman’s argument, we use
discrete vehicles to represent continuous contents all the time.
For example, discrete symbols such as “π” and “√2” express pre-
cise irrational numbers. Conversely, digital computers use contin-
uous magnitudes, such as voltage, to represent discrete values
(Lewis, 1971; von Neumann, 1958). Thus, “There is nothing at
all incoherent about mental magnitudes representing discrete val-
ues” (Laurence & Margolis, 2005, p. 224).

Given the shortcomings in Gallistel and Gelman’s argument,
and the general lack of empirical evidence for their conclusion,
the hypothesis that the ANS represents irrational numbers should
be rejected pending a convincing argument to the contrary.

7.3 Rational numbers

At this point, it may be tempting to suppose the ANS merely rep-
resents natural numbers. After all, there is compelling reason to
think that the system does, in fact, represent natural numbers,
and the most prominent account on which the ANS goes beyond
representing these is unpersuasive. Against this, we recommend
an intermediate position. On our view, the ANS goes beyond rep-
resenting natural numbers (e.g., 7) by representing (non-natural)
rational numbers (e.g., 3.5). That is because the ANS represents
ratios among positive integers, in addition to positive integers
themselves, and rational numbers are expressible as ratios
among positive integers. While we do not take this hypothesis
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to be definitively established, we consider it well-motivated and
strongly suggested by a range of empirical findings. Moving for-
ward, it should be our working hypothesis.

The proposal we are making is closely related to a suggestion
from the developmental and educational psychology literatures
according to which there is a “ratio processing system” (RPS)
which stands to our understanding of fractions in the way a num-
ber sense has traditionally been seen to stand to whole number
understanding (Bhatia et al., 2020; Binzak & Hubbard, 2020;
Lewis, Matthews, & Hubbard, 2016; Matthews & Chesney, 2015;
Matthews, Lewis, & Hubbard, 2016; Siegler, Fazio, Bailey, &
Zhou, 2013). That being said, it isn’t always clear whether the
RPS is supposed to be a component of the ANS (as we’ll suggest)
or a separate system. Moreover, the hypothesis that the RPS rep-
resents rational numbers is not always clearly distinguished from
the conjecture that it represents real numbers more generally.
Indeed, it is sometimes assumed that evidence for the former
hypothesis would be a stepping stone toward vindicating the latter
conjecture (e.g., Matthews et al., 2016, p. 191).

Consequently, it is worth considering why one might expect a
system such as the ANS to represent rational numbers, and not
just natural numbers. The reason, we suggest, is that organisms
need to reason under uncertainty. They need to draw inferences
(e.g., about the future) from limited data. The capacity to engage
in fast and efficient probabilistic reasoning would, thus, be

enormously advantageous (Tenenbaum, Kemp, Griffiths, &
Goodman, 2011). And in fact, a flood of research suggests that
even human infants engage in probabilistic reasoning of this
sort (Denison & Xu, 2014; Girotto & Gonzalez, 2008; Gweon,
Tenenbaum, & Schulz, 2010; Kayhan, Gredebäck, & Lindskog,
2018; Téglás et al., 2011; Xu & Denison, 2009; Xu & Garcia,
2008). To do so, they need to represent probabilities; and the
most straightforward way to do this is to represent rational
numbers.

In one study to probe representations of this sort, McCrink
and Wynn (2007) habituated 6-month-old infants to multiple
examples of a single numerical ratio and found that they would
subsequently look longer when presented with a novel ratio
(Fig. 5a). For instance, infants habituated to displays containing
a 4:1 ratio of blue pellets to yellow Pacman shapes recovered inter-
est when presented with a display containing a 2:1 ratio. Because
the number of individual pellets and Pacman shapes was varied
across habituation displays (while keeping the ratio between
these constant and other confounds controlled for) this suggests
that infants locked onto, and subsequently responded to, a change
in the numerical ratio between these elements, abstracting away
from the specific number of pellets and/or Pacman shapes pre-
sented in each display. Furthermore, just as Xu and Spelke
(2000) found that 6-month-old infants could reliably discriminate
absolute numerical values in a 2:1 ratio but not a 3:2 ratio,

Figure 5. (a) Habituation stimuli in the figure illustrate the 4:1 ratio that infants were habituated to. Reprinted from McCrink and Wynn (2007, p. 742), Figure 1,
Copyright © 2007, with permission from Sage Publications. (b) Test condition. Reprinted from Denison and Xu (2014, p. 338), Figure 1, Copyright © 2014, with
permission from Elsevier. (c) Illustration of the non-symbolic (left) and symbolic (right) ratio comparison tests. Reprinted from Szkudlarek and Brannon
(2021, p. 3), Figure 1, Copyright © 2021, with permission from the Society for Research in Child Development. (d) Example of a symbolic and non-symbolic fraction
comparison. Reprinted from Matthews and Chesney (2015, p. 33), Figure 1, Copyright © 2015, with permission from Elsevier. (e) Rakoczy et al.’s study mirror’s
Denison and Xu’s (2014), but with nonhuman apes instead of infants. Reprinted from Rakoczy et al. (2014, p. 63), Figure 1, Copyright © 2014, with permission
from Elsevier.
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McCrink and Wynn (2007) found that they could reliably dis-
criminate the ratio 4:1 from 2:1 but not the ratio 3:1 from 2:1.
This similarity in performance is suggestive of a shared system.

Using a different approach, Denison and Xu (2014) tested ratio
understanding in 10- to 12-month-old infants (Fig. 5b). They pre-
sented each infant with two lollipops, one pink and one black, to
see which they preferred. They then showed the infants two trans-
parent jars containing pink and black lollipops in different ratios
and sampled from these populations by placing a lollipop from
each jar in an opaque cup without allowing the infant to see its
color. The infants reliably walked or crawled toward the sample
that came from the jar with the higher ratio of their preferred lol-
lipop. Crucially, this persisted even when the jar with the higher
ratio of preferred lollipops contained fewer preferred lollipops in
absolute terms. Thus, for pink-preferring infants, when one jar
contained 16 pink and 4 black lollipops, and the other contained
24 pink and 96 black lollipops, they approached the sample drawn
from the first jar rather than the second. (See also Denison & Xu,
2010; Fontanari, Gonzalez, Vallortigara, & Girotto, 2014; Kayhan
et al., 2018; Xu & Denison, 2009; Xu & Garcia, 2008.)6

One limitation of this lollipop task is that infants could have
succeeded by representing ratios of (pink vs. black) surface
areas rather than numbers. But, while Denison and Xu (2014)
didn’t control for area, McCrink and Wynn (2007) did. Studies
with older children also control for area and other non-numerical
quantities. For example, Szkudlarek and Brannon (2021) pre-
sented 6- to 8-year-olds with pairs of depicted gumball machines
(Fig. 5c). Each gumball machine was filled with either blue and
white “gumballs” (dots) or blue and white Arabic numerals spec-
ifying the number of blue and white gumballs contained therein.
In each case, the children were tasked with selecting the gumball
machine with the best chance of producing a gumball of a desired
color, taking into account the ratio of blue to white gumballs con-
tained therein. They were able to do so reliably in both non-
symbolic (dot) and symbolic (numeral) conditions, even though
children of this age have not yet begun to study fractions in school
and struggle with precise fraction comparisons. Because subse-
quent analyses indicated that the children’s performance could
not be attributed to simpler heuristics (e.g., choosing the machine
with more desired gumballs, or the machine with fewer undesired
gumballs), these results suggest that 6–8-year-olds represent
numerical ratios. And because this capacity was manifested in
symbolic displays, where the numerator and denominator were
specified with Arabic numerals, non-numerical confounds were
largely eliminated.

Matthews and Chesney (2015) conducted a related study in
which college students were tasked with choosing the larger frac-
tion when symbolic arrays (e.g., 4/7) were pitted against discrete
non-symbolic arrays in which the numerator and denominator
were expressed with dots, and again when these discrete non-
symbolic arrays were pitted against continuous non-symbolic
arrays in which the numerator and denominator were each
replaced by a circle of variable area (Fig. 5d). Subjects succeeded
in these comparisons even though they answered too quickly to
have explicitly counted the dots in the discrete non-symbolic
arrays. Importantly, their reaction times and errors were predicted
by Weber’s Law, suggesting that they used their ANS to represent
ratios among whole numbers.

Finally, just as there is evidence that nonhuman animals dis-
criminate among absolute numerical values, there is evidence
that monkeys (Drucker, Rossa, & Brannon, 2016; Tecwyn,
Denison, Messer, & Buchsbaum, 2017) and nonhuman apes

(Eckert, Call, Hermes, Herrmann, & Rakoczy, 2018; Rakoczy
et al., 2014) discriminate numerical ratios (Fig. 5e).

Given converging evidence that the ANS supports compari-
sons among ratios of positive integers, we conclude that the
hypothesis that the ANS represents rational numbers deserves
to be provisionally endorsed. But note two things. First, this con-
jecture is still pitched at a computational level of analysis (sect.
2.2). Thus, it is not wedded to a specific account of the system’s
underlying architecture. For this reason, it is a further question
to what extent (if any) the neural and/or psychological mecha-
nisms involved in the ANS’s representation of natural and rational
numbers overlap. To clarify, note that the visual system is often
viewed as unified by its function, despite comprising relatively
autonomous sub-modules performing dedicated tasks at various
levels of visual analysis (Clarke, 2021; Fodor, 1983; Marr, 1982).
Analogously, our suggestion that the ANS represents both natural
and rational numbers allows us to remain neutral on the (impor-
tant but additional) question of whether it comprises autonomous
components dedicated to natural number representation, on the
one hand, and rational number representation (the RPS proper),
on the other. This is because, even if these components are dis-
tinct, and even largely encapsulated from one another, the ANS
(as we have understood it) remains unified on account of its uni-
fied functional profile: representing numbers in accord with
Weber’s Law.

Second, our conjecture that the ANS represents rational num-
bers does not commit us to claiming that the system represents
every rational number or even most rational numbers. This
bears emphasizing because the conjecture has previously been
dismissed on these grounds. For instance, Marshall (2017,
p. 49) claims that the ANS cannot represent the rational numbers
because the rational numbers are dense – between any two ratio-
nal numbers there is always a third – and the ANS does not
respect this feature. For while the ANS probably represents 2.5
and 2.75, there is no evidence that the ANS can represent
2.7452294861. This objection should, however, have a familiar
ring: It seems to presuppose the strong sensitivity principle,
which (as we’ve seen) must be rejected. Just because rational num-
bers are essentially dense doesn’t mean that the ANS must be sen-
sitive to their denseness to represent them. Just as the ANS can
represent natural numbers such as 7 even though it cannot repre-
sent all of the natural numbers (e.g., 1 trillion is surely beyond its
upper limit), the ANS can represent positive rational numbers
such as 2.5 even if it cannot represent all positive rational
numbers.

Earlier, we argued that the ANS represents numbers, not non-
numerical magnitudes, because it is sensitive to the second-order
character of numbers, which is an essential property of numbers
but not non-numerical magnitudes. Now we’re arguing that it
represents rational numbers, not just integers, because it’s also
sensitive to ratios, which are an essential property of rational
numbers but not integers. Note, however, that there are no essen-
tial properties of irrational numbers, but not rational numbers, to
which the ANS is sensitive (so far as we can tell). Thus, there is no
parallel reason to say that the ANS represents real numbers more
generally. The train terminates at rational numbers.

If the ANS can represent rational numbers, what would pre-
vent it from representing irrationals? We suspect that this may
be a byproduct of how it operates, privileging the representation
of whole entities. After all, it is plausible that all of the aforemen-
tioned studies involved the ANS, first, representing natural num-
bers of concrete pluralities, and only then deriving ratios (hence,
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rational numbers) therefrom. For instance, in McCrink and
Wynn’s (2007) study it is natural to suppose that the system,
first, represented natural numbers of pellets and Pacman shapes,
and only then contrasted these so as to identify the ratio between
them. But, because there is no way to represent irrational numbers
as a ratio of natural numbers, the existence of some such process
could not undergird the representation of real numbers more
generally.

Of course, much research remains to be carried out developing
and testing our hypothesis. The study of ratio understanding is
still relatively young. The aforementioned studies are vulnerable
to defeater explanations – for example, pitched in terms of a
mere sensitivity to ratios between non-numerical confounds
such as area. Thus, evidence that the ANS represents rational
numbers remains provisional. But psychologists could adapt par-
adigms which discredit confound-based explanations for natural
number tracking (sect. 4), such as cross-modal comparisons
and dumbbell stimuli, to adjudicate these concerns. It would
also be nice to see studies that more directly test whether identical
ratios (e.g., 4:8 and 16:32) are treated as such.

Our skepticism surrounding the ANS’s ability to represent
irrational numbers stems (in large part) from the lack of positive
evidence to support this proposal. But, considerations of parsi-
mony to one side, absence of evidence is not evidence of absence.
Thus, scientists might seek out empirical evidence that irrational
numbers (e.g., π) feature in the computations the ANS performs.
For instance, they might consider the ANS’s potential involve-
ment in calculating square roots or logarithms. Of course, care
must be taken to ensure that the ANS is being tested and not
some non-numerical magnitude system. For example, the ability
to compute a circle’s area from its radius would not require com-
putations over any numbers, let alone irrational numbers, if non-
numerical magnitudes such as length and area are represented in
a unit-free manner (Peacocke, 1986). Moreover, even if these
computations did implicate numerical magnitudes, careful con-
trols/arguments would be needed to show that they involve a rep-
resentation of irrational numbers and not rational approximations
thereof. Regardless, we believe that reflection on these cases may
help empirically distinguish our proposal from that advanced by
Gallistel and Gelman.

8. Conclusion

We have argued that the ANS represents numbers of a familiar
sort, and tentatively suggested that this involves it representing
both positive integers and rational numbers, but not the reals
more generally. We have drawn this conclusion because argu-
ments to the contrary are flawed (sects 3–5), because the postula-
tion of genuine number content has theoretical and explanatory
advantages over the postulation of alternatives such as “quanti-
cals,” “pure magnitudes,” or “numerosities” (sect. 6), and because
the conjecture that these contents include natural and rational
(but not irrational) numbers makes best sense of the existing
data (sect. 7). In so doing, we hope to have quelled recent skepti-
cism surrounding the ANS’s ability to represent number, clarified
the nature of its representations, and highlighted fruitful ques-
tions to be investigated in future research.
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Notes

1. One possibility would be to maintain that representing X requires being
sensitive to those properties that feature in X’s definition, or “individuation
conditions.” Thus, if it is definitive of numbers that they are precise, then rep-
resenting numbers would require sensitivity to their precision (cf. Peacocke,
2020, pp. 154–156). But that approach requires a highly controversial commit-
ment to definitions (Fodor, 1998; Quine, 1951), which proponents of the argu-
ment from imprecision do not defend. Moreover, the most plausible versions
of this principle are restricted to conceptual representation under a canonical
mode of presentation (Peacocke, 2020). (To canonically represent X, one must
be sensitive to the properties that are definitive of X.) But we are primarily
concerned with specifying the referents of ANS representations, not their
modes of presentation. Thus, while we maintain that the ANS represents
numbers, we are happy to concede that it does so non-canonically and
non-conceptually.
2. Although Carey denies that the ANS represents natural numbers, she occa-
sionally says it represents cardinal numbers (e.g., Carey, 2009, p. 136). As
Burge (2010, p. 480, n. 82) observes, these claims are hard to square. (The nat-
ural numbers are often identified with the finite cardinals.) Ball (2017, p. 135,
n. 9) attempts to resolve the tension, proposing that while natural numbers are
best defined in terms of the successor relation, cardinal numbers are best
defined in terms of Hume’s principle (that the Fs and Gs are equinumerous
if and only if there is a one-to-one correspondence between them). Thus
(according to Ball), whereas representing natural numbers requires sensitivity
to the successor relation, representing cardinal numbers requires sensitivity to
Hume’s principle. Carey may then maintain that the ANS represents cardinal
numbers but not natural numbers if she maintains that the ANS is sensitive to
Hume’s principle but not the successor relation. We deny that such sensitivity
is required in either case. But we also don’t see the justification for claiming
that the ANS is sensitive to Hume’s principle. Thus, we think the tension
Burge identifies in Carey’s exposition remains.
3. Our worry here is very different from that which underpins the argument
from confounds. Our worry is that Plotnik et al. failed to control for a single,
specific capacity that we have independent reason to attribute to elephants. By
contrast, the worry that motivates the argument from confounds is that there
could be some unspecified and gerrymandered mix of cues that experimenters
fail to control for.
4. Buijsman (2021) endorses Burge’s suggestion, and supplements it with an
account of indeterminate vehicles to explain the ANS’s imprecision. Buijsman
(2021, p. 310) acknowledges that readers might wonder why he says that the
ANS represents pure magnitudes rather than natural numbers, and replies
that natural numbers “cannot be indeterminate” because, “There are no alter-
native choices for ‘1’ as the unit value of the natural numbers which are equally
good, whereas there are alternative choices for ‘1 cm’ which are equally good,
namely 1 inch, 1 meter, and so on.”We doubt that 1 is the only “equally good”
unit of measurement for natural numbers. (Is it a shanda to buy bagels by the
dozen?) But, even if it is, and even if individual natural numbers cannot be
indeterminate, ranges of natural numbers can be. Therefore, we still don’t
see why indeterminacy favors the hypothesis that the ANS represents pure
magnitudes over the hypothesis that it represents (ranges of) numbers.
5. A reviewer suggests that number researchers may be reticent to jettison the
term “numerosity” because it’s useful to refer to a concrete plurality – for
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example, a collection of six dots on a screen. But one can represent a concrete
plurality without representing its numerical value, and what is distinctive of the
ANS is not merely that it represents concrete pluralities, but that it attributes
numerical values to them. Another reviewer wonders what researchers who
are accustomed to the term “numerosity representation” should use instead to
avoid confusion with precise number concepts. Where context isn’t sufficient,
we recommend “ANS representation,” “approximate number representation,”
or “analog number representation.” By contrast, the precise number concepts
acquired later in development can simply be called “precise number concepts,”
“acquired number concepts,” or “conceptual number representations.”
6. One issue that isn’t settled by this study – or, to our knowledge, any other
extant study – is whether infants succeed by using ratios or fractions. Do they
choose the jar that contains 16 pink lollipops because the ratio of 16 pink to 4
black is more favorable than the ratio of 24 pink to 96 black? Or, do they
choose it because the ratio of 16 pink to 20 total lollipops is more favorable
than the ratio of 24 pink to 120 total lollipops? Only the latter ratios are equiv-
alent to fractions – that is, 4/5 vs. 1/5. Adding additional colors and then
testing for a cost (in terms of errors or reaction time) might provide some
insight. But, either way, what is represented goes beyond mere integers, and
thus seems to require an appeal to rational numbers.
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Abstract

To support the claim that the approximate number system
(ANS) represents rational numbers, Clarke and Beck (C&B)
argue that number perception is abstract and characterized by
a second-order character. However, converging evidence from
visual illusions and psychophysics suggests that perceived num-
ber is not abstract, but rather, is perceptually interdependent
with other magnitudes. Moreover, number, as a concept, is
second-order, but number, as a percept, is not.

The concept “seven” applies just as easily to seven elephants, as
seven mice, as seven apples. Numbers, as concepts, are abstract
entities. “Seven” can be used to describe sets that differ vastly in
their perceptual makeup because the symbol “seven” is dissociated
from the sensory input (Dehaene, 1992). In making the case for
non-symbolic number as a genuine dimension, Clarke and Beck
(C&B) argue that the approximate number system (ANS), a per-
ceptual system, is similarly abstract. Thus, whether elephants,
mice, or apples, the ANS represents number, irrespective of
their physical differences. In support of this perspective, C&B
argue that (1) number is independent of other magnitudes; and
(2) number, unlike other magnitudes, exhibits a “second-order”
property. Together, these arguments form the prerequisites for
rational number.
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Here, we argue that number is not (perceptually) independent
of other magnitudes, nor is it unique by comparison. Moreover,
we suggest that the appeal to a second-order character for number
fundamentally confuses the distinction between percept and con-
cept, such that number, as a percept (and similar to other magni-
tudes) is not second order.

C&B argue that congruency effects do not dispute number as
an abstract entity because the interactions between number and
other magnitudes reflect post-perceptual processes such as a
response-stage conflict. However, other evidence, not cited by
C&B, provides more definitive evidence for the non-
independence of number from other magnitudes. For example,
by making clever use of Müller-Lyer (Dormal, Larigaldie,
Lefèvre, Pesenti, & Andres, 2018) and Ebbinghaus (Picon,
Dramkin, & Odic, 2019) illusions, researchers have demonstrated
that number perception is influenced by illusory changes in non-
numerical magnitudes such as length and density. Importantly,
such effects were observed with estimation tasks in which partic-
ipants estimated number, ruling out a response-stage conflict typ-
ical of magnitude comparison tasks, in which the response applies
to both task-relevant and task-irrelevant magnitudes.

Our own research suggests that number and area are per-
ceived holistically as integral dimensions (Aulet & Lourenco,
2021a). In Aulet and Lourenco, we found that perceived similar-
ity for dot arrays, which varied parametrically in number and
cumulative area, was best modeled by Euclidean, as opposed
to city-block, distance within the stimulus space (Garner,
1974; Shepard, 1964), comparable to classically integral dimen-
sions (e.g., brightness and saturation) but different from separa-
ble dimensions (e.g., shape and color). Importantly, results
replicated across tasks and could not be explained by effects of
confounding magnitudes or non-magnitude image similarity.
In other words, perceived number may not be fully abstracted
from co-occurring area but, instead, appears to be perceptually
interdependent with it.

Relatedly, C&B claim that number is unique compared to
other magnitudes – in terms of ratio and the second-order char-
acter. Others have similarly argued that number is uniquely
salient (Cicchini, Anobile, & Burr, 2016; Ferrigno, Jara-Ettinger,
Piantadosi, & Cantlon, 2017). Recent evidence from our lab, how-
ever, goes against the uniqueness claim. For example, we found
that when perceptual discriminability between number and
cumulative area was matched, area biased children’s number judg-
ments more than the reverse (Aulet & Lourenco, 2021b) and chil-
dren sorted visual stimuli according to area, not number (Aulet &
Lourenco, 2021c), suggesting greater intrinsic salience for non-
numerical magnitude, and consistent with others who have
argued against the uniqueness of number (Leibovich, Katzin,
Harel, & Henik, 2017; Newcombe, Levine, & Mixs, 2015). Similarly,
Testolin, Dolfi, Rochus, and Zorzi (2020) found that the internal
encoding of “mature” computational networks, trained to discrim-
inate stimuli according to number, treated total perimeter and con-
vex hull as comparable to number. These effects were even more
striking in “young” networks where the internal encoding was pri-
marily driven by convex hull, not number.

C&B also posit that number, unlike other magnitudes, has a
second-order character, such that the estimation of number
requires stipulating what is being enumerated. For example,
among a collection of shoes, number could apply to individual
shoes or, alternatively, pairs of shoes. According to C&B, the rep-
resentation of number is not set unless a relevant unit is specified
(Burge, 2010; Frege, 1884). That is, a group of objects has no

inherent number absent this stipulation. For the shoe example,
the numerical value is n if considering individual shoes, but n/2
if considering pairs of shoes.

We agree that, when reasoning in this way, number exhibits a
second-order character. C&B, however, apply this logic to the per-
ception of number, which we would argue conflates the percept
with the concept (Halberda, 2019). They describe “dumbbell”
studies in which participants underestimate individual dots that
are connected by lines to form dumbbells (e.g., Franconeri,
Bemis, & Alvarez, 2009). According to C&B, this effect suggests
a second-order character for perceived number because partici-
pants’ number perception changes in the absence of changes to
non-numerical properties (besides connectedness). However, if
number perception was genuinely second order, then it should
be just as easy to continue perceiving the number of dots, instead
of being biased toward the number of dumbbells. But this is not
the case! Number percepts are not as flexible as number concepts.
Number perception is constrained by physical (e.g., spatial indi-
viduation) and Gestalt principles (e.g., common motion; Wynn,
Bloom, & Chiang, 2002). Similar constraints (e.g., color grouping)
apply to the “ratio” experiments with infants (e.g., McCrink &
Wynn, 2007) described by C&B. Moreover, number is perceived
in accordance with these principles when arrays are passively,
or even unconsciously, viewed (DeWind, Park, Woldorff, &
Brannon, 2019; Fornaciai & Park, 2021; Lucero et al., 2020; Van
Rinsveld et al., 2020). Accordingly, we suggest that number per-
ception, similar to the perception of other magnitudes, is a first-
order property. We can conceive and count individual shoes, or
the pairs of shoes they make up, but we perceive individual
shoes. We can conceive and count dumbbells, or their individual
component dots, but we perceive dumbbells.

In summary, although we agree with C&B’s description of the
ANS as a perceptual system, we would argue that perceived num-
ber is not abstract, as it is to a conceptual system with access to
symbolic representations such as number words. We have argued
that perceived number may not be independent of other magni-
tudes and it does not appear to exhibit a unique status, including
second-order character – calling into question the existence of an
ANS that represents rational number.
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Abstract

Clarke and Beck propose that the approximate number system
(ANS) represents rational numbers. The evidence cited supports
only the view that it represents ratios (and positive integers).
Rational numbers are extensive magnitudes (i.e., sizes), whereas
ratios are intensities. It is also argued that WHAT a system rep-
resents and HOW it does so are not as independent of one
another as the authors assume.

Some maintain that we do not have sufficient evidence to estab-
lish the existence of the approximate number system (ANS) –
that experimental results fail to convince that there is sensitivity
(in line with Weber’s Law) to the “numerosity” of collections of
individuals rather than certain potential confounds such as the
total area of the disparate region covered by those individuals.
Clarke and Beck (C&B) effectively refute such scepticism. They
point to the existence of cross-modal studies, in which, for exam-
ple, the “numerosity” of a collection of dots is compared to that of

a collection of tones, and ask the pointed question – what can the
alleged confound be in such a case? They also draw attention to
the dumbbell effect, which provides strong evidence that the sen-
sitivity of the ANS is to the discretely varying size of a collection
of individuals – a second-order property of a given scenario –
rather than a continuously varying magnitude, such as that of
the area covered by those individuals. Such results (alongside
myriad others) leave no grounds for reasonable doubt that the
ANS exists.

But what does this “Number Sense” represent? C&B suggest
that the ANS represents, well… numbers – and more specifically,
rational numbers. They also hope to show that appeal to facts
about imprecision in the representational capacity of the ANS
does not preclude such an answer, or support an alternative
one, such as Burge’s (2010) view that the cognitive system in
question represents the “pure magnitudes” theorized by
Eudoxus in antiquity.

Peacocke (2015) has clarified that Eudoxus’ pure magnitudes
are extensive, meaning that they can be added to one another:
If we take an object with mass m1, and combine it with an object
with mass m2, the result is an “object” with mass m1 +m2.
Intensities, by contrast, cannot be added. Carey (2009) discusses
density, which comes in degrees. We can say how dense some-
thing is (in comparison with other things), and even measure
this quantitatively. Nevertheless, the density of an “object” that
results from combining two objects with densities d1 and d2 can-
not be assumed to be the sum d1 + d2 – it depends on the relative
sizes of the two objects that are combined! (The reason, of course,
is that density is ultimately a relation between two extensities, the
mass of an object and its volume.)

C&B argue that the ANS represents rational numbers, and that
this suggestion has ecological validity, because it is useful to
an organism to represent, for example, probabilities (which are
often – although not always – determined by certain ratios).
Now, rational numbers are extensive magnitudes: it makes sense
to ask how much ½ +¾ is. But, as far as I can see, C&B cite
no evidence that suggests additivity here. Take the (wonderful!)
lollipop experiment they discuss: Infants can succeed in choosing
a jar with a greater chance that a lollipop randomly selected from
it will be of their preferred flavour; yet this only requires that they
represent the ratios of their preferred flavour to the other flavour
(or to the total). Ratios, however, are intensities: We can compare
them; but it makes no sense to ask what 1:2 + 3:4 is. (Indeed, “one
is to two plus three is to four” is ungrammatical.) Perhaps, the
conclusion that rational numbers are represented (rather than
ratios) is premature.

C&B are also keen to distinguish the question of what the ANS
represents from that of how it does so: but care is required in
practice to do so. Their view appears to be that the ANS does
not represent numbers in the abstract, as objects; rather, it attri-
butes number properties to collections of individuals – in its
approximative way. But, if the ANS attributes a numerical size
to a collection of objects, we can surely ask what property exactly
it represents that collection as having – and it seems we can dis-
tinguish the views that it attributes being (roughly) such and such
size (which is, in fact, numerical, being a size of a collection) and
that it attributes being (roughly) so numerous.

What would answer the question? Presumably, something
about the processing sensitivities of the ANS – although no the-
orist should embrace the strong sensitivity principle C&B articu-
late, for the reasons they give. And C&B are surely right that the
ANS does not represent magnitudes that are indeterminate in
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kind between species that vary continuously and species that vary
discretely – there are no such magnitudes (even if there are “pure”
continuous magnitudes that are, for instance, neither spatial dis-
tances nor temporal durations). Yet it might represent numerical
sizes without representing them as varying discretely. Arguably,
this would be so if the only computations performed on the rep-
resentations were well-defined on continuously varying magni-
tudes as well, such as comparison and addition/subtraction. (A
system that also exhibited sensitivity to whether there is a one–
one correspondence between two collections might be said to rep-
resent certain magnitudes as cardinal numbers; and one that dis-
played a sensitivity to the immediate successor relation might be
taken to represent some magnitudes as natural numbers, if these
are taken to be things related to zero by the ancestral of that rela-
tion.) Is this only a question of how the (numerical) magnitudes
are represented?

In any case, it seems there is a difference between attributing
the properties of being eight in number and being roughly eight
in number: If the collection to which the property is attributed
has nine items in it, the second attribution is correct, whereas
the first is not. Therefore, this distinction would appear to con-
cern what is represented, not how it is represented. Perhaps,
C&B will say this shows instead only that cognitive episodes
involving the ANS have accuracy conditions, which admit of
degrees, rather than veridicality or truth conditions, which do
not – and that it is indeterminate what (i.e., which property) is
represented by the ANS?

Financial support. This research was not supported by any dedicated funding.

Conflict of interest. There are no conflicts of interest to declare.

References

Burge, T. (2010). Origins of objectivity. Oxford University Press.
Carey, S. (2009). The origin of concepts. Oxford University Press.
Peacocke, C. (2015). Magnitudes: Metaphysics, explanation, and perception. In Coliva, A.,

Munz, V. & Moyal-Sharrock, D (Eds.) Mind, language and action (pp. 357–388). De
Gruyter.

Numerical cognition needs more and
better distinctions, not fewer

Hilary Barth and Anna Shusterman

Department of Psychology, Wesleyan University, Middletown, CT 06459, USA.
hbarth@wesleyan.edu
ashusterman@wesleyan.edu
http://hbarth.faculty.wesleyan.edu
http://ashusterman.faculty.wesleyan.edu

doi:10.1017/S0140525X21001163, e181

Abstract

We agree that the approximate number system (ANS) truly rep-
resents number. We endorse the authors’ conclusions on the
arguments from confounds, congruency, and imprecision,
although we disagree with many claims along the way. Here,
we discuss some complications with the meanings that under-
gird theories in numerical cognition, and with the language we
use to communicate those theories.

We agree that the approximate number system (ANS) represents
number and aim to clarify theoretical arguments that are entan-
gled in questions about terminology. What do we mean by area,
number, numerosity, and representation?

Although the authors are right that the “argument from con-
gruency” and the “argument from confounds” ultimately fail,
some evidence bolstering those arguments is shaky in the first
place. When we use physical area to infer the relative contribu-
tions of continuous and discrete stimulus properties to quantity
judgments, we’re neglecting a history of psychophysical evidence
that perceived and physical area differ (Barth, 2008). Empirical
support for this idea came from three experiments in which
cumulative area judgments were driven by perceived, not physical,
area. Some “arguments from congruency” depend on interpreta-
tions based on physical area (e.g., Hurewitz, Gelman, &
Schnitzer, 2006; Rousselle & Noël, 2008). Yet quantity judgments
can yield apparent congruency effects that disappear when per-
ceived area is considered instead of physical area (Barth, 2008).
Incorporating perceived area won’t resolve controversies sur-
rounding discrete versus continuous quantity (see Aulet &
Lourenco, 2021; Savelkouls & Cordes, 2020; Yousif & Keil,
2020). Nevertheless, to identify processes underlying quantity
judgments, subjective magnitudes should be explored as potential
behavior cues. Otherwise, we’ll get the wrong idea about whether
number influences area or vice versa, or both, or neither.

We also have to be clear on the terms “number” and “numer-
osity.”We were surprised at the authors’ lengthy condemnation of
“numerosity.” In our usage, “numerosity” refers to a property of a
stimulus, not a representation. An array of dots (or string of
sounds) has a numerosity. That numerosity is larger when the ele-
ments are more numerous. If we’ve used the phrase “numerosity
representation,” we weren’t referring to woolly “number-like
properties” (Burge, 2010). We meant “mental representation of
number that refers to the numerosity of a stimulus.” It’s not a
hedge – it’s shorthand.

Do other psychologists share our understanding of what
“numerosity” means, in which case the target article is simply
wrong that our language implies “an assumption that, strictly
speaking, the ANS represents numerosities, not numbers”
(Clarke & Beck [C&B], sect. 6, para. 4)? Or, are psychologists’
uses of “numerosity” inconsistent? We think C&B (and Burge)
are wrong about what “numerosity” means to researchers, but
either way they’ve done a service in exposing this confusion,
and the field had better get clear about what it does mean.

That said, dropping “numerosity” for “number” isn’t the
answer. “Number” is ambiguous, and ambiguity breeds confu-
sion. “Number” can refer to number words and Arabic numerals
(i.e., symbols for natural numbers) or a property of stimuli (i.e.,
numerosity) or mathematical entities. For psychologists, it is use-
ful to have a term that unambiguously refers to the number of
items in a stimulus. “Numerosity” allows psychologists to discuss
discrete quantity without endorsing commitments about how it is
represented in the mind.

The target article itself suffers from terminological confusion,
over “number” and, at times, “representation.” Use of “number”
when the authors appear to intend “natural number” frequently
obscures their meaning. (We spent considerable time decoding
what was meant by each instance of “number”!) And C&B
seem to answer claims about what is made explicit by a represen-
tational system with arguments about the contents of representa-
tions within that system. For example, Carey (2009) argued that
the ANS as a representational system cannot grant natural number
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concepts to an organism. But this is not a critique of the idea that
ANS representations have true numerical content! Carey (2009) is
clear that the ANS represents number: “that analog magnitude
representations constitute one system of number representations
deployed by human adults has been established beyond any rea-
sonable doubt” (p. 131) and “analog magnitudes are explicit sym-
bols of approximate cardinal values of sets” (p. 135). Carey’s
argument doesn’t attempt “to undermine the hypothesis that
the ANS represents number” (C&B, sect. 5, para. 1).

Furthermore, C&B wave away the question of “modes of pre-
sentation,” arguing that the same property under different modes
of presentation is still the same property. Therefore, they argue,
the word “number” should suffice to describe that property. For
psychologists, however, mode of presentation is not an after-
thought. How do different representations of identical aspects of
the world map on to each other in the mind? Which modes of
presentation subserve word learning, computational tasks, and
behavior?

When we ask a question like “where do human number con-
cepts come from,” we see that the use of a single word like “num-
ber” elides questions of interest. The ANS as a representational
system does not encode exactness or the successor function,
essential components of natural number. This limitation is
important in querying what roles the ANS can play in learning.
We concur that ANS representations don’t serve as the conceptual
source of precise number concepts (Carey & Barner, 2019), and
empirical evidence indicates that children don’t learn number
word meanings via mappings to ANS representations (Carey,
Shusterman, Haward, & Distefano, 2017). The fact that the
ANS encodes some aspects of number (e.g., its second-order char-
acter), but not others (e.g., exactness), highlights the importance
of using more specific terminology to clarify which aspects of
number, and which properties of relevant representations, are
under discussion. The authors’ push to use the term “number”
promiscuously has a muddying effect rather than a clarifying one.

Eronen and Bringmann (2021) argue that theory development in
psychology suffers, in part, from “the relative lack of robust phe-
nomena that impose constraints on possible theories” and “prob-
lems of validity of psychological constructs.” Numerical cognition
is rich in robust phenomena, and construct validity is coming
along. But we have an enduring terminology tangle. Carey (2009)
wrote: “It then becomes a merely terminological matter whether
one wants to use the term ‘number’ only for natural number or
for the integers or for the integers plus the rationals plus the reals
(in which case there is no core cognition of number) and adopt
some other term for the quantificational content of core cognition
systems” (p. 297). Maybe it’s not so “merely” after all.
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Abstract

Against Clarke and Beck’s proposal that the approximate num-
ber system (ANS) represents natural and rational numbers, I
suggest that the experimental evidence is better accommodated
by the (much weaker) thesis that the ANS represents cardinality
comparisons. Cardinality comparisons do not stand in arithmet-
ical relations and being able to apply them does not involve basic
arithmetical concepts and operations.

Clarke and Beck (C&B) vigorously defend the thesis that the
approximate number system (ANS) represents number, which
they take to include the natural numbers and the rational num-
bers (fractions). Although they present compelling responses to
some (but not all – see below) objections to their view, the evi-
dence that they present seems consistent with the much weaker
thesis that the ANS represents different types of cardinality
comparisons. My challenge to C&B is to explain why we need
anything more than cardinality comparisons to account for the
operation of the ANS.

To explain the simplest form of cardinality comparisons, we
can begin with the concept of equinumerosity. Informally speak-
ing, two sets are equinumerous when they have the same number
of members. In mathematical logic, equinumerosity is standardly
understood in terms of there being a 1:1 mapping (a bijection)
between the two sets. This concept does not, of course, involve
any reference to number or numbers, which is why it is the foun-
dation for the influential approach to understanding numbers in
the philosophy of mathematics known as logicism. But there is no
need for fancy mathematical machinery to put this concept to
work – simply pairing each apple with exactly one orange and
each orange with exactly one apple will establish that a set of
apples and a set of oranges are equinumerous.

Much of the experimental evidence cited in support of an ANS
takes the form of demonstrated sensitivity to situations where two
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sets or collections are not equinumerous. Therefore, for example,
Xu & Spelke (2000) showed that infants habituated to a display
with 16 dots dishabituate to displays with a number of dots differ-
ing from 16 by a sufficiently large ratio (to a 32-dot array, but not
one with 24 dots, e.g.). C&B want to say that this is an example of
infants representing (imprecisely) the numbers 32 and 16. But
that seems to be using a sledgehammer to crack a nut. Why not
simply say that the infants are sensitive to the non-
equinumerosity of the two arrays when the ratio between them
is sufficiently great? “Equinumerosity” is a fancy word, but a sim-
ple concept (think about pairing up the apples and oranges).
“Number,” in contrast, is a simple word but a (very) fancy
concept.

Non-equinumerosity is the simplest form of cardinality com-
parison, but when non-equinumerosity holds between two sets,
one set will always have more members than the other.
Representation of the property — has more members than –
seems to be what is shown by Barth et al. (2005) studies of
preschoolers, and by any study showing that nonhuman animals
reliably select sets with larger numbers of food items.

There are (at least) two good reasons for preferring compara-
tive cardinalities to numbers in explicating the ANS. The first is
parsimony. To represent comparative cardinalities is to represent
a relational property between two sets. To represent numbers is to
represent abstract objects that stand in certain arithmetical rela-
tions to each other – representations that can be manipulated
according to well understood rules and operations. C&B correctly
point out that what they term the strong sensitivity principle is
misplaced. It is perfectly possible to represent something without
representing all of its essential properties. However, because C&B
readily concede that there is no evidence that the ANS is sensitive
to the successor function or to basic arithmetical operations it
seems a good idea to look for representational abilities that are
independent of such functions and operations. After all, it does
seem impossible to represent something without representing at
least some of its essential properties, and if one takes away the
functions and operations that define the number system, and
allows numbers to be represented as imprecise, then no essential
properties of the number system are left to be represented.

The second reason has to do with the performance profile of
the ANS, which C&B are at pains to emphasize. The ANS appears
to conform to Weber’s Law. Weber’s Law is a law governing dis-
criminability. Typically, it is used to characterize the perception of
just-noticeable differences in psychophysics. Such differences are,
by their very nature, relational and comparative. Therefore, one
would expect the representational currency of any system to be
relational and comparative. Comparative cardinalities fit this
description better than numbers. What the ANS does is represent
comparative cardinalities such as – is equinumerous to –, – has
more members than –, has fewer members than –, rather than
absolute properties such as – has (approximately) 16 members –
or – has (approximately) 32 members –. By the same token, the
auditory system represents properties such as – is the same volume
as – and – is louder than –, rather than absolute properties such as
– has a volume of 55 decibels.

A final observation. Comparative cardinalities are not numer-
ical magnitudes (or what C&B call “recherché alternatives to
numbers”). They are of course related to numerical magnitudes,
but that does not mean that they can only be represented by rep-
resenting numerical magnitudes. A seed-eating bird can represent
that one container has more seeds in it than another without rep-
resenting the first as having 252 and the second as 57, even

approximately. By analogy, you or I can represent the sound of
a lawn-mower as louder than the sound of distant thunder with-
out representing the first as 90 decibels and the second as 62.
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Abstract

Clarke and Beck (C&B) assume that approximate number sys-
tem (ANS) representations should be assigned referents from
our scientific ontology. However, many representations, both
in perception and cognition, do not straightforwardly refer to
such entities. If we reject C&B’s assumption, many possible con-
tents for ANS representations besides number are compatible
with the evidence C&B cite.

Clarke and Beck’s (C&B’s) argument critically relies on the prin-
ciple that “our search for the referent of a representation should
be biased towards entities we have independent reason to posit
in our scientifically informed ontology” (sect. 6). This principle
is suspect. Many representations cannot be mapped straightfor-
wardly onto entities in our considered, scientific ontology. For
good reason: Part of the project of psychology is to understand
minds which are unscientific, and whose ontology is mistaken.

Many representations, ranging from previous scientists’ beliefs
in phlogiston to contemporary Americans’ beliefs in paranormal
phenomena (Moore, 2005), are not of entities from current scien-
tific ontology. Representations which do have tighter relationships
to scientific entities, meanwhile, are frequently confused. Carey
(2009) surveys evidence for “undifferentiated representations”
both in children and in the history of science: the confusion of
heat and temperature (pp. 371–376), and of mass, weight, and
density (pp. 379–405). Such mismatches between ordinary repre-
sentational systems and those of current science are not limited to
concepts: It is hotly disputed whether perceptual colour, odour, or
timbre representations have single, consistent referents from our
scientific ontology. If they do, these referents may be relational
properties partly defined in terms of the perceiver, or convoluted
sets of entities from physics such as wavelengths and chemical
compositions, rather than natural kinds. Even perceptual spatial
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representations do not simply map onto Euclidean space, and
must be construed as either frequently inaccurate, or as not rep-
resenting objective, Euclidean spatial properties (Fernandez &
Farell, 2009; Hill, 2016; McLaughlin, 2016; Prettyman, 2019). C&B
repeatedly accuse numerosity advocates of a double standard, argu-
ing that although number representations are treated as only repre-
senting “numerosity,” we do not extend this -osity treatment to other
entities. But this double standard is a mirage: representations of
weight–mass–density, wavelength-osity (commonly known as “col-
our”), and chemical-composition-osity (odour) have a similarly
ambiguous relationship to entities in our scientific ontology.

There are numerous theoretical options for assigning reference
to confused or unscientific representations. These include: allow-
ing entities outside our scientific ontology to serve as referents,
whether fictional objects, gerrymandered entities such as the
property grue, or extra-scientific objects; assigning different scien-
tifically sanctioned entities to the same representation in different
contexts; assigning indeterminate referents; or assigning no refer-
ents at all. We do not need to choose between these options to see
that, given the ubiquity of confused representations, C&B’s bias is
not a bias we should adopt. This matters: relying too readily on
the claim that the approximate number system (ANS) simply
“represents numbers” may lead to overconfidence in predicting
its behaviour in scenarios where its connection to genuine num-
ber is weaker.

C&B’s main stated reason for their bias is that it “allows psy-
chological explanations invoking representational content to be
integrated with explanations from other sciences, such as biology”
(sect. 6, para. 10). However, inter-disciplinary integration is fre-
quently messy, and as a result, similar principles would mislead
in similar cases. Consider introducing a bias towards thinking
that biological bodies are perfect spheres to allow biology to inte-
grate smoothly with geometry: It is a bias that, if it has any role at
all, needs to be extremely weak.

The evidence C&B cite is predicted equally well by views on
which the ANS traffics in confused representations, and by the
view that it always, unambiguously represents number. To take
one example, C&B admit that the ANS is sensitive to many con-
founds, such as density and size. They point to success on
(amongst others) cross-modal number-based tasks, to suggest
the ANS represents number rather than density, size, and so on.
But, although such behaviour rules out the ANS unambiguously
representing one of the potential confounds in all situations, it
is consistent with many possible systems which confuse number
with other confounds. Such a system might be driven by variation
in number in this situation, especially if other variables it is sen-
sitive to are not available, while ignoring or under-weighting
number-specific information in other situations where it produces
the very same “number-representations.”

How can we empirically distinguish between such possibilities?
A full discussion of all potentially relevant forms of evidence is
beyond the scope of this commentary. But three potential lines
of enquiry stand out. Firstly, investigating details of the ANS’ com-
putations: Deciding between some of the possibilities C&B discuss
in their account of congruency effects (sect. 3), such as representa-
tions of non-numerical variables affecting the inputs, internal pro-
cessing, or downstream processing of the ANS, would help. Their
emphasis on sensitivity to higher order properties also seems
promising, but further investigation is called for: how does an
implicit commitment to the represented variable being higher
order play out in the actual computations, and how consistent is
this – are there also situations where the ANS is sensitive to first

order properties instead, or even confuses higher and lower order
properties? Does the ANS consistently respect any other distinctive
properties of number? Secondly, what is the degree to which we
find sensitivity to number as opposed to other variables across dif-
ferent conditions? Here, we need to bear in mind that a version of
the “file drawer effect” is likely to be particularly pernicious in this
case: Results showing clear sensitivity to one variable rather than
others are more likely to be published. Thirdly, under what condi-
tions do we see failures when the ANS is used in number-based
inferences, and can we put any of these failures down to fundamen-
tal confusion about number, in a way parallel to results suggesting
children confuse weight and density (Carey, 2009, p. 389ff.), or are
such confusions extremely hard to come by?

The range of live possibilities for what the ANS represents is
vast. C&B’s reasons for not taking most of that range seriously
rely on a principle which, if applied consistently, would block
our understanding of many kinds of perception, conceptual devel-
opment in children, unscientific adult thought, and even the his-
tory of science. We should reject this principle, and with it,
anything more than weak confidence in the ANS indeed repre-
senting numbers.
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Abstract

Clarke and Beck argue that the ANS doesn’t represent non-
numerical magnitudes because of its second-order character. A
sensory integration mechanism can explain this character as
well, provided the dumbbell studies involve interference from
systems that segment by objects such as the Object Tracking
System. Although currently equal hypotheses, I point to several
ways the two can be distinguished.
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Clarke and Beck (C&B) make a convincing argument that the
hypothesis that the Approximate Number System (ANS) repre-
sents rational numbers shouldn’t be rejected. They also argue,
in section 5.3, that the competing claim that the ANS represents
magnitudes (such as pure magnitudes, Buijsman, 2021; Burge,
2010 or “quanticals,” Nuñez, 2017), is less plausible. The crucial
point being, according to them, that the ANS is sensitive to a
second-order property and the magnitudes, being first-order
properties, do not fit the bill. I argue, here, instead that on the
view of the ANS as a sensory integration mechanism (Gebuis,
Cohen Kadosh, & Gevers, 2016), which readily accompanies
magnitude-based views, this second-order character can be
explained. The view that the ANS represents magnitudes cannot
(yet) be dismissed, as C&B wish to do.

Their first claim is that only a number-based view can explain
why the study that found elephants to be sensitive to the number
of sunflower seeds in a bucket (Plotnik et al., 2019) is insufficient
to establish that they have an ANS. In contrast to studies that con-
trol for the intensity of the odor, this study fails to show that differ-
ent sensory modalities are integrated in a single place. Elephants can
succeed at the task using a single sensory modality, namely their
sense of smell. Hence, the study fails. C&B argue that it does by
appealing to the second-order character of rational numbers,
whereas this study (may) only measure the first-order property of
intensity of smell. They also claim that a magnitude-based view
has trouble explaining this, as magnitudes are first-order properties.

I disagree. On the view where the ANS represents pure magni-
tudes one can easily appeal to the idea of a sensory integration
mechanism to account for this phenomenon. Pure magnitudes
are ratios of quantities (e.g., 2 cm:3 cm, which can also be
obtained by 2 kg:3 kg) and fit in naturally with the idea of a sys-
tem that integrates the information from different sensory modal-
ities, as they are not specific to any one modality. Therefore, to
return to the elephant study, it fails to show that they have an
ANS because the task can be solved with specific magnitude rep-
resentations (for smell) and doesn’t require the use of pure mag-
nitudes (which result from an integration across modalities). In
this way, it can be just as easily explained why the lack of con-
founds is problematic for studies that aim to establish the use
of an ANS. The sensory integration mechanisms account for
this, just as it can answer C&B charge that the argument from
confounds is ad hoc. If the ANS is best viewed as a sensory inte-
gration mechanism representing pure magnitudes, then we would
expect that precisely this mixture of confounding quantities is
what drives the responses in different tasks.

The dumbbell studies (Franconeri, Bemis, & Alvarez, 2009; He,
Zhang, Zhou, & Chen, 2009) are trickier to explain on the basis of
the sensory integration mechanism. C&B already point out that
non-numerical confounds are nearly identical whether the dots
are connected or not, so that such an appeal is implausible. Yet a
different kind of confound should be researched. The stimuli used
in both studies have a relatively small number of connected dots/
squares, which may readily be picked up by the Object Tracking
System (OTS, cf. Feigenson, Dehaene, and Spelke, 2004), which
can inform numerical judgments. For example, the fourth experi-
ment of Franconeri et al. (2009) has four circles, and in the con-
nected format these form two dumbbell shapes. Because the
connected items are visually far more salient than the remaining
dots/squares, it could be that the OTS’s processing of these con-
nected items interferes with the target estimation of the four circles.
Franconeri et al. (2009) do have a few experiments where the num-
ber of connected squares is above the OTS threshold, but in these

specific cases there is a significant difference between the connected
and non-connected stimuli, re-introducing non-numerical con-
founds (as Franconeri et al., 2009 already note as motivation for
their fourth experiment). He et al. (2009) have more dots, but
only ever connect up to two pairs of them, keeping the possible
OTS confound. Studies controlling for non-numerical confounds
with more connected dots, possibly combined with research on
the role of the OTS in these cases, will clarify the situation.

The dumbbell studies, then, might have picked up interference
from another (number-related) system that is known to involve
object detection, the second-order characteristic that C&B focus
on. The remaining second-order aspects are readily explained
by a sensory integration mechanism. Yet they also appeal to the
second-order character to argue that the number-representing
view satisfies their weak sensitivity principle, which states that
the ANS should be sensitive to at least some of the essential prop-
erties of what it is said to represent. Does the quantical/pure mag-
nitude view similarly satisfy weak sensitivity? As I discuss in
Buijsman (2021), all the essential features of quantities, as formal-
ized in measurement theory (ordering, concatenation, and choice
of measurement), fit the ANS data. Specifically, its approximate
character fits with the formally established flexibility in choice
of measurement scale. Therefore, indeed, the sensitivity require-
ment is satisfied by the magnitude-based view.

If the magnitude-based view can’t be ruled out on this basis, what
should the next steps be? As discussed, more research on whether
systems that involve object identification interfere with the dumbbell
studies might give more clarity. In Buijsman and Tirado (2019),
we’ve outlined ways in which this issue might be resolved based
on spatial-numerical associations, specifically by studying whether
the representations of the ANS are amodal (and shared with sym-
bolic number representations) or modality-specific. Furthermore,
all of the future research suggested by C&B can proceed without
the need to settle this issue of the representations. Yet, just as they
argue that it was too early to rule out the hypothesis that the ANS
represents numbers, they were too eager to dismiss the quantity view.
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Abstract

To understand the number sense, we need to understand its
function. We argue that numerosity estimation is fundamental
not only for perception, but also preparation and control of
action. We outline experiments that link numerosity estimation
with action, pointing to a generalized numerosity system that
serves both perception and action preparation.

Clarke and Beck do an impressive job reviewing, and largely refut-
ing, objections for the existence of a number sense, such as con-
gruency, confounds, and imprecision. Arguments of this type are
not new. For example, imprecision is at the basis of the well-
known philosophical “problem of the speckled hen,” presented
by Gilbert Ryle to Ayer (1940): “Consider the sense datum yielded
by a single glance of a speckled hen: how many speckles does the
datum comprise?.” That humans cannot enumerate the number
of speckles was considered a major challenge to prevailing philo-
sophical theories about “given, direct experiences.” Why did Ryle
choose number for his challenge, rather than the color, height, or
weight of the hen, all equally impossible to judge with great pre-
cision? Clearly, our inability to enumerate a discrete number of
specks makes the point more intuitively. Perhaps, it is the digital
nature of numbers, which implies a discrete and precise descrip-
tion; or perhaps because we have multiple ways of measuring num-
ber, including rapid but approximate estimation (approximate
number system [ANS]), systematic, and errorless serial counting,
as well as exploiting grouping strategies (Anobile, Castaldi,
Moscoso, Burr, & Arrighi, 2020a; Starkey & McCandliss, 2014).
We can, therefore, internally check our rough numerosity estima-
tion, readily betraying its imprecision: checking analog attributes
requires instruments such as photometers, tape-measures, or scales.
However, the fact that numerosity can be gaged in various ways,
with variable precision, does not refute the existence of a number
sense. On the contrary, that number estimation is imprecise and
essentially noise-limited is further evidence that it is a sensory sys-
tem. Ayer did not have the concept of noise-limitation in 1940
(introduced a few years later to psychology and physiology), but
correctly anticipated that although the hen does have a definite

number of speckles, the sense datum has only an imprecise
guess: essentially, the approximate number system.

Perhaps, the more pressing question is not so much whether a
number sense exists, or what class of numbers it encodes, but
what purpose does it serve? Has it evolved primarily for estimat-
ing the number of speckles on a hen? – or the number of times
the hen pecks? – or to help control and monitor the hen’s own
pecking behavior? It is likely that all are relevant, but the role
of perception in action has traditionally been underrated
(Goodale, 2014). We argue that numerosity perception is intrinsi-
cally linked with action. This is particularly clear in complex tasks
such as ballet routines, music production, and the extraordinary
waggle dance of bees. But action and number are strongly linked
in most movement tasks, such as walking, talking, or eating. It is,
therefore, perhaps not surprising that neurons have been identi-
fied in monkey cortex that are selective to the number of actions
the monkey makes, either turns or pushes (Sawamura, Shima, &
Tanji, 2002).

We have used adaptation techniques to reveal a strong link
between action and number estimation in humans (Anobile,
Arrighi, Togoli, & Burr, 2016). Participants tapped in mid-air
with their dominant hand, either very quickly, or around one
tap per second. Fast tapping caused robust underestimation of
the numerosity of subsequently presented stimuli, and slow tap-
ping caused robust overestimation (see Fig. 1).

The effects were large, around 25%, and equally strong for esti-
mating the number of items in a spatial array as for the number of
events in a temporal sequence. This reinforces evidence of a gen-
eralized sense of number, spanning space, time, and sensory
modality (Arrighi, Togoli, & Burr, 2014), and shows that this
general sense is strongly linked to action. Importantly, adaptation
(either to tapping or to sequential stimuli) does not generalize
over the entire visual field but is confined to the immediate spatial
vicinity where the hand had tapped or the stimuli presented (irre-
spective of the tapping hand). This demonstrates a spatially

Figure 1 (Burr et al.). Effects of motor adaptation on perceived numerosity. Average
perceived numerosity after a few seconds of slow (blue) or fast mid-air tapping (red),
as a function of physical numerosity.
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specific perceptual origin, rather than adaptation or a more gene-
ral cognitive effect (such as internal counting). Interestingly, the
spatial selectivity (for tactile sequences) is as strong in the con-
genitally blind as in sighted participants (Togoli, Crollen,
Arrighi, & Collignon, 2020), showing that visual experience is
unnecessary.

The effect of adapting to hand-tapping on perception was not
limited to numerosity, but observed also with duration and spatial
location estimates (Anobile, Domenici, Togoli, Burr, & Arrighi,
2020b; Petrizzo, Anobile, & Arrighi, 2020). This again is to be
expected, given the close links between space, time, and number
(Walsh, 2003), and their clear role in action (especially, time).

Other links between action and numerosity perception have
been reported with saccadic eye movements. Observers can sac-
cade very quickly toward the more numerous of two arrays,
implying a link between action and numerosity systems through
dedicated pre-attentive mechanisms (Castaldi, Burr, Turi, &
Binda, 2020). At the time of saccades, numerosities of spatial
arrays are grossly underestimated, paralleling the effects on tem-
poral duration and spatial extent (Burr, Ross, Binda, &
Morrone, 2010). Saccades also affect symbolic numbers:
Participants underestimate the results of additions and subtrac-
tions when digits are presented at the time of saccades (Binda,
Morrone, & Bremmer, 2012). Pupil size is modulated by perceived
numerosity, even in the absence of a psychophysical task
(Castaldi, Pomè, Cicchini, Burr, & Binda, 2021).

All these results reinforce the existence of an approximate
number system in humans, and show that this system encodes
numerosity in a generalized manner, across space and time and
sensory modality, for use in both perception and action
(Anobile, Arrighi, Castaldi, & Burr, 2021). As perception and
action are strongly linked in everyday life, the emergence of a sen-
sorimotor mechanism would seem to be a parsimonious and evo-
lutionary useful strategy. For these functions, natural numbers
(which include the fascinating case of zero; Nieder, 2016) are suf-
ficient, but we cannot exclude the possibility that the same system
encodes rational numbers such as fractions when required.
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Abstract

Clarke and Beck use behavioural evidence to argue that (1)
approximate ratio computations are sufficient for claiming that
the approximate number system (ANS) represents the rationals,
and (2) the ANS does not represent the reals. We argue that pure
behaviour is a poor litmus test for this problem, and that we
should trust the psychophysical models that place ANS represen-
tations within the reals.

Clarke and Beck (C&B) ask what the approximate number system
(ANS) represents, but an equally important question is what
approach should we use to answer this question? C&B put behav-
ioural evidence above all other – arguing that (1) behaviourally
attested ratio computations are sufficient for the claim that the
ANS represents the rationals, and (2) the absence of evidence
that the ANS can compute π or √2 shows that it (probably) can-
not represent the reals.

However, there are meaningful challenges with both these
arguments.

First, C&B rely primarily on research showing that observers
can reason about ratios of approximate number representations.
For example, observers are not only able to judge that the side
with 20 dots appears more numerous than the side with 10, but
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also that one side has (approximately) twice as many dots as the
other (Jacob, Vallentin, & Nieder, 2012). However, this behaviou-
ral finding does not guarantee that ANS representations, per se,
are rational. It remains entirely possible that whole-numbered
ANS representations merely serve as inputs for ratio computa-
tions, which are outputted to an entirely separate, domain-general
ratio scale (Luce, Steingrimsson, & Narens, 2010; Matthews &
Chesney, 2015). Such a scale could represent the ratio of not
only two ANS representations, but also two lengths of lines,
two sizes of objects, or even – in cross-modal matching tasks –
be used to make “a sound three times as loud as [a] light is bright”
(de Hevia, Vanderslice, & Spelke, 2012; Ellermeier, Kattner, &
Raum, 2021).

C&B are aware of this possibility, but puzzlingly note that it
matters little for their arguments, as both the ANS and something
like a ratio processing system (RPS) follow Weber’s law. Yet
adherence to Weber’s law does little to unify these competing
accounts. Noisy ANS representations of whole numbers could
easily show Weber’s law in ratio computations: An observer see-
ing a collection of 20 versus 10 dots could input a noisy signal of
20:10, 18:12, or even 22:9 dots into a ratio operation and output-
ted to an RPS. This system would then inherit Weber’s law with-
out sharing any other properties with the ANS. In fact, despite
C&B suggesting that ratio computations are likely encapsulated
within the ANS, there is good reason to suspect that these com-
putations can exist entirely separately from it. A domain-general
ratio scale easily explains how cross-modal matching tasks are
accomplished (e.g., readily matching the ratio between sets of
dots to two lines; Bonn & Cantlon, 2017). Moreover, individual
differences in the ANS do not correlate with ratio operations in
other perceptual domains (e.g., length and area; Dramkin &
Odic, 2020; Odic, 2018), suggesting that the ANS is not the bot-
tleneck for ratio computation. But, if ratio computations “live” in
an entirely separate system, then C&B have only presented behav-
ioural evidence that this system represents the rationals, not the
ANS, itself.

A second challenge is in the argument that the ANS does not
represent the reals. Both C&B, as well as Laurence and Margolis
(2005), nicely frame this as the question of the “grain of represen-
tations”: what is the minimal unit on the scale of the ANS? Both
sets of authors argue that until we find behavioural evidence that,
for example, the mind represents π or √2, we should not claim
that the ANS is a real-numbered system, harkening to classic
debates surrounding perceptual grain sizes. Fechner (1887)
famously proposed that the unit of any perceptual dimension is
the point at which observers fail to notice an objective increase
in that quantity (i.e., the just noticeable difference; JND). But
many psychophysicists, including Stevens (1961, 1957), argue
that such behavioural “scales of confusability” tell us little about
the units of perception because performance factors always inter-
fere with true competency.

Consider the case of absolute thresholds of light detection. In
ideal situations, even a single photon of light can excite a rod cell
in the retina. But observers don’t always detect this, likely because
of biological noise in the optical nerve or because of a balance that
vision has to make between accepting signal versus rejecting noise
(Ala-Laurila & Rieke, 2014; Barlow, 1956; Rieke & Baylor, 1998).
As a result, pure behavioural signatures are a poor indicator of a
perceptual system’s true capabilities, which is why researchers
studying absolute thresholds use models of performance coupled
with potential sources of noise in the signal, biology of the eye,
and the observer’s decision making to understand absolute

thresholds (Field, Sampath, & Rieke, 2005). In the same way,
pure behavioural data are too poor (from performance limita-
tions) to tell us whether observers can represent the infinity of
π versus merely 355/113.

What, then, can we conclude about ANS representations if we
go beyond pure behaviour? Much like the case of light perception,
the best available approach is to rely on models of the ANS,
including signal detection approaches that model perceptual sig-
nals as highly continuous and in the domain of the reals
(Piazza, Izard, Pinel, Le Bihan, & Dehaene, 2004; Pica, Lemer,
Izard, & Dehaene, 2004). Models fill the gaps between behavioural
data, especially at the limits of behaviour where performance fac-
tors occlude true competency. Thus, the onus on proving that the
grain size of the ANS is at the level of rationals must fall on dem-
onstrating where current models of the reals break down. In other
words, what does the model predict that is explicitly tested and
not shown in behaviour (given all appropriate controls, sources
of noise, etc.)? Ultimately, without an alternative to challenge
the orthodox model of the ANS proper, we can only commit to
the reals.

Although we agree with C&B that many nuances of ANS rep-
resentations have not yet been derived nor tested, determining
what the ANS represents will rest on settling what evidence is suf-
ficient. As we’ve argued, the challenge with relying on behaviour
as the sole source of evidence is that it is neither sufficient to tell
us that the ANS represents the rationals nor that it doesn’t repre-
sent the reals. Instead, we should rely on psychophysical models
that can go beyond the limits of behaviour to get at the true capa-
bilities of perception and thought.
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Abstract

Numbers are symbols manipulated in accord with the axioms of
arithmetic. They sometimes represent discrete and continuous
quantities (e.g., numerosities, durations, rates, distances, direc-
tions, and probabilities), but they are often simply names.
Brains, including insect brains, represent the rational numbers
with a fixed-point data type, consisting of a significand and an
exponent, thereby conveying both magnitude and precision.

Despite our title (Gallistel & Gelman, 2000), I agree with Clarke
and Beck (C&B) that the approximate number system does not
represent irrational numbers. Most of them cannot be represented
in any way, because they are unidentifiable (Chaitin, 2005). None
can be represented exactly by any physically realized system.

Gelman and I argue that human quantitative reasoning is
founded on a prelinguistic system for representing both discrete
and continuous quantity, which is phylogenetically and ontoge-
netically primitive. It provides concepts to which toddlers map
the count words as they learn to count, and it supports adult rea-
soning about quantities. We called the neurobiologically realized
symbols in a brain’s system for representing quantities numerons.
Gelman and Gallistel (1978) stressed that numerons both refer
and are the object of the arithmetic operations by which brains
draw conclusions about the referents.

C&B don’t like numerosity. Gelman and Gallistel (1978) used
numerosity to refer to the property of the easily counted sets that
are conventionally represented by a number. A number, as we
understand it, is a player in the game of arithmetic, defined by
the rules of that game. In the section of our Chapter 11 headed

“The Laws of Arithmetic and the Definition of Number,” we
quoted the mathematician Knopp as follows: “Every system of
objects for which this is true is called a number system, because
to put the matter baldly, it is customary to call all those objects
numbers with which one can operate according to the fundamen-
tal laws we have listed” (Knopp, 1952, p 5; italics his; “this” refers
to any object manipulated in accord with the axioms of arith-
metic). Having defined number conceptually, we could not define
it referentially, which seems to be the only form of definition rec-
ognized by C&B and many others (e.g., Carey and Barner, 2019).
A fortiori, we could not define number by the fact that a number
sometimes refers to the property of a set that we denoted by
numerosity.

We defined the numerosity of a set operationally as the num-
ber you get when you correctly count it, thereby, explicitly reject-
ing set-theoretic definitions (Frege, 1884). In my view, this usage
is both unproblematic and necessary, because, in experimental
work on perception, one needs one word for the percept (e.g.,
“brightness”) and another for the corresponding distal stimulus
(e.g., “luminance”). In work on number perception, “number”
most gracefully denotes the percept – or, in many contexts, the
concept. Therefore, we need another word for the distal stimulus.
That word has long been – and likely will continue to be –
“numerosity.” Why some philosophers think there is something
dodgy about this usage is a mystery. If they did psychophysical
experiments, they would find it unsatisfactory to say “the number
sense represents number” (C&B, sect. 6, para. 1); it’s equivalent to
saying brightness represents brightness.

A coherent discussion of the psychology of number by a con-
vinced materialist like myself requires vocabulary that makes at
least three distinctions: (1) number qua arithmetically defined
concept; (2) number qua property of a finite set; and (3) number
as a symbol in a computing machine like the brain. A number
symbol in a computing machine sometimes refers to the property
of a set measured by counting it. More often, however, it refers to
a continuous quantity, such as a duration. And, perhaps even
more often, it is just the name the machine uses for something,
for example, the ASCII names for the symbols on a keyboard.
Gelman and Gallistel have been tolerably consistent in denoting
(1) by number, (2) by numerosity, and (3) by numeron. They
did not, for example, title their book, The Child’s
Understanding of Numerosity.

In 2000, Gelman and I suggested that numerons were noisy
magnitudes. We subsequently disavowed that hypothesis (Leslie,
Gelman, & Gallistel, 2008). If the numerons that represent dis-
tance traveled in animal navigation had 10% noise, path integra-
tion would be impossible (see Fig. 1 in Gallistel, 2017). Path
integration is well developed even in ants. They count their 13
mm steps over distances of at least 1,300 m (Buehlmann,
Graham, Hansson, & Knaden, 2014; Wittlinger, Wehner, &
Wolf, 2006), a count that rises to 100,000.

The symbols in physically realized systems for representing
quantities and manipulating them arithmetically make only
approximate reference to the computable numbers. When effi-
ciency, speed and low energy consumption are strong consider-
ations, engineered number symbols are a fixed-point data type.
They have two parts, the exponential part, which specifies the
scale, and the significand, which specifies the number of subdivi-
sions distinguished at any given scale. If, for example, 3 binary
digits constitute the significands, then a fixed-point binary symbol
system distinguishes 23 = 8 different magnitudes at any scale. The
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number of bits in the exponent specifies the scale. Thus, for exam-
ple, 0e0 denotes 0 × 20 = 0; 1e0 denotes 1 × 20 = 1; and 101e11
denotes 5 × 23 = decimal 40. (See Gallistel, 2017 for details,
including the explanation of why this system may represent any
signed integer – and rational numbers that approximately repre-
sent quantities such as rates and probabilities.)

The numbers of binary digits in the significands of numerons
may be estimated by the reciprocals of the Weber fractions.
Weber fractions, generally, fall in the range from 0.0625 to 0.25,
which implies 2–5 binary digits in the significands of most
numerons.

The small number of binary digits in numeron significands
bespeaks the sophistication of basic brain mechanisms: Numerons
convey into computations the limited precision with which a brain’s
measurement operations generate the symbols that carry forward in
time information about empirical quantities. These measurement
operations, which Gelman (1972) called estimators, rarely deliver a
precision better than ±10%, whether the quantity measured is dis-
crete or continuous (Cheyette & Piantadosi, 2020; Cordes,
Gelman, Gallistel, & Whalen, 2001; Durgin, Akagi, Gallistel, &
Haiken, 2009; Gallistel, 2017; Gibbon, Malapani, Dale, & Gallistel,
1997; Halberda, 2016). Representing empirical quantities with
more bits in the significands would imply a misleading precision.
That can be disastrous, as any navigator should know.
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Abstract

The distinction between non-symbolic and symbolic number is
poorly addressed by the authors despite being relevant in
numerical cognition, and even more important in light of the
proposal that the approximate number system (ANS) represents
rational numbers. Although evidence on non-symbolic number
and ratios fits with ANS representations, the case for symbolic
number and rational numbers is still open.

The authors (hereafter, C&B) make an interesting argument for
the consideration that the approximate number system (ANS)
represents number rather than numerosity. The clarity in disen-
tangling what is represented versus how it is represented is also
a valuable contribution to the field. However, there are some
issues that the argument leaves unresolved despite being critical
to the nature of the ANS. A relevant one is the distinction between
the representation and processing of non-symbolic and symbolic
number. This is a well-established distinction in the numerical
cognition literature, whose dismissal – for example, by reducing
it to a matter of how number is represented – would be overlook-
ing its depth and implications. Characterizing the ANS as a
“primitive and prelinguistic capacity” shared across many species
is a clear signal that C&B focus their case on the processing of
non-symbolic number. However, the evidence cited mixes data
from non-symbolic and symbolic studies (e.g., Henik &
Tzelgov, 1982), blurring an otherwise clear and engaging argu-
ment. Although C&B distinguish in their exposition between
ANS representations and precise number concepts, this distinc-
tion is intended to separate ANS representations from the
advanced number constructions studied by mathematics, and it
does not address the non-symbolic/symbolic contrast.

Myer and Landauer’s (1967) study on single-digit number
comparison may be considered an essential piece of evidence sug-
gesting that number symbols are to some extent represented by
the ANS. These authors showed that young adults’ error rates
and response times in comparing two digits decrease with increas-
ing numerical distance between them. However, the consideration
of these two types of numerical processing, non-symbolic and
symbolic, brings an extra layer of complexity to number process-
ing. For instance, symbolic number processing introduces
unit-decade-compatibility effects which are meaningless in non-
symbolic processing. Nuerk, Weger, and Willmes (2001) pre-
sented this concept and proved that the comparison of multi-digit
numbers is strongly affected by a competition between the num-
bers and the digits that compose them: Comparing 42 and 57 is
easier than comparing 47 and 62 because in the former case the
larger number coincides with the number with the larger decade
and unit, whereas in the latter case the larger number has the
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larger decade but the smaller unit. Effects such as this one are spe-
cific to symbolic number representations, as the comparison of a
set of 42 blue dots versus one of 57 yellow dots will likely lead to a
similar outcome to that of a set of 47 blue dots versus one of 62
yellow dots (both comparisons engage the ANS and the yellow:
blue ratios in each case are about 1.3). Altogether, the ANS
seems able to represent number symbols, but this representation
would be limited to single-digit numbers (see also Nuerk,
Moeller, Klein, Willmes, & Fischer, 2011).

When it comes to rational numbers, the distinction between
non-symbolic and symbolic processing becomes even more com-
plex, and the research scarcer. Non-symbolic processing in this
case refers to the capacity of perceiving and using ratios, whereas
symbolic processing brings to the table fractions and decimals.
Fractions are visually depicted as two natural numbers separated
by a line. There is plenty of evidence that human adults perceive
the magnitudes of natural numbers in an automatic manner (i.e.,
even if it is not relevant for the task, see Henik & Tzelgov, 1982).
The magnitudes of fractions, however, seem to be activated only
when they are relevant for the task (Bonato, Fabbri, Umiltà, &
Zorzi, 2007; Gabriel, Szucs, & Content, 2013; Kallai & Tzelgov,
2012). Children’s intuitive reasoning with fractions show impor-
tant congruency effects (erroneously judging a fraction as larger
than another if its components are larger, e.g., concluding that
2/3 < 4/9 because 2 < 3 and 4 < 9; see e.g., Gómez & Dartnell,
2019; Ni & Zhou, 2005; Van Hoof, Lijnen, Verschaffel, & Van
Dooren, 2013). It is difficult to ascribe fraction comparison per-
formance to the ANS, however. Although some studies have
reported distance effects in response times in fraction comparison
tasks, these times are too large to license conclusions about the
mental representations of fractions (e.g., Schneider & Siegler,
2010) or the task is to simple to actually engage fraction represen-
tations (e.g., Bonato et al., 2007). Nonetheless, adults who are
highly mathematically competent also show congruency effects
in their response times but also distance effects (Morales,
Dartnell, & Gómez, 2020; Obersteiner, Van Dooren, Van Hoof,
& Verschaffel, 2013), showing that the discussion is far from
over (see also Binzak & Hubbard, 2020, for positive evidence
for ANS involvement in fraction comparison).

Ratios (or non-symbolic rational numbers) as a unifying per-
cept of the number sense would be a very compelling theory
(e.g., with natural numbers represented as ratios with respect to
one). It would be consistent with the measuring function of num-
bers, common to both natural and rational numbers. As C&B
note, natural number counting is not essentially tied to one as
the unit, as counting can occur by pairs, tens, or dozens. But,
even in this scenario, ratios are a limited aspect of rational num-
bers and, similarly, non-symbolic numbers are a limited aspect of
natural numbers. Although C&B are convincing about the ANS
representing non-symbolic numbers and ratios, the case about
symbolic ones is less successful. In this regard, it is worth asking
to what extent we can restrict our concept of number in order to
call numbers to ANS representations. I suggest that the non-
symbolic/symbolic distinction is, in this sense, a key one. If the
ANS is not convincingly involved in processing of symbolic num-
bers (naturals and rationals), it would be more parsimonious to
claim that it represents ratios rather than rational numbers.
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Abstract

According to Clarke and Beck (C&B), the approximate number
system (ANS) represents numbers. We argue that the ANS rep-
resents pure magnitudes. Considerations of explanatory econ-
omy favor the pure magnitudes hypothesis. The considerations
C&B direct against the pure magnitudes hypothesis do not
have force.
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Clarke and Beck (C&B) reject Burge’s (2010) hypothesis that the
approximate number system (ANS) represents Eudoxian pure
magnitudes. They maintain that ANS represents natural and
rational numbers. But there are strong reasons – under-
appreciated in the target article – to favor pure magnitudes as
what ANS represents. C&B’s considerations against the pure mag-
nitudes hypothesis have no force.

Pure magnitudes can measure both continuous magnitudes
(e.g., an object’s weight) and the magnitude of an aggregate’s
membership. (An aggregate is a concrete analog of a set; Burge,
1977.) Pure magnitudes always apply only relative to some prop-
erty that delimits what is measured. In the continuous case, pure
magnitudes apply to something (e.g., some water) relative to a
dimension (like weight). In measuring an aggregate’s member-
ship, pure magnitudes are like natural numbers in having to
apply relative to the sortal that determines an aggregate’s mem-
bers. (The same physical stuff can constitute 1 deck, 4 suits, or
52 cards; Frege, 1884.) Crucially, pure magnitudes occur in ratios.
Pure magnitudes are associative and commutative under analogs
of addition and multiplication; and, for any magnitudes a and
b, exactly one of these conditions holds: a = b + c, for some mag-
nitude c; b = a + c, for some magnitude c; or a = b (Scott, 1963).
They do not, however, bear successor relations: there is no
“next” pure magnitude.

The fundamental advantage of the pure magnitudes hypothe-
sis is its comparative explanatory economy. First and most impor-
tantly, pure magnitudes have all the structure necessary to explain
extant evidence relevant to ANS. Ratio-dependent discrimination
behavior comprises the core data in ANS research. As mentioned,
pure magnitudes occur in ratios. Number hypotheses concerning
ANS representations predict capacities that the data do not sup-
port. For example, there is no evidence that ANS capacities
include counting, one-to-one matching, or a successor operation.
These are basic to a competence in representing natural numbers.
They are no part of a competence for representing pure magni-
tudes. Second, on our view, pure magnitudes are already repre-
sented in perception: Continuous magnitudes are measured
there by pure magnitudes relative to a dimension (weight and dis-
tance). Measuring continuous magnitudes by number would
require both a dimension and a unit of measurement.
Perception appears to be unit-free (Burge, 2021; Peacocke, 1986,
2019). In sum, the pure magnitudes hypothesis is supported by
the evidence, does not posit more than is necessary, and accords
well with explanations of perceptual magnitude representation.

C&B, citing Burge (1982), correctly note that some representa-
tional competencies do not require sensitivity to every essential
feature of what they represent. They also, citing Burge (2005), cau-
tion against confusing what is represented with how it is repre-
sented (the mode of presentation). Accordingly, one might
think that ANS can represent natural numbers despite the absence
of counting, one-to-one matching, or a successor operation, and
thus that the numbers hypothesis need not postulate these capac-
ities. We deny this. In typical cases, representational competence
despite limited sensitivity to essential features is grounded in
causal connections to the subject matter or in reliance on interloc-
utors. These factors are irrelevant here. The main evidence for
competence in representing numbers for example, in develop-
mental studies is evidence of capacities for counting, one-to-one
matching, and a successor operation. These capacities constitute
our main grip on whether numbers are represented.

Why, then, do C&B reject the pure magnitudes hypothesis?
They offer two main considerations.

The first invokes the sortal-dependence of membership esti-
mation stressed by Burge (2010). ANS relies on a sortal’s distin-
guishing and grouping the members of an aggregate. Natural
numbers must measure a magnitude relative to a sortal. A pure
magnitude, by contrast, does not have to measure a magnitude
relative to a sortal (as when it measures weight). C&B claim
that pure magnitudes “are thus poorly suited to capturing the
contents of ANS representations.” This argument has no weight.
When pure magnitudes measure aggregate membership, they
must hold relative to a sortal. That pure magnitudes can also mea-
sure continuous magnitudes without a sortal is irrelevant. ANS
representations of pure magnitudes can thus be sensitive to the
sortal-dependence of the magnitude of aggregates’ membership,
just as attributions of number would be.

C&B’s second consideration is that we should favor the
hypothesis that postulates representations of “entities we have
independent reason to posit in our scientifically informed ontol-
ogy.” This consideration is prima facie (agents can represent there
to be entities that do not exist) and is overwhelmed by consider-
ations of explanatory economy of the kind we advance.
Furthermore, here the consideration does not favor the numbers
hypothesis. C&B claim that scientific explanations refer to num-
bers, not to numerosities – and so, presumably, not to numeros-
ities construed as pure magnitudes. But, in mathematical science,
pure magnitudes are in as good-standing as numbers (Scott,
1963). And, as noted, empirical science is already committed to
attributions of pure magnitudes in its explanation of perception.
C&B enlist Burge’s (2010) use of ethology to settle whether frog
vision represents flies or undetached fly parts. The case seems dis-
analogous. Ethology can break a tie between causal candidates.
Different considerations are needed for mathematical entities,
which apply to concrete particulars with causal powers only via
further properties. Those considerations favor the pure magni-
tudes hypothesis.

C&B characterize pure magnitudes as “exotic” and numerosi-
ties more generally as “recherché” and “peculiar.” Quanticals are
deemed “mysterious.” These formulations could suggest that pos-
iting “ersatz” numbers is problematic because they are unfamiliar
and ill-understood. However, pure magnitudes have been theoret-
ically well-understood since the ancient Greeks. Through their
presentation in Euclid’s Elements, they were central to mathemat-
ical and scientific practice up through the early modern period
(Stein, 1990; Sutherland, 2006). They are indeed unfamiliar to,
and not reflectively understood by, many possessors of ANS,
which after all include organisms that may well lack supra-
perceptual powers. But numbers are similarly unfamiliar to
such creatures. Theorists need not be deterred.

The pure magnitudes hypothesis explains the behavioral data
without invoking unevinced capacities (as the neologism “numer-
osity” cautioned against) and cites resources already deployed in
perception. Numbers are more familiar to us. ANS represents
pure magnitudes.
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Abstract

In contrast to Clarke and Beck’s claim that that the approximate
number system (ANS) represents rational numbers, we argue for
a more modest alternative: The ANS represents natural numbers,
and there are separate, non-numeric processes that can be used
to represent ratios across a wide range of domains, including
natural numbers.

Clarke and Beck (C&B) argue that the approximate number sys-
tem (ANS) represents rational numbers. This claim is based on
a growing body of evidence that suggests humans are capable of
comparing ratios between natural numbers. They argue that the
most straightforward explanation for this ability is that the ANS
represents rational numbers, which can capture ratios between
numbers and can themselves be compared. We find C&B’s care-
ful argument that the ANS represents numbers, rather than
non-numerical confounds, persuasive. However, we find their
argument that the ANS represents rational numbers to be less
careful, and less persuasive. We argue for a more modest alter-
native: The ANS represents natural numbers, and there are
separate, non-numeric processes that can be used to represent
ratios across a wide range of domains, including natural
numbers.

The primary argument that the ANS represents rational num-
bers, as far as we can tell, is that people can represent ratios
between natural numbers, and that to do this, they must be
using rational number representations. This ratio processing sys-
tem (RPS), they argue, is best understood as a component of the
ANS, and thus the ANS must be representing rational numbers.
Surprisingly, the central evidence for this connection between
the RPS and ANS is that both systems seem to be governed by

Weber’s Law, and this similarity in performance is taken to be
“suggestive of a shared system.” But, as C&B themselves point
out, a great number of representational systems, including those
for distance, duration, and weight, also seem to be governed by
Weber’s Law. Yet they specifically need to resist the claim that sys-
tems for representing duration, weight, or distance are part of a
shared system that also includes number representation. They
can’t have it both ways, and so even C&B should not think that
simply conforming to Weber’s Law is sufficient evidence for
being part of a shared system.

However, you might wonder whether C&B could provide some
other kind of evidence that RPS and ANS form part of a shared
system, perhaps evidence that they share some shared neural
substrate. But C&B make it explicit that their conjecture concerns
only a computational level of analysis, so even if some
implementation-level link were discovered, it would not help
their argument. They need to rely on functional properties of
these systems, but the only one they have to offer is conforming
to Weber’s Law. Yet that property is shared so widely that it is
not much evidence one way or another.

Finally, one might wonder whether C&B may actually be
appealing to some more general principle in their argument that
the RPS represents rational numbers. Perhaps, they are appealing
to the argument that because the RPS clearly represents
relationships between numbers, RPS representations themselves
must be number representations. But this is not a good form of
inference. It is not generally true that a representation of the
relationship between two entities is of the same kind as the
representation of those two entities. One might have an intuitive
sense that a chair and couch are more similar to each other
than a chair and a lamp. But clearly, the representation of the
similarity between two items of furniture is not itself a furniture
representation. Analogously, a representation of the relationship
between numbers (such as a ratio) need not itself be a numerical
representation, and a fortiori, need not be a rational number
representation.

Given that this is not a generally valid form of inference, C&B
must provide some other form of evidence that ratio representa-
tions are numeric. This conclusion is not obvious; for example, we
are able to represent the ratios between lengths of lines according
to Weber’s Law, but these representations don’t strike one as nec-
essarily numeric.

The remaining question, then, is whether there is a better way
to explain the representation of ratios between natural numbers.
Here is one such alternative: The ability to represent ratios
between natural numbers in accordance with Weber’s law arises
from the same general non-numeric ability that allows us to rep-
resent relationships between all kinds of things, whether it be a
matter of length, weight, duration, color, or whatever else.
When we discriminate between different numeric ratios, we
may simply be applying this quite general ability to the genuinely
numeric representations of the ANS.

And so, C&B have not proven that representations of ratios
between natural numbers are necessarily rational number repre-
sentations, nor have they provided strong evidence that the RPS
is a component system of the ANS. A more natural way to under-
stand the ANS is that it simply represents natural, not rational,
numbers, and that ratio representations rely on a separate,
domain-general process.
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Abstract

Many researchers, including Clarke and Beck, describe the
human numerical system as unitary. We offer an alternative
view – the coexistence of several systems; namely, multiple sys-
tems (general magnitude, parallel individuation, and symbolic)
existing in parallel, ready to be activated depending on the
task/need. Based on this alternative view, we present an account
for the representation of rational numbers.

Clarke and Beck (C&B) describe the human numerical system as
unitary. They review effects of various perceptual properties (e.g.,
size or density) on judgments of numerosity in section 3: “con-
gruency” and section 4: “confounds.” However, C&B argue that
these effects are inconsequential because of the unitary nature
of the numerical system. We disagree. We suggest that converging
behavioral and neuroimaging evidence has shown that the num-
ber system is not unitary but diversified. First, behavioral evidence
has consistently reported involvement and influence of basic con-
tinuous properties on the processing of numbers (for a review, see
Leibovich, Katzin, Harel, & Henik, 2017). Second, neuroimaging
evidence has highlighted distinct brain areas associated with var-
ious numerical and quantification tasks. Taken together, this evi-
dence obligates re-examination of the premise that the number
system is unitary. In turn, this provides interesting insights into
the processing of rational numbers.

Throughout this review, the authors draw an analogy between
the approximate number system (ANS) and the visual system.
They state, “the visual system is often viewed as unified by its
function, despite comprising relatively autonomous sub-modules
performing dedicated tasks at various levels of visual analysis.”
For example, the visual system is characterized by two co-existing
visual pathways: (1) the primary, evolutionarily younger geniculo-
striate system, and (2) an evolutionarily older retino-tectal system.
Although these two systems have somewhat different roles, they
are connected and have mutual effects on vision (Henik, Rafal,
& Rhodes, 1994). The relatively less known evolutionarily older
system deals mainly with spatial aspects of vision and connects
to the parietal lobes, including the intraparietal sulcus (IPS), a
key brain region linked to number processing.

The IPS and adjacent brain structures are involved in basic
number processing, but also action (i.e., reaching and grasping).
Walsh (2003) suggested that important computational demands

of an action system (reaching and grasping) are the basis for
the involvement of the parietal lobes in comparative judgment
tasks. Namely, the activity of the parietal lobe reflects computa-
tional demands of the brain dorsal system (that starts at the visual
areas of the occipital lobe and connects to the parietal lobe)
involved in perception for action (Goodale, 2000). However, it
might be the other way around. Specifically, routines and brain
structures underlying comparative judgments that are needed
for action might have evolved from a single system that originally
supported computing magnitudes (e.g., size). In line with this
notion, for the dorsal brain system to develop, it was evolution-
arily critical to first be able to compute amount or size and size
differences. A neurocognitive system that handles this aspect of
cognition (i.e., the evaluation of size or amount) might have
been foundational for the development of the occipito-parietal
dorsal brain system (i.e., the system that supports perception for
action). Critically, this same system (i.e., the evaluation of size
or amount) was also foundational for the development or
advancement of the numerical system. Accordingly, we have sug-
gested the coexistence of two systems (Henik, Gliksman, Kallai, &
Leibovich, 2017); an older system that underpins the evaluation of
size or amounts of substance and a number system that is discrete
in nature and supports the evaluation of precise numerical quan-
tities (Leibovich, Ashkenazi, Rubinsten, & Henik, 2013).

Recent meta-analyses of neuroimaging studies that evaluate
the neural correlates of number processing across formats and
non-numerical magnitude processing support this idea.
Specifically, Sokolowski, Fias, Ononye, and Ansari (2017) show
the set of brain regions supporting symbolic and non-symbolic
number processing highly overlap with the brain regions support-
ing non-numerical magnitude processing (e.g., size, length, and
luminance). However, symbolic and non-symbolic number pro-
cessing are also associated with additional, format-specific regions
lateralized within the parietal lobes (with symbolic on the left and
non-symbolic on the right). This meta-analytic data go against the
idea that a single system supports all of numerical cognition,
instead suggesting that numerical cognition is supported by diver-
sified systems, one of which is a general magnitude system. Most
of the empirical studies included in the meta-analysis use active
tasks that involve decision making and motor response (i.e., per-
ception and action), which are known to be associated with the
IPS. A recent functional magnetic resonance imaging (fMRI)
adaptation study (https://psyarxiv.com/xw2fq/) highlights that
symbols, quantities, and physical size have overlapping but also
distinct brain regions in the parietal lobes, and quantities and
size are quite similar in terms of the patterns of activation whereas
symbols are distinct. This reveals overlapping and distinct brain
regions supporting numerical and non-numerical magnitude pro-
cessing in the absence of active tasks. Other recent data from
Zimmermann (2018) provide direct evidence that different mech-
anisms account for the perception of visual numerosity.
Specifically, Zimmermann shows that low numbers are sensed
directly as a primary visual attribute, but the estimation of high
numbers depends on the area/size over which the objects are
spread. Hence, subsystems within the two systems proposed
above may support computations of particular quantities and
amounts.

The proposal that numerical cognition is supported by diver-
sified systems sheds new light on the authors’ discussion of
rational numbers. C&B conceptualize rational numbers as a
representation of numerical ratios among positive integers. They
suggest that the ANS first represents natural numbers of concrete
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pluralities and only then derives ratios therefrom. Within the
framework of a diversified numerical system, the magnitude and
number systems may operate in parallel to extract the necessary
information. Within such a composite system, proportions
could be extracted in the way suggested by the authors (based
on the number system), or more directly by the magnitude sys-
tem, or in an orchestrated operation of the two systems.

In summary, we posit the idea that numerical cognition is sup-
ported by diversified systems, rather than a unified system. Such a
divergent system aligns more closely to the structure of the visual
system, is better supported by empirical data in the field of
numerical cognition, and provides a more adequate explanation
for the way the human mind processes rational numbers.
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Abstract

Clarke and Beck suggest that the ratio processing system (RPS)
may be a component of the approximate number system
(ANS), which they suggest represents rational numbers. We
argue that available evidence is inconsistent with their account
and advocate for a two-systems view. This implies that there
may be many access points for numerical cognition – and that
privileging the ANS may be a mistake.

We applaud Clarke and Beck’s (C&B’s) compelling use of analo-
gies with other domains of perception to defend the notion that
the approximate number system (ANS) truly represents numbers.
We were also gratified to see that they arrived at a similar conclu-
sion to that proposed by our own study, one “closely related to a
suggestion from the developmental and educational psychology
literatures according to which there is a ‘ratio processing system’
(RPS).” We have previously advanced the view that humans
and other animals possess a perceptual system for representing
ratio magnitudes, and that they therefore represent rational num-
bers, rather than being limited to representing purely integers
(e.g., Lewis, Matthews, & Hubbard, 2015; Matthews, Lewis, &
Hubbard, 2016; see also Jacob, Vallentin, & Nieder, 2012). C&B
go on to suggest that it isn’t always clear whether the RPS is a sep-
arate system from the ANS or a component of it, deciding in favor
of the latter. They further argue that “the hypothesis that the RPS
represents rational numbers is not always clearly distinguished
from the conjecture that it represents real numbers more gener-
ally” (sect. 7.3, para. 2). In this commentary, we focus on these
points in light of the current empirical record.

Our view is informed by our prior findings that the RPS is
operative in multiple visual formats – extending beyond the dis-
crete dot arrays that have typically been the focus of ANS
research. We showed that children and adults can also compare
ratios made of lines, circles, and irregular blobs (e.g., Binzak
et al., submitted; Park, Viegut, & Matthews, 2020; see also Bonn &
Cantlon, 2017). Because ratio perception has been demonstrated
using various continuous stimuli not typically considered the prov-
ince of the ANS, we argue (1) that the RPS cannot be a component
of the ANS, and (2) that perceiving numerical ratios may be every bit
as fundamental as perceiving exact number (or numerosities). A cor-
ollary to this position is that one route to whole number representa-
tions might be an emergent property of ratio perception (i.e., when
the denominator is 1).

Although these issues must ultimately be settled empirically, in
the spirit of C&B, we think an analogy from brightness perception
illustrates the plausibility of our argument that the ANS and RPS
are two systems. Although individual photoreceptors signal abso-
lute light levels, much of the perceptual system is tuned to relative
(ratio) brightnesses of different portions of surfaces, such as when
identifying edges in a scene or perceiving shades of gray in black
and white images. This system yields the same percept even under
a 1,000-fold difference in absolute light levels, such as when mov-
ing from indoors to outside under bright sunlight. That is, the
visual system computes relative brightness as its primary percep-
tual feature (for a review, see Gilchrist, 2013) and either normal-
izes or discounts absolute illumination. In parallel, intrinsically
photosensitive retinal ganglion cells signal absolute illumination
and feed into systems that regulate the pupillary reflex and circa-
dian rhythms (e.g., Yamakawa, Tsujimura, & Okajima, 2019). By
analogy, the RPS could be specialized for perception of relative
quantity (numerosity), whereas the ANS is specialized for percep-
tion of absolute numerosity. Furthermore, as with brightness per-
ception, absolute number may be calculated less frequently and
relative number perception may be the predominant mode of
perception.

In line with the two-systems view, findings from our labs fur-
ther suggest that the RPS is not a component of the ANS. For
instance, in prior studies, we showed that the predictive power
of the RPS was independent of ANS acuity, which contributed
almost no explanatory power to the models (Matthews et al.,
2016; Park & Matthews, in press). Moreover, if the ANS and
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RPS constitute a single system, we would predict that long-term
ANS training – which successfully transferred across visual field
locations – should also transfer across tasks to the RPS, but this
was not observed (Cochrane, Cui, Hubbard, & Green, 2019).
Moving forward, it would be interesting to test whether RPS train-
ing transfers to ANS tasks. Most importantly, Park et al. (2020)
carried out a battery of tasks using different stimulus formats
(e.g., circles, dots, and lines) where participants compared simple
stimuli (ANS style) and ratio stimuli (RPS style). They showed
that performance was driven more by task similarity (ANS vs.
RPS) than by stimulus format (circles, dots, and lines) (Fig. 1).

Despite our preferred take, however, this clearly remains an
open question. For instance, in a recent computational modeling
study, we trained a deep convolutional neural network (DCNN)
to compare non-symbolic numbers, either as simple dot arrays
or as ratios composed of two-dot arrays (Chuang, Hubbard, &
Austerweil, 2020). Analysis of the hidden unit responses sug-
gested that RPS representations might emerge from tuned (ANS
style) units.

More research is necessary for the final adjudication. That said,
C&B have done the entire field a service by highlighting that the
ANS might be only one component of a multifaceted number
sense that integrates various cues and generates various usable
outputs from those cues. In highlighting the importance of ratios,
C&B underscore that Weber-guided systems can compute not
only integers, but also rational numbers. This implies that there
may be many access points for numerical cognition – and that
privileging the ANS may be a mistake.

As for what type of numbers might be represented by a per-
ceptual number sense, we concur with C&B that the type of num-
ber represented may be limited by the nature and precision of the
inputs of the perceptual system. The RPS can presumably repre-
sent the entire set of x/y for all x and y which a given input system
can represent. Thus, if the RPS is truly limited to discrete inputs,
then the number sense would include only the rationals. However,
if it is more continuous in character, then it could include the
reals.
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Figure 1 (Hubbard and Matthews). Comparison stimuli used by Park et al. (2020) organized by task type (simple vs. ratio comparison) and by format (dots, lines,
blob, and circles).
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Abstract

Clarke and Beck rightly contend that the number sense allows us
to directly perceive number. However, they unnecessarily assume
a representationalist approach and incur a heavy theoretical cost
by invoking “modes of presentation.” We suggest that the rele-
vant evidence is better explained by adopting a radical enactivist
approach that avoids characterizing the approximate number
system (ANS) as a system for representing number.

Clarke and Beck (C&B) argue convincingly that the approximate
number system (ANS) plays a vital role in allowing us to directly
perceive number rather than numerosity, and we concur (Jones,
2016, 2018). However, by adopting a representationalist stance
and appealing to the notion of “modes of presentation,” they
unnecessarily incur a heavy theoretical cost. By eschewing repre-
sentationalism and the idea that the function of the ANS is to rep-
resent number, and instead adopting a radical enactivist stance
(Hutto & Myin, 2012, 2017; Zahidi, 2021; Zahidi & Myin,
2016), one can explain our direct perception of number with
less philosophical baggage.

The issue of whether we have perceptual access to numerical
properties is not new, and, over the last century, was largely
seen by philosophers of mathematics to have been settled in the
negative because of Frege’s (1950, pp. 9–14, 27–32) infamous cri-
tique of Mill’s empiricism, whereby the number we assign to a
collection depends on our conceptualizations. As such, there is
seemingly no room for number to be a mind-independent prop-
erty that we directly perceive. This consensus has, more recently,
begun to shift, in light of evidence that we have a natural capacity
for directly apprehending numerical properties that is perceptual
in nature (see Anobile, Cicchini, & Burr, 2016 for a review; Jones,
2018, pp. 150–152).

C&B convincingly argue that we perceive number directly and
that the imprecision of the ANS is no reason to suggest that we
perceive something other than numerical properties, for example,
numerosities. However, this still leaves open the question of what
we’re perceiving when we perceive number. C&B’s answer is that
we perceive natural numbers as properties of collections (p. 10)
and rational numbers as properties of ratios, yet this is unsatisfy-
ingly trivial, because the terms “collection” and “ratio” merely
refer to that to which (natural and rational) numerical properties
can apply. Thus, their solution simply raises the question of how
we perceive collections or ratios.

C&B take the idea that the ANS represents numbers to be the
best explanation of the available evidence, but they neglect alter-
native non-representationalist explanations that accept our sensi-
tivity to numerical properties without committing to any neural
system representing those properties using particular modes of
presentation. For example, it is possible to understand perception
of numerical properties of collections as perception of affordances
for engaging in various activities (Gibson, 1979; Jones, 2018;
Kitcher, 1984, pp. 11–12, 108). To “perceive a collection of apples
as being seven in number” (p. 10) is to be sensitive to structural
properties that are significant for a range of actions. The “seven-

ness” is not a property of the apples, nor of the perceiver, but of
what the perceiver can do with them. Rather than the ANS func-
tioning to “keep count of whole items” (p. 34, emphasis
removed), it plays a role in enabling actions such as counting.
This approach is more closely aligned with recent evidence sug-
gesting that the ANS is a sensorimotor system, rather than a simple
number detector, because it is implicated in both numerical per-
ception and numerical action, as well as interaction between the
two (see Anobile, Arrighi, Castaldi, & Burr, 2021 for a review).
This suggests that “the neuronal populations in the theory do
not serve as representations of quantity, but serve as causal medi-
ators between input and behavior” (Zahidi, 2021, p. S537).

In making their case that the ANS represents, C&B rely heavily
on a familiar philosophical conceit – the idea that represented
items appear in specific guises or “modes of presentation.” This
assumption puts them in position to explain how the ANS can
be imprecise despite representing specific numbers. The notion
of a mode of presentation originates in Fregean philosophy,
where it is used to account for the sense, as opposed to the refer-
ence, of linguistic expressions. Several philosophers of mind make
free and easy appeal to the idea that mental representations, and
not just linguistically expressible thoughts, have modes of presen-
tation. Even so, the distinction between the “sense” and “refer-
ence” of neural representations is an ad hoc construction
without any independent justification. C&B try to motivate the
use of modes of presentation by speaking of how the gustatory
system might be thought to represent levels of sodium chloride
(referent) via a “salty” mode of presentation (sense). However,
this comparison is confusing, because the saltiness of sodium
chloride is something experienced by an organism. There seems
to be no obvious reason to suppose that there is a specific way
that sodium chloride is presented to our sub-personal gustatory
systems. By the same token, it is unclear what warrants assuming
that a sub-personal neural system, such as the ANS, operates with
a “mode of presentation,” or how we would be in a position to
know which particular “mode of presentation” such a system
would employ if it did. Positing “modes of presentation” does a
lot of heavy lifting for C&B, but their appeal to that technical
notion seems to be a “just so” solution, motivated by philosoph-
ical need rather than justified by independent empirical
considerations.

There may be reasonable grounds for distinguishing the differ-
ent ways organisms experience worldly targets or the ways people
variously represent the same extension. What is not clear is that
C&B can innocently assume that modes of presentation operate
at the neural level. Nor is it clear how they justify attributing
the particular modes of presentation to the ANS that they do.
After all, when presented with supposedly imprecisely represented
collections, we do not experience them as imprecisely presented
to us. Instead, it is simpler to assume that we are sensitive to
numerical properties, just not optimally so (as one would expect
given physiological constraints).

The problems with C&B’s representationalism stem from their
assumption that the ANS’s sole function is numerical perception.
In essence, they assume that the ANS is some form of number
module. However, the evidence suggests that the neural system
that houses the ANS is involved in a whole host of other capaci-
ties, including motion processing, mental imagery, working mem-
ory, and the control of visuo-spatial attention and pointing and
grasping motions (Culham & Kanwisher, 2001; Gillebert et al.,
2011; Grefkes & Fink, 2005; Simon, Mangin, Cohen, Le Bihan,
& Dehaene, 2002), in line with the predictions of Anderson’s
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neural reuse theory (Anderson, 2014; Hutto, 2019; Jones, 2020;
Penner-Wilger & Anderson, 2013). Once one gives up on the
idea that the ANS is a system solely for dealing with number,
the idea that its job is to represent number is far less tempting.

Financial support. This work was not developed as part of a specific funded
project so no funding statement is required.

Conflict of interest. The authors declare that there is no conflict of interest.

References

Anderson, M. L. (2014). After phrenology: Neural reuse and the interactive brain. MIT
Press.

Anobile, G., Arrighi, R., Castaldi, E., & Burr, D. C. (2021). A sensorimotor
numerosity system. Trends in Cognitive Sciences, 25(1), 24–36.

Anobile, G., Cicchini, G. M., & Burr, D. C. (2016). Number as a primary perceptual attri-
bute: A review. Perception, 45(1–2), 5–31.

Culham, J. C., & Kanwisher, N. G. (2001). Neuroimaging of cognitive functions in human
parietal cortex. Current Opinion in Neurobiology, 11(2), 157–163.

Frege, G. (1950). The foundations of arithmetic (1884), trans. JL Austin. Evanston, 111,
1893–1903.

Gibson, J. J. (1979). The ecological approach to visual perception. Houghton Mifflin Comp.
Gillebert, C. R., Mantini, D., Thijs, V., Sunaert, S., Dupont, P., & Vandenberghe, R.

(2011). Lesion evidence for the critical role of the intraparietal sulcus in
spatial attention. Brain, 134(6), 1694–1709.

Grefkes, C., & Fink, G. (2005). The functional organization of the intraparietal sulcus in
humans and monkeys. Journal of Anatomy, 207(1), 3–17.

Hutto, D. D. (2019). Re-doing the math: Making enactivism add up. Philosophical
Studies, 176(3), 827–837.

Hutto, D. D., & Myin, E. (2012). Radicalizing enactivism: Basic minds without content.
MIT Press.

Hutto, D. D., & Myin, E. (2017). Evolving enactivism: Basic minds meet content. MIT
Press.

Jones, M. (2016). Number concepts for the concept empiricist. Philosophical Psychology,
29(3), 334–348.

Jones, M. (2018). Seeing numbers as affordances. In S. Bangu (Ed.) Naturalizing logico-
mathematical knowledge (pp. 148–163). Routledge.

Jones, M. (2020). Numerals and neural reuse. Synthese, 197(9), 3357–3681.
Kitcher, P. (1984). The nature of mathematical knowledge. Oxford University Press on

Demand.
Penner-Wilger, M., & Anderson, M. L. (2013). The relation between finger gnosis and

mathematical ability: Why redeployment of neural circuits best explains the finding.
Frontiers in Psychology, 4, 877.

Simon, O., Mangin, J. F., Cohen, L., Le Bihan, D., & Dehaene, S. (2002). Topographical
layout of hand, eye, calculation, and language-related areas in the human parietal lobe.
Neuron, 33(3), 475–487.

Zahidi, K. (2021). Radicalizing numerical cognition. Synthese, 198(1), 529–545.
Zahidi, K., & Myin, E. (2016). Radically enactive numerical cognition. In G.

Etzelmüller & C. Tewes (Eds.), Embodiment in evolution and culture (pp. 57–
71). Mohr Siebeck.

A rational explanation for links
between the ANS and math

Melissa E. Libertus , Shirley Duong, Danielle Fox,

Leanne Elliott, Rebecca McGregor, Andrew Ribner and

Alex M. Silver

Department of Psychology, Learning Research and Development Center,
University of Pittsburgh, Pittsburgh, PA 15260, USA.
libertus@pitt.edu, shd77@pitt.edu, DSF26@pitt.edu, lek79@pitt.edu,
REM166@pitt.edu, andy.ribner@pitt.edu, AMS645@pitt.edu
https://www.lrdc.pitt.edu/people/researcher-detail.cshtml?id=530,
https://www.lrdc.pitt.edu/people/researcher-detail.cshtml?id=2004,
https://www.lrdc.pitt.edu/people/researcher-detail.cshtml?id=2039,

https://www.lrdc.pitt.edu/people/researcher-detail.cshtml?id=1802,
https://www.lrdc.pitt.edu/people/researcher-detail.cshtml?id=3135,
https://www.lrdc.pitt.edu/people/researcher-detail.cshtml?id=2031,
https://www.lrdc.pitt.edu/people/researcher-detail.cshtml?id=2010

doi:10.1017/S0140525X21001011, e194

Abstract

The proposal by Clarke and Beck offers a new explanation for
the association between the approximate number system
(ANS) and math. Previous explanations have largely relied on
developmental arguments, an underspecified notion of the
ANS as an “error detection mechanism,” or affective factors.
The proposal that the ANS represents rational numbers suggests
that it may directly support a broader range of math skills.

We applaud Clarke and Beck (C&B) for their convincing argu-
ments supporting the presence of an approximate number system
(ANS). Most importantly, we agree with their notion that the
ANS represents numbers, not numerosities or non-numerical
confounds, even if its representations can be derived from compu-
tations involving perceptual cues. The ANS has attracted increas-
ingly more attention over the last decade as correlational and
training studies suggest a link between the ANS and children’s
and adults’ math abilities. Many (but not all) studies report that
children and adults with greater ANS acuity tend to perform bet-
ter on math assessments both concurrently and longitudinally
(Chen & Li, 2014; Fazio, Bailey, Thompson, & Siegler, 2014;
Schneider et al., 2017) and that training the ANS leads to
improvements in children’s and adults’ math abilities (Bugden,
DeWind, & Brannon, 2016). However, none of these studies
have been able to provide a definitive mechanistic explanation
for the association between the ANS and math abilities.
Previous explanations have (1) largely relied on developmental
arguments, (2) invoked the function of the ANS as an error-
detection mechanism, or (3) cited possible motivational or affec-
tive factors.

Several different possibilities may explain the link between the
ANS and math throughout development. On the one hand, it is
possible that a more precise ANS may better support children’s
acquisition of exact number representations (Pinheiro-Chagas
et al., 2014; Wagner & Johnson, 2011). For example, children’s
ability to map between symbolic and non-symbolic quantities is
associated with their math achievement, suggesting that ANS rep-
resentations are involved in the development of children’s math
skills via their associations with number symbols (Mundy &
Gilmore, 2009). On the other hand, it is possible that a more pre-
cise ANS may serve as a foundation to understand ordinal rela-
tions between quantities and their relation to arithmetic
operations, especially as children acquire these math skills
(Libertus, Odic, Feigenson, & Halberda, 2016; Mussolin, Nys,
Leybaert, & Content, 2016; Park, Bermudez, Roberts, &
Brannon, 2016). For example, the ability to identify ordered
sequences of Arabic numerals mediates the relation between the
ANS and adults’ mental arithmetic (Lyons & Beilock, 2011) and
steadily increases in its role between first and sixth grades
(Lyons, Price, Vaessen, Blomert, & Ansari, 2014).

Another explanation is that the ANS may provide a sense of
certainty about number-related judgments or serve as an “error
detection mechanism” providing rough estimates of arithmetic
computations and aiding in the detection of gross miscalculations
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(Baer & Odic, 2019; Vo, Li, Kornell, Pouget, & Cantlon, 2014).
For example, individuals’ ability to detect errors in symbolic arith-
metic problems is related to their ANS acuity (Wong & Odic,
2021).

Finally, the ANS and math may be linked via motivational or
affective factors. For example, greater ANS acuity in childhood
may increase children’s attention to number or engagement with
math-related information (Libertus, 2019). Alternatively, greater
ANS acuity may lead to greater confidence in mathematical reason-
ing (Wang, Odic, Halberda, & Feigenson, 2016) or poorer ANS acu-
ity may lead to increased math anxiety (Lindskog, Winman, &
Poom, 2017; Maldonado Moscoso, Anobile, Primi, & Arrighi,
2020; Maloney, Ansari, & Fugelsang, 2011).

Many of these explanations rest on the (albeit, implicit)
assumption that the ANS represents natural numbers. As such,
extant hypotheses cannot fully explain why the ANS may be cor-
related, for instance, with adults’ performance on college entrance
exams in math that require far more than whole number arith-
metic (Libertus, Odic, & Halberda, 2012). Even if, for example,
the ANS is involved in error monitoring during calculations,
how could this system operate to detect errors in calculations
that do not depend solely on positive integers? Clarke’s and
Beck’s proposal that the ANS represents rational numbers
opens up an exciting additional explanation which may provide
a missing link in the theoretical pathway from non-symbolic
number representations to math abilities. Specifically, their pro-
posal that the ANS represents rational numbers would provide
a compelling explanation of how the ANS may directly support
a broader range of math skills that transcend the natural numbers
and operations thereon, including fraction understanding and
proportional reasoning.

However, as C&B mentioned, there is a dearth of research on
non-symbolic ratio processing. Future research should test the
sensitivity of the ANS to rational numbers and probe the relation
between the ANS and the ratio processing system (RPS), which
the authors argue is a component of the ANS. An initial step is
to examine the associations between individuals’ performance
on a wide range of tasks tapping into the ANS and the RPS
that have previously only been used in separate studies.
Although some research has suggested that the ANS is recruited
during tasks that require the RPS or proportional reasoning
(Matthews & Chesney, 2015), no studies have explicitly estab-
lished a correlation between the precision of these systems.
O’Grady and Xu (2020) posit that children’s proportional judg-
ments of non-symbolic dot arrays are reliant on the ANS to rep-
resent discrete numbers, which are used to calculate probabilities.
However, it is unclear whether the relational processing of whole
numbers is supported by the ANS and/or facilitated by the RPS.

Extending beyond ratio processing, recent research on risky
decision-making involving non-symbolic quantities demon-
strates an association between adults’ performance on tasks tap-
ping the ANS and probability understanding (Mueller & Brand,
2018). For instance, individuals’ non-symbolic quantity estima-
tion relates to their abilities to estimate risks presented non-
symbolically, and both of these abilities relate to adults’ ability
to transform and compare symbolic probabilities, an important
aspect of math abilities beyond whole number operations
(Mueller, Schiebener, Delazer, & Brand, 2018). Thus, Clarke’s
and Beck’s view of the ANS may also provide an explanation
for these findings and suggest further interesting research direc-
tions, including the development of probability understanding
and its link to the ANS.

In sum, the proposal that the ANS represents rational numbers
helps in further elucidating the link between the ANS and math
abilities. This perspective opens up interesting new directions
for future research, including probing the relations between the
ANS and RPS as well as understanding the relations between
the ANS and decision-making processes.
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Abstract

Clarke and Beck argue that the approximate number system
(ANS) represents rational numbers, like 1/3 or 3.5. I think this
claim is not supported by the evidence. Rather, I argue, ANS
should be interpreted as representing natural numbers and ratios
among them; and we should view the contents of these represen-
tations are genuinely approximate.

A natural view is that the approximate number system (ANS) rep-
resents… well, approximate number. That is, (i) its outputs are
abstract, sortal-dependent, second-order representations, serving
as answers to the question “how many?” (rather than, say, “how
much?”); but (ii) these representations are semantically approxi-
mate: their contents are something like 13ish, and not so precise
as 13, certainly not 13.7. This would be an especially good view
for Clarke and Beck (C&B) to embrace. If they’re right to reject
the sensitivity principle then (i) and (ii) are consistent; there
need be nothing oxymoronic about “approximate number.”

Instead, however, they claim that ANS represents rational
numbers, like 1/3, 3.5, and 2.75, a claim not easily squared with
this natural view.

C&B’s argument for thinking that ANS represents rational
numbers is based on studies indicating a sensitivity not just to
numerosities but also to ratios among these numerosities (e.g.,
Denison & Xu, 2014; McCrink & Wynn, 2007). These studies,
however, don’t support C&B’s claim. It is one thing to say that
ANS represents (approximate and natural) numbers and ratios
among them, and quite another to say that it represents the ratio-
nal numbers. The former is much more plausible than the latter.
Among the few examples C&B give of non-natural rational num-
bers are 3.5 (sect. 7.3, para. 1) and 2.75 (sect. 7.3, para. 10), but
they present no evidence that ANS represents such numbers,
indeed no evidence that ANS represents any non-natural num-
bers greater than 1. No evidence suggests that ANS represents
some aggregate as containing 3.5 items, or as containing 2.75
times as many yellow items as red ones.

C&B should have said that ANS employs contents like 1/3ish
in addition to 13ish. By claiming that ANS represents rational
numbers, like 2.75, rather than approximate ratios, C&B seem
to attribute to ANS greater precision than had it merely repre-
sented natural numbers, when what it needed was less. They
address this tension by insisting that, although ANS represents
precise quantities, it represents them imprecisely; it’s the represen-
tation that’s imprecise, not what it represents.

There are two ways to read this claim.
On the first interpretation, C&B are saying that although an

ANS representation has precise truth conditions, it is, perhaps
because of the physical or syntactic properties of the representa-
tional vehicle, easily confused for some other representation,
with similar but distinct truth conditions. This is a kind of “vehic-
ular imprecision” rather than “semantic imprecision.” A
vehicular-imprecision-with-semantic-precision view makes the
same behavioral predictions as a semantic imprecision view, but
the former implies that, because the ANS truth-conditions are
precise (e.g., 13, rather than 13ish), ANS representations will be
in error very often, perhaps much more often than not. (Even if
we discriminate 13 from 14 at levels somewhat better than chance,
and even if that shows that we’re applying 13 contents more than
half of those times, we would need to discriminate 13 from the
disjunction 11-or-12-or-14-or-15 [etc.] at better than chance in
order to be applying 13 correctly more often than not.) A seman-
tic imprecision view will ascribe much less error, as a 13ish verdict
is presumably true of a 14-item array. Everything else equal, a the-
ory that ascribes less representational error is to be preferred over
one that posits more, and C&B, on this interpretation, seem to be
ascribing error quite gratuitously by insisting on precise contents.

A second interpretation sees C&B espousing semantic impre-
cision after all, allowing them to embrace the natural view I
started with. Here, the precision lies not in the representation,
but in the representational “target” (Cummins, 1996; C&B call
it “referent,” [sect. 2.2; note 1; sect. 6, para. 10]), that is, the
thing to which the representation is applied, and of which that
content is predicated. Although Jones has a precise weight, we
might represent that weight imprecisely (sect. 5.1, para. 2). This
avoids the problems for the first interpretation, but it’s no longer
the claim that ANS represents rational numbers, in the only sense
that could be relevant. Suppose I misrepresent a dog as a cat. I
thereby apply a cat representation to what is, in fact, a dog; that
dog is the target of this cat. If we were to say – misleadingly,
with C&B – that the dog was the “referent” of cat, then we
would be tempted to claim that cat represents (/means, /refers
to) dogs, but this is clearly false, at least on any standard con-
strual. Yet it’s exactly this reasoning that C&B use to argue that
ANS represents rational numbers.

If C&B hold merely that rational numbers are targets of ANS
representations, then it’s unclear where they disagree with Carey
(2009) and Núñez (2017), both of whom are surely aware that
aggregates typically contain precise numbers of items and thus
agree that ANS represents a precise thing imprecisely in this
sense.

But anyway, C&B can’t – or can’t only – be saying that we
apply a 16ish to instances of 16.29 in the world. They’re saying
we apply 16.29s, if they’re saying anything. The claim that ANS
represents rational numbers is supposed to be explanatory, but
it can’t be explanatory if it’s only a claim about the targets of
ANS representations and not the contents. It is completely unex-
planatory to claim that ANS represents a 2:1 ratio of yellow to red
items, if that claim is only a statement about the stimulus and
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leaves open all possibilities about how ANS represents that
stimulus.

Because they reject the sensitivity principle, however, C&B
didn’t need any of this trouble. If sensitivity is false, then precision
never needed to figure into C&B’s account. They could have sim-
ply claimed that ANS represents approximate natural numbers
and ratios among these.
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Abstract

Clarke and Beck (C&B) discuss in their sections on congruency
and confounds (sects. 3 and 4) literature that has challenged the
claim that the approximate number system (ANS) represents
numerical content. We argue that the propositions put forward
by these studies aren’t that far from the indirect model of num-
ber perception suggested by C&B.

In sections 3 and 4 of their proposal, Clarke and Beck (C&B) dis-
cuss a body of literature challenging the claim that the approxi-
mate number system (ANS) represents genuine numerical
content coming from studies demonstrating the presence of con-
gruency effects and interference from non-numerical confounds
in non-symbolic number comparison (e.g., Gebuis, Cohen
Kadosh, & Gevers, 2016; Gebuis & Reynvoet, 2012; Smets,
Sasanguie, Szucs, & Reynvoet, 2015). We argue that in their cur-
rent paper, C&B somewhat misinterpreted these articles’ key mes-
sage. In fact, the propositions put forward by these studies are very
similar to the indirect model of number perception C&B suggest.

To begin with, the abovementioned studies do not claim that
the ANS “[…] merely represents a mishmash of non-numerical

magnitudes” (C&B, sect. 4, para. 11; emphasis added) – at least
not in the way C&B conceive the ANS. These studies contested
the what is called here, direct model of number perception –
the idea that “number” is a primary feature of a set, which can
be directly perceived from the environment. Instead, these studies
argued that “[…] number judgements are based on the integration
of information […]” (Gebuis & Reynvoet, 2012, abstract; italic
added). In our view, this idea is very similar to the indirect
model of the ANS C&B appeal to themselves.

Researchers in numerical cognition are well aware that the
number of a set is confounded with non-numerical magnitudes
such as size in the visual modality and pitch length in the auditory
modality. Consequently, various algorithms have been developed
to control these non-numerical magnitudes by making them
uninformative for the decision (e.g., Gebuis & Reynvoet, 2011;
Halberda, Mazzocco, & Feigenson, 2008; Marinova, Sasanguie,
& Reynvoet, 2021). Nevertheless, even when these confounds
are accounted for, they still affect participants’ performance in
non-symbolic number comparison and lead to congruency effects
(i.e., lower accuracies when numerical and non-numerical magni-
tudes conflict; see Reynvoet et al., in press; Smets et al., 2015).
Some studies even observed that the size of the congruency effects
depends on the interrelation of different non-numerical magni-
tudes. For instance, the congruency between one non-numerical
magnitude (e.g., the convex hull) and number and another non-
numerical magnitude (e.g., size of the individual dots) and
number can result in an additive effect. Alternatively, they can
also cancel out each other (Gebuis & Reynvoet, 2012). Based on
these findings, researchers proposed that participants integrate
the information from multiple visual cues into one weighted sum
(Gebuis et al., 2016; see also Picon, Dramkin, & Odic, 2019).

The idea of integrated information is also very similar to the
excellent example of the representation of depth C&B describe
in their article. Here, the authors argue that the representation
of depth is constructed based on various visual inputs, which
can be weighted differently depending on the context (e.g.,
some inputs may be less informative in particular situations and
given less weight). Therefore, the main difference between our
previous study and the indirect model proposed by C&B does
not lie in the pre-assumed underlying perceptual and cognitive
processes. Rather, it lies in what one considers a “number.” In
our view, the weighted sum of the visual inputs can be regarded
as a representation of number, similar to the representation of
depth (see also Halberda, 2019 who describes a similar position
from a reductionist/empiricist and rationalist point of view).
Our previous study shows that in many situations, the representa-
tion of number on which numerical decisions are based is influ-
enced by the (incongruent) non-numerical magnitudes. As C&B
and some proponents of the direct model of number perception
rightfully argue, this interference may arise at a response stage
(similar to a classic Stroop effect). In contrast to this claim, in
their study, Picon et al. (2019) demonstrated that interference
between non-numerical magnitudes and number occurs early in
the processing stream – an observation rather in line with an indi-
rect account of number perception. It is worth noting that the
idea of “weighted” number representation does not entirely rule
out the possibility of a direct model of number perception.
Concretely, a substantial body of literature suggests that automatic
and direct extraction of number is possible (e.g., Burr & Ross,
2008; Van Rinsveld et al., 2021). The latter case is especially plau-
sible in adult participants because of the extensive focus on “num-
ber” in the educational curricula.
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Finally, instead of remaining agnostic to one of the most cru-
cial questions in numerical cognition about whether the number
is extracted directly or indirectly, we believe it is possible to recon-
cile the direct and the indirect models of number perception.
Concretely, whether the numerical decision would be based on
direct and automatic extraction of number or indirect weighted
number representation possibly depends on various factors such
as developmental differences (e.g., Piazza, De Feo, Panzeri, &
Dehaene, 2018), stimulus set (e.g., Reynvoet et al., in press),
and so on.

In sum, in this commentary, we argued that previous studies
describing congruency effects resulting from contrasting numerical
and non-numerical cues could be easily reconciled with the indirect
model of the ANS as proposed by C&B. That is, multiple sources of
information may be integrated into a higher-order representation
of number. We also acknowledged that in some circumstances,
the number might be extracted directly. Whether the number
will be processed directly or indirectly, as a weighted sum of
visual inputs, depends mainly on the individual and the context
in which the numerical decision arises. Finally, it is also worth
noting that, thanks to its exceptionally well-presented frame-
work, the article by C&B provides an excellent starting point
to disentangle further the conditions under which direct and
weighted number representations occur.
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Abstract

Clarke and Beck’s view that numbers are both second-order and
sensible is based on an empirically dubious claim, which is
required to show that what they call the “weak sensitivity prin-
ciple” is satisfied. The explanatory benefits that they say are
gained by positing a sensory relation to numbers are also gained
by positing such a relation to multitudes of objects.

Clarke, Beck, and I all agree that finite cardinal numbers “have a
‘second-order character’ that non-numerical quantities lack” (sect.
5.3, para. 4). This means that numbers are properties that apply to
objects relative to a given sortal-kind whereas first-order proper-
ties apply to objects tout court. We disagree on the question of
whether approximate number system (ANS) explanations of our
quantitative judgments require positing a sensory relation to
numbers (cf. Azzouni, 2010). To me, this idea is very odd because
second-order entities are no part of the sensible realm, and so
have to be grasped by thinking rather than sensing (Marshall,
2017). Why do Clarke and Beck (C&B) find it necessary, or
even remotely plausible, to say that numbers are both second-
order and sensible?

They seem to think that plausibility is inherited from Tyler
Burge’s theory that the ANS operates over objects that have
already been individuated by perceptual representations of kinds
that Burge calls “perceptual attributives” (2010). These attribu-
tives are supposed to be the perceptual correspondents of con-
cepts, elements of perceptual states that represent properties and
kinds. The problem is that an examination of Burge’s work
does not reveal any evidence that the ANS operates in this way.
Rather, Burge simply draws on his theory of perceptual attribu-
tion to assert without empirical argument that the ANS can
carry out processes of individuation and enumeration that are
analogous to transitive counting. Although not as circular as pos-
iting a homunculus who can count transitively, this does smuggle
conditions required for counting into the description of the ANS.
Such speculation may show that perception of numbers is possible;
but it does not constitute evidence that the ANS actually operates
in this way. (By the way, if there is no such evidence, this would
weaken C&B’s criticism of Burge’s proposal that the ANS repre-
sents the magnitudes and ratios described by Eudoxus, a criticism
that appeals to the fact that the ANS represents second-order
entities.)

C&B offer some evidence that the ANS draws on perceptual
attributives – namely, the dumbbell studies, on which they
have to hang an awful lot. This is because as I show in my
(Marshall, 2018), there are various essential properties of
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numbers that are not represented by the ANS. Furthermore, what
C&B call the “weak sensitivity principle” is satisfied only if the
ANS can represent some essential property of numbers; further,
they argue that it does so in virtue of representing their essentially
second-order nature. They also admit that if the principle is not sat-
isfied, then it is unclear “what else could make it the case that [num-
bers are] being represented rather than some other entity.” Hence,
they have to hang so much on the dumbbell studies.

C&B avoid committing themselves to Burge’s model by distin-
guishing Marr’s computational and algorithmic levels of explana-
tion, allowing that the ANS could function at the former level to
represent numbers qua second-order entities, while leaving open
exactly how this is done at the algorithmic level. The problem is
that what is represented places constraints on how it is repre-
sented and so one cannot offer a theory at the computational
level in complete abstraction from the algorithmic level (cf.
Burge, ibid, p. 93, fn. 43). As things stand, the situation seems
to be that if we could sense numbers, then the ANS would have
to operate as Burge says; but there is little evidence that it does.
To defeat this argument by showing how else the ANS could oper-
ate, more needs to be said about how their alternative “indirect
model” of the ANS could generate representations of second-
order numbers from representations of “a mishmash of non-
numerical magnitudes” (sect. 4, para. 11).

Developing this line of thought, C&B argue that positing a
sensory relation to numbers would be needed to unify ANS expla-
nations of behavior and to explain the common function that our
sensitivity to the aforementioned mishmash would be serving.
However, the same explanatory benefits are gained by positing a
sensory relation to multitudes of sensible objects, where these
objects taken collectively possess non-numerical but quantitative
properties from which an approximate representation of their
multitude might be extracted by the ANS.

They might object that I cannot substitute talk of multitudes
for talk of numerosities, because only the latter are, like numbers,
second-order: just as we speak of the number of F’s, so we speak
of the numerosity of F’s. I respond that the relevant sortal-kind of
the objects making up the multitude can be discerned from the con-
text if necessary. When I sense that there are two oranges, I sense an
orange, another, and no more. When I sense that there are just as
many oranges as there are apples, I sense an orange, another, and
no more, an apple and another and no more, and match them
up so that none are left over. If I cut off half an apple, leaving the
remainder, I sense that there is an apple and a half, which is to
say one and a half apples worth of apple, as well as three and
half fruits worth of fruit. Therefore, this proposal also encompasses
what C&B (mistakenly) call our sense of rational numbers. In any
case, the sortal-kind is the natural analog of a unit of measurement
that is provided by and can be discerned from the context. The con-
nection to numbers is as follows:

The sensible world contains multitudes from which cardinal
numbers are abstracted. The latter are then applied to the world
as it is organized by sortals. Numbers are not simply properties
of the sensible world but properties of the world as it is organized
(cf. Gaifman, 2005). The sensible world also contains magnitudes
(as well as natural analogs of units of measurement), which fall
into ratios from which rational numbers are abstracted. The
ANS does not represent numbers; but, in virtue of approximately
representing multitudes and ratios of magnitudes it is correlated
approximately with numbers, because numbers by their nature
apply to multitudes relative to sortals as well as to magnitudes
and their ratios.
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Abstract

In describing numerosity as “a kind of ersatz number,” Clarke
and Beck fail to consider a familiar and compelling definition
of numerosity, which conceptualizes numerosity as the cognitive
counterpart of the mathematical concept of cardinality; numer-
osity is the magnitude, whereas number is a scale through which
numerosity/cardinality is measured. We argue that these distinc-
tions should be considered.

The difference between cardinality and number is often over-
looked by those who defend the numerical character of the
so-called number sense. Clarke and Beck are no exception. This
can be gathered from their description of numerosity as “a kind
of ersatz number” (sect. 6, para. 3). Although they correctly
point out that approximate number system (ANS) researchers
rarely state explicitly what they mean by “numerosity,” they
miss those who do. This term was introduced by the psychophys-
icist Stevens (1939/2006) to disambiguate the term “number,”
ambiguously used to designate a scale for the measurement of car-
dinality and the very magnitude this scale measures. Stevens
reserved the word “number” for the first use, and introduced
“numerosity” for the second. Consistent with Stevens’s definition,
in the contemporary literature one finds “numerosity” defined as
a synonym for cardinality (e.g., Butterworth, 2005, p. 3; Nieder,
2016, p. 366; Piazza & Izard, 2009, p. 261).

Stevens’s distinction between number and numerosity is not
arbitrary. In mathematics, “cardinality” and “number” refer to
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different concepts. Cardinality refers to set size, whereas numbers
provide a way of determining and expressing set size; it is a trivial
observation that the cardinality of a set can be determined and
expressed without even mentioning numbers. Indeed, suppose
that we want to know whether the cardinality of the set of people
in a room is equal to the cardinality of the set of chairs in that
room. We need not count people and chairs; we can just ask peo-
ple to sit down, one person per chair. If no person remains stand-
ing and no chair remains empty, we conclude immediately that
both sets have the same size. If someone remains standing, then
the set of people is larger than the set of chairs; if chairs remain
empty, then the opposite is the case. No number is involved in
this procedure; it can be carried out recruiting only the notion
of one-to-one correspondence or equinumerosity, which, despite
its name, is defined without invoking numbers (Enderton, 1977,
p. 129). In principle, we can use any set as a “yardstick” to eval-
uate and express cardinalities. For example, let P be the set {a, b};
we can say that the cardinality of the set of authors of this com-
mentary is equal to P’s cardinality; that the cardinality of the set
of planets in our solar system is larger than P’s cardinality; and so
on. In sum, cardinality is the magnitude, whereas number is a
scale for the measurement of this magnitude. In principle, there
can be scales other than numbers, such as the one based on P.

C&B compare perception of “number” with perception of other
magnitudes, such as distance. They claim that, if we acknowledge
that the visual system represents distance, we should also acknowl-
edge that the ANS represents number. But this is where the confu-
sion between cardinality and number misleads them. Although the
visual system represents distance, it does not represent meters or feet
(scales for the measurement of distance); by the same token, we may
acknowledge that the ANS represents numerosities, but this does not
mean that it represents number. Scales are not the sorts of things
that can be perceived. At most, it may be that subjects use numbers
as a mental scale to evaluate numerosity, but they certainly do not
perceive numbers as such (which arise from applying a specific scale
to magnitudes).

We, thus, have one way of resisting C&B’s attack on the argu-
ment from imprecision. Whatever it is that the ANS uses to mea-
sure numerosity, it is imprecise. Therefore, it is unlikely that the
ANS uses numbers, because by definition numbers constitute
an exact scale for the measurement of cardinality (notice that
there may be inexact scales; the one based on P above is one
example; an approximate accumulator is another).

But is it correct to say that the ANS represents numerosities
imprecisely? As C&B notice, there is a crucial difference between
(what they call) number (and we call numerosity) and other magni-
tudes such as distance. Although the latter are “first-order,” or intrin-
sic, properties of the environment, “numerical quantities are higher
order in that they can only be assigned relative to a sortal – a crite-
rion for individuating the entities being counted” (sect. 5.3, para. 4).
C&B are to be praised for highlighting this distinction, which is often
overlooked in the literature. But it has a consequence they do not
seem to consider: In contrast to distances, there are no numerosities
“out there” to be perceived, because numerosities emerge only after
an agent has adopted a given sortal. We can say that distances are
imprecisely represented by the visual system because there seem to
be exact distances in the external environment, regardless of some
agent noticing them. But we cannot say the same about numerosi-
ties, because there are no numerosities out there, inexact or other-
wise, to be represented: they emerge relative to a given sortal. As
C&B acknowledge, “numbers [numerosities] … enter into contents
via property attribution, not as objects of perception” (sect. 2.2.3,

para. 1). But attribution and representation seem to have different
directions of fit: Attribution goes from subject to stimulus, whereas
representation goes from stimulus to subject. Ultimately, the notion
of representation that they adopt seems in tension with their own
higher-order understanding of numerical quantities.

Finally, if numerosity is understood as pertaining to cardinal-
ity, it is also incorrect to say that subjects attribute numerosities to
stimuli, because cardinality is an exact property by definition. The
property the ANS assigns to stimuli, however, is vague. Stevens
introduced the term “numerousness” to designate this property:
“a property or attribute which we are able to discriminate when
we regard a collection of objects” without counting (Stevens,
1939/2006, p. 1). This term has (regrettably) fallen into disuse,
but we think that accounts of the so-called number sense would
still benefit from a clear distinction between number (a scale),
numerosity (a precise property), and numerousness (a vague
property attributed in perception) (dos Santos, 2021).
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Abstract

Clarke and Beck’s defense of the theoretical construct “approx-
imate number system” (ANS) is flawed in serious ways – from
biological misconceptions to mathematical naïveté. The authors
misunderstand behavioral/psychological technical concepts,
such as numerosity and quantical cognition, which they disdain
as “exotic.” Additionally, their characterization of rational num-
bers is blind to the essential role of symbolic reference in the
emergence of number.

The target article by Clarke and Beck – written with an unneces-
sary condescending tone – is flawed at many levels, from biolog-
ical misconceptions to mathematical naïveté, and exhibits serious
inconsistencies. Here, we only address those most crucial.

First, the article lacks clarity regarding the central concept of
“number.” The authors open by assuming that humans and
other animals possess an “approximate number system (ANS)
that represents number,” but never provide a working definition
of number. They simply take number as pre-given and unprob-
lematic. For a highly polysemous term like “number,” this pre-
sents major problems, especially when the goal is to defend the
ANS hypothesis and claim that it (also) represents rational num-
bers. Little clarity can emerge from arguments that blur percep-
tual, linguistic, and conceptual dimensions of quantity
treatment, all falling under the umbrella of “number.” The
authors’ use of mathematical concepts such as “natural numbers”
and “rational numbers” doesn’t help either. These are technical
concepts that refer to infinite sets governed by specific axiomatic
systems which, among others, determine their elements via a cat-
egorical membership relation. One entailment is that, for a given
set, no element is more familiar or typical than another one –
mathematically, 38,980,254,332,198 is “as natural” as 2, and 1/2
“as rational” as 577843/97816. Although the authors mention
that the ANS does not represent every natural (or rational) num-
ber “or even most” rational numbers (whatever “most” may mean
in the case of this infinite set, dense in the real numbers), they
provide no theory of which rational numbers – and by means
of what criteria – are supposed to be represented by the ANS
(other than saying that they are “of a familiar sort”). A more
appropriate title for their article would, thus, be “The number
sense represents some rational numbers (but it is unclear
which).” The authors’ confusing use of mathematical concepts
and terminology (e.g., stating that “real numbers are continuous”)
just makes things worse.

Second, the authors erroneously criticize behavioral/psycholog-
ical technical concepts, such as “numerosity,” which they disdain as
“exotic.” Although they are right in that the term “numerosity” has
been misused in the numerical cognition literature (Davis &
Pérusse, 1988; Núñez, 2017a), they ignore that this term was coined
by the psychophysicists of the 1940s who were seeking for concep-
tual clarity when investigating the problem of scales of measure-
ment of psychological magnitudes (Stevens, 1939/2006, 1951).
Renowned experimentalist S.S. Stevens referred to numerosity as
“a property defined by certain operations performed upon groups
of objects” (1939/2006, p. 23), with the goal of evaluating their
numerousness by means of which an experimenter ultimately
establishes the cardinal attribute of physical collections of objects.
Contrary to the authors’ claim, numerosity was not coined as an
“exotic substitute for number,” but as a careful attempt to

disentangle the abstract conceptual content of “number” from the
degree to which an experimenter could reliably evaluate the attri-
bute of numerousness of stimuli. Thus, the sound and well-defined
statement “five is a prime number” was never meant to (and can-
not) be substituted by “five is a prime numerosity.”

The authors also brush off the term quantical (Núñez, 2017a)
as “exotic,” misconstruing its meaning and its theoretical entail-
ments. They erroneously characterize it as a noun (“quanticals”)
serving “as a substitute for number” (with “mysterious properties”)
whereas, in fact, “quantical” was proposed as an adjective – in con-
trast to “numerical” – meant to characterize some biologically
endowed forms of non-symbolic quantity-related cognition and
capacities. The authors also misrepresent the quantical–numerical
distinction as about “imprecision,” conceived to critique the ANS
hypothesis on this ground. But the essence of the distinction is
about the capacity of symbolic reference (Deacon, 2011) – rich in
humans and largely absent in nonhuman animals – which the
authors fail to appreciate. Subitizing, for example, is a form of
quantical (non-symbolic) cognition, yet still precise. The quanti-
cal–numerical distinction is not in the business of making claims
about the ANS representing anything (let alone the authors’ imag-
ined “quanticals”). Rather, by pointing to the symbolic reference
property inherent in number (but not in purely perceived quanti-
ties of items) it leads to the critique that the construct “ANS” tel-
eologically puts number (hence, the “N”) directly in the category of
what is biologically endowed, without symbolic (and therefore cul-
tural) mediation. Attacking the “quanticals” strawman to defend
the ANS hypothesis is, therefore, fallacious.

Third, the authors’ arguably only novel claim is that the ANS
represents rational numbers because it “represents ratios among
positive integers.” Numerically, however, ratios presuppose a
binary arithmetic operation (division) which, beyond numbers
proper, would have to be biologically endowed and implemented
qua arithmetic operation, a biological no-go. Moreover, state-
ments such as “while the ANS probably represents 2.5 and 2.75,
there is no evidence that the ANS can represent 2.7452294861”
are theoretically untenable. There is no evidence, or reason to
believe, that the hypothesized ANS (or any biological system)
“represents” numbers in base 10, which would render 2.75
“more representable” and familiar than 2.7452294861 (presum-
ably because of its shorter decimal expansion). Indeed, 2.75
expressed in, say, base 7 yields 2.51515151…(7), with an infinite
decimal expansion. The taken-for-granted expression of rational
(or any) numbers reveals the crucial miss of symbolic reference
in the argument. It prevents the authors from seeing that (1) psy-
chophysical perception of quantities of items and (2) the numbers
obtained by the measurement of stimuli’s attributes (loudness in
decibels, relative quantity in numerical ratios, etc.) are fundamen-
tally different phenomena. The former – shared by many animal
species – evolved largely via natural selection, the latter requires
symbolic reference implicated in language and specific cultural
practices on the part of the schooled experimenter or philosopher,
and has evolved via cultural evolution (Beller & Bender, 2008;
d’Errico et al., 2018; Gray & Watts, 2017; Núñez, 2017a,
2017b). The evolution of such bio-cultural underpinnings of
quantification and number is the subject matter of exciting new
areas of multidisciplinary research such as those implemented
in QUANTA, an endeavor supported by the European Research
Council (Barras, 2021). Essential in this enterprise is the recogni-
tion of the primacy of symbolic reference in the evolution of cog-
nitive tools for quantification.
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Abstract

Clarke and Beck import certain assumptions about the nature of
numbers. Although these are widespread within research on
number cognition, they are highly contentious among philoso-
phers of mathematics. In this commentary, we isolate and criti-
cally evaluate one core assumption: the identity thesis.

Clarke and Beck (C&B) seek to defend the thesis that states of the
approximate number system (ANS) represent, or refer to, “not
only natural numbers (e.g., 7), but also non-natural rational num-
bers (e.g., 3.5).” In doing so, however, they rely on some highly
controversial, and largely undefended philosophical assumptions.

The assumptions we have in mind arise most clearly in section
2.2, where C&B mention an apparent puzzle for their view: If the
ANS often operates perceptually in order to represent numbers,
and if numbers are abstract objects, then how could numbers fea-
ture in the contents of such perceptions, if we cannot generally
perceive abstract objects? In response, they adopt a “standard pic-
ture” of perception on which perceptual states both refer to con-
crete objects and attribute (abstract) properties to them. On this
view, “abstract objects enter perceptual content through the attri-
bution of properties, not through reference to objects.” For exam-
ple, perceiving a red apple involves referring to a concrete apple
and ascribing the abstract property of redness to that apple.
Similarly, perceiving that there are four apples involves referring
to a set of apples and attributing an abstract cardinality property
to it. In this way, C&B suggest that states of the ANS refer to
numbers “by enabling numbers to enter into contents via [cardi-
nality] property attribution.”

The present view carries two significant, although controver-
sial, implications familiar from a minority view within the philos-
ophy of mathematics known as empiricism (Kim, 1981, Maddy,
1990). First, because sets are the objects referenced by certain per-
ceptual states, those sets must be concrete. The likely view, follow-
ing Kim and Maddy, would be that impure sets – sets whose
members are concrete urelements – are themselves concrete.
This is controversial, of course, as the predominant view is that
sets are uniformly abstract. But perhaps C&B are talking loosely.
By “set,” perhaps, they intend some more intuitive notion of col-
lection, which might be elucidated in different ways, for example,
mereologically.

The second, more pressing implication is what we call the
Identity Thesis:

(IT) Natural numbers are identical to cardinality properties.

This view is philosophically controversial, linguistically problem-
atic, and threatens an explanatory regress.

First, IT is philosophically controversial, in part, because it
presupposes a cardinal conception of the naturals, whereby natural
numbers are essentially the sorts of things we can use when
counting. However, this is not the only – or even dominant –
characterization available within the philosophy of mathematics.
There are also structuralist characterizations (Shapiro, 1997), ordi-
nal characterizations (Linnebo, 2018), and geometric characteriza-
tions (Tennant, 2009), for instance. Furthermore, even among
advocates of the cardinal conception IT is controversial because
properties are intensional entities, whereas the naturals on all
prominent cardinal characterizations are extensional, identified
with (finite) sets or classes (Frege, 1950; Hale and Wright,
2001; Maddy, 1990; Russell, 1903).

Second, IT is linguistically problematic because the presump-
tion of its truth appears to yield numerous false semantic predic-
tions. Consider the following semantic contrasts inspired by
Moltmann (2013) and Snyder (2017):

(1) (a) The (??rational) number of women at the party is {four/??
the number four}.
(b) The (rational) number Mary is writing about is {four/the
number four}.

(2) (a) How many women are at the party? {Four/??The number
four}.
(b) Which (rational) number is Mary writing about? {Four/
The number four/??The number of women}.
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(3) (a) The number {of women/??four} is expanding rapidly.
(b) The number {of women/??four} exceeds that of the men.

Plausibly, “the number of women” refers to a cardinality property,
whereas “the number four” refers to a number (Snyder, 2017).
Thus, pace IT, (1)–(3) strongly suggests that cardinality properties
are not numbers.

Furthermore, if this is so, then contra C&B, “numerosities” are
plausibly neither “exotic” nor “recherché.” Rather they are, as
Butterworth (2005) and others appear to assume, cardinality
properties – entities for which we already possess mathematically
and linguistically well-understood theories (Scontras, 2014;
Snyder, 2017).

Finally, even assuming IT, we doubt that, when combined with
C&B’s presumed account of perception, it resolves the original
puzzle of how numbers, qua abstracta, could be referenced by per-
ceptual states. In order to see why, consider what we take to be the
two main ways of elaborating the proposal.

The first maintains that to attribute a property just is to refer-
ence that property. Thus, numbers enter into perceptual contents
in virtue of consisting of two components, a set and a number,
both referenced in perception. However, as should be clear from
the following examples, this conflates predication and reference:

(4) (a) The apples are four (in number).
(b) Four is an even number.

In (4a), “four” functions as a predicate, whereas in (4b) it func-
tions as a singular term, that is, a referential-type expression.
Generally, predicates and singular terms have different semantic
types, and thus semantic values. The present suggestion conflates
those.

The second option characterizes predication as a relation
between objects: “F(a)” is true just in case a instantiates F-ness,
where “F-ness” names a property, viewed as an abstract object
(Chierchia, 1985). Thus, numbers enter into perceptual contents
in virtue of those contents consisting of three components: a
set, the instantiation relation, and a number.

This proposal avoids conflating predication and reference, but
only at the cost of an explanatory regress. On the present sugges-
tion, the attribution of cardinality properties in perception
requires reference to two objects, related by instantiation: a con-
crete set and an abstract number. But now the original problem
recurs: Unless reference to numbers, qua abstracta, was possible,
numbers couldn’t feature in perceptual contents.

In the forgoing, we sought to cast doubt on the plausibility and
explanatory utility of IT.

In doing so, however, we do not intend to suggest that C&B are
idiosyncratic in their adoption of this assumption. On the con-
trary, we suspect that IT is implicit in much research on number
cognition. If this suspicion is correct, then a significant upshot of
our discussion is that this and related assumptions merit sus-
tained critical scrutiny.
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Abstract

There are three independent properties of a mode of presenta-
tion (m.p.) of a number: being specific; being recognitional;
and being canonical. A perceptual m.p. of the form that many
Fs is specific although it is neither recognitional nor canonical.
The literature has not distinguished noncanonical from nonspe-
cific m.p.s of numbers. Ratios are fundamentally ratios of
magnitudes.

Clarke and Beck (C&B) contrast the representations of the
approximate number system (ANS) with precise number con-
cepts. Now, humans can employ a perceptually based way of
thinking of a number that many Fs, as in that many circles,
that many toys. That many Fs refers, in context, to a particular
natural number. That many Fs, employed in a given context,
does not itself supply information about which number it refers
to as given in Arabic or any other canonical system for referring
to natural numbers. That many Fs is, nevertheless, specific. It does
not leave it open whether the reference is possibly a range of num-
bers, or a probability or confidence distribution over them.
Similarly, that length, a mode of presentation (“m.p.”) of a partic-
ular length as given in perception, does not give information
about the length in any particular units. That many Fs and that
length are specific, but not canonical.

A subject thinking of a number as that many Fs may or may
not be able to recognize that number, so given, again. If the
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subject is a normal human, and the reference is to the number
four, there will be a corresponding recognitional capacity. But
there does not need to be for that many Fs to refer to in a
given perceptual context.

This is an instance of an entirely general phenomenon in per-
ception. A person without absolute pitch may hear a note, given
under a perceptual m.p. that note. This is a specific m.p., but the
subject may not be able to recognize the note again 10 min later.
The distinction between discrimination and recognition applies to
that many Fs just as it applies in elsewhere in perception.
Therefore we must also distinguish the specific from the
recognitional.

In the case of the perception of pitch, we can conceive of
someone who can recognize the same pitch again over longer
intervals but does not use any particular canonical system of rep-
resentations (as middle C, D, E, F,…). Hence, we should further
distinguish the recognitional from the canonical. Similarly for
numbers: A subject may be able to recognize the number in ques-
tion in uses of that many Fs, when the numbers are small, without
employing a particular system such as the Arabic.

By contrast with C&B’s claims about the m.p.s of an ANS, use
of an m.p. that many Fs is sensitive, in matters of discriminability,
to what individuates that number. Any natural number n is indi-
viduated by the condition for there to be n Fs, for arbitrary F. The
successor relation in which a number stands is consequential
upon this condition, rather than being fundamentally individua-
tive of the number itself. To be sensitive to the condition for
there to be n Fs does not at all require the subject to think of n
as the successor of some other number.

Therefore, we need to distinguish an ANS from a noncanoni-
cal number system (NNS) which uses m.p.s of the form that many
Fs. The modes of presentation employed in an ANS, as opposed
to an NNS, are those expressed by roughly that many Fs. M.p.s
of the form roughly that many Fs are genuinely unspecific, unlike
those of the form that many Fs.

It is an empirical question whether a creature is using an ANS
or an NNS. The two hypotheses are often not clearly distin-
guished. In both cases, the mental representations of number
may involve analog elements. I hope for further empirical and
conceptual work on the issues.

C&B also see subjects as “deriving ratios (hence rational num-
bers)” from representations of natural numbers in the ANS. A
rival approach – originating in classical Greece – regards ratios
as fundamentally ratios of magnitudes (such as distances,
durations, and areas), of which ratios of natural numbers are
one special case. Under this rival treatment, the “initial identifica-
tion” (sect. 7.1, para. 1) of √2 is not quite what constituted a
major discovery. There is clearly a ratio that is the ratio of the
length of the hypotenuse of a unit right-angled triangle to the
length of one of its other sides. That was not the major discov-
ery. The discovery was rather that this ratio is not the ratio of
any pair of natural numbers. It was not an option to say that
there is no such ratio. The conception of ratios as ratios of mag-
nitudes serves all comers. The discovery is that some such ratios
are irrational.

Subjects can perceive the ratio of the lengths of one pair of
objects as the same or as different from, the ratio of the length
of a second pair of objects. The mental representation of ratios
is important not only in the probabilistic examples the authors
cite, but also in such decisions as foraging (ratio of food covering
in a given area), and choice of a mate (ratio of size of body parts
in a healthy conspecific). In such examples as these, the ratios

may or may not be the ratios of natural numbers of entities of
a given kind.

To think of something as a ratio, even a ratio of natural num-
bers, is one thing. It is another to represent this ratio mentally as a
single rational number. The “converging evidence” cited by the
authors (p. 42) does support the claim that organisms compare
ratios of positive integers. It is a further claim, and would need
additional evidence, to support the thesis that these ratios are
coded as a single rational number, integrated into a single rational
number line. Appreciation that 6:4, 12:8, and 3:2 are all the same
ratio is not yet encoding that ratio as a single number 1½. That
ratio is also a perceptually based way of thinking of a ratio,
and, analogously to that many Fs, may not involve thinking of
its referent as having a certain position in a rational number line.
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Abstract

We agree with Clarke and Beck that the approximate number
system represents rational numbers, and we demonstrate our
support by highlighting the case of the empty set – the non-
symbolic manifestation of zero. It is particularly interesting
because of its perceptual and semantic uniqueness, and its explo-
ration reveals fundamental new insights about how numerical
information is represented.

We agree with Clarke and Beck (C&B) that the approximate num-
ber system (ANS) genuinely represents numbers of a familiar sort,
including natural and rational numbers. We systematically dem-
onstrate our support based on the special case of an empty
set – the non-symbolic manifestation of zero. An empty set is
particularly interesting because of its perceptual and semantic
uniqueness (e.g., Nieder, 2016; Zaks-Ohayon, Pinhas, &
Tzelgov, 2021a, 2021b), which makes it a special case study in
favor of the claim that the ANS represents rational numbers.
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C&B reject arguments relating to congruency, confounds, and
imprecision that claim the ANS fails to represent numbers. As
expected, and in accord with the vast literature on the ANS,
their position is supported by data and examples that are based
on the use of non-null quantities that, regardless of their specific
numerical values, are presented as “something” (i.e., at least one
object). This is not the case for an empty set, however, which cor-
responds to null quantity or “nothing,” and is presented as a form
without content. In turn, when a frame containing an array of
dots is compared with an empty frame, the perceptual uniqueness
of the latter creates built-in, unavoidable confounds between the
stimuli’s discrete dimension – numerical magnitude – and its
continuous non-numerical dimensions. Indeed, five continuous
non-numerical stimuli dimensions were reported to interact
with the numerical magnitude: the convex hull, the total surface
area occupied by the dots, the density of the dots, the dot diam-
eter, and the total dot circumference (for reviews, see Gebuis,
Cohen Kadosh, & Gevers, 2016; Leibovich, Katzin, Harel, &
Henik, 2017). In comparison with empty sets, each of these con-
tinuous non-numerical stimuli dimensions is confounded with
the numerical magnitude in a congruent manner. For instance,
the total surface area occupied by dots will always be larger in
the non-empty set that contains one or more dots than in the
empty set that does not, consistent with the non-empty set
being numerically larger. Because these confounds are inherent
to comparisons between empty and non-empty sets, they cannot
be experimentally manipulated or controlled for. Moreover, con-
trary to the processing of non-empty sets, it would be hard to
argue that the ANS represents an empty set imprecisely because
if the frame is empty, it contains no objects and there is nothing
to enumerate or estimate. In that sense, the perceptual promi-
nence of empty sets presumably leads to a precise numerical eval-
uation that resembles subitizing (Kaufman, Lord, Reese, &
Volkmann, 1949), the quick and accurate identification process
for a small number (from 1 to 4) of objects.

Despite the inherent confounds in comparison with empty sets
and the distinctive characteristics of null quantity, comprehensive
behavioral and neural research on human and nonhuman animals
(e.g., Beran, Perdue, & Evans, 2015; Biro & Matsuzawa, 2001;
Howard, Avarguès-Weber, Garcia, Greentree, & Dyer, 2018;
Merritt & Brannon, 2013; Merritt, Rugani, & Brannon, 2009;
Okuyama, Kuki, & Mushiake, 2015; Pepperberg & Gordon,
2005; Ramirez-Cardenas, Moskaleva, & Nieder, 2016;
Zaks-Ohayon et al., 2021a, 2021b) has shown that empty sets
can be mapped onto the ANS together with non-empty sets.
Specifically, comparisons between empty and non-empty sets
result in a distance effect (Moyer & Landauer, 1967) and an
end effect (Banks, 1977; Leth-Steensen & Marley, 2000), both of
which are considered markers for numeric representation.
Accordingly, response latencies decrease with the increase in the
numerical value of the non-empty set that is being compared to
empty set, and comparisons between empty and non-empty sets
are responded to faster than comparisons of non-empty sets,
respectively (e.g., Merritt et al., 2009; Merritt & Brannon, 2013;
Zaks-Ohayon et al., 2021a, 2021b). Furthermore, single-cell
recordings from the ventral parietal and prefrontal cortex of mon-
keys (Macaca fuscata and Macaca mulatta) led to identifying two
different types of “number neurons” that were selectively activated
in response to empty sets. One was an exclusive type, showing
increased activity selective to empty sets and decreased activity
to non-empty sets, and the other a continuous type, showing
maximum activity in response to empty sets and gradually

decreased activity to successively larger non-empty sets (Okuyama
et al., 2015; Ramirez-Cardenas et al., 2016). Number-selective
neurons of the second type were also previously reported for non-
null quantities (e.g., Nieder, 2013).

Next, we turn to C&B’s question of what kind of numbers can
be represented by the ANS. Although we have previously shown
that, psychologically, the number 0 can be perceived as a natural
number (Pinhas et al., 2015; Pinhas & Tzelgov, 2012), it is not
considered as such in mathematical terms because it is neither a
positive nor a negative integer. However, mathematically, zero
can be expressed as the ratio a/b, if it serves as the numerator
a, and therefore, fits the definition of a rational number, consis-
tent with the type of numbers that are represented by the ANS
according to C&B. More generally, when considering what kind
(s) of numbers can be represented by the ANS, the inclusion of
zero breaks down the orderly relationship that exists between a
number’s ordinality (i.e., its position in the number sequence)
and cardinality (i.e., its numerical value) when only natural num-
bers are considered (Seife, 2000). Accordingly, if only dealing with
natural numbers, 1 is the first, 2 is the second, 3 is the third, and
so on. However, when 0 is also included, 0 is the first, 1 is the sec-
ond, 2 is the third, and so on. Thus, the fact that the ANS repre-
sents empty sets as zero indicates that the ordinality and
cardinality properties of numbers are no longer interchangeable,
and presumably sets the stage for more “complex” forms of num-
bers to be represented by the ANS.

Clearly, further research is still needed to fully characterize the
nature of the representations captured by the ANS. However, by
highlighting the case of the empty set, we hope to inspire future
research focused on other unique numerical concepts that, similar
to zero, may reveal something fundamental about the way numer-
ical information is represented.

Financial support. This work was supported by the Israel Science Foundation
grant no. 1348/18 awarded to MP, and grant no. 146/16 awarded to JT.

Conflict of interest. The authors declare there is no conflict of interest.

References

Banks, W. P. (1977). Encoding and processing of symbolic information in comparative
judgments. In G. H. Bower (Ed.), The psychology of learning and motivation (Vol.
11, pp. 101–159). Academic Press. https://doi.org/10.1016/S0079-7421(08)60476-4

Beran, M. J., Perdue, B. M., & Evans, T. A. (2015). Monkey mathematical abilities. In
R. Cohen Kadosh & N. Dowker (Eds.), The Oxford handbook of numerical cognition
(pp. 237–257). Oxford University Press. https://doi.org/10.1093/oxfordhb/
9780199642342.001.0001

Biro, D., & Matsuzawa, T. (2001). Use of numerical symbols by the chimpanzee (Pan
troglodytes): Cardinals, ordinals, and the introduction of zero. Animal Cognition, 4,
193–199. https://doi.org/10.1007/s100710100086

Gebuis, T., Cohen Kadosh, R., & Gevers, W. (2016). Sensory-integration system rather
than approximate number system underlies numerosity processing: A
critical review. Acta Psychologica, 171, 17–35. https://doi.org/10.1016/j.actpsy.2016.
09.003

Howard, S. R., Avarguès-Weber, A., Garcia, J. E., Greentree, A. D., & Dyer, A. G. (2018).
Numerical ordering of zero in honey bees. Science (New York, N.Y.), 360, 1124–1126.
https://doi.org/10.1126/science.aar4975

Kaufman, E. L., Lord, M. W., Reese, T. W., & Volkmann, J. (1949). The discrimination of
visual number. The American Journal of Psychology, 62(4), 498–525. https://doi.org/10.
2307/1418556

Leibovich, T., Katzin, N., Harel, M., & Henik, A. (2017). From “sense of number” to
“sense of magnitude”: The role of continuous magnitudes in numerical cognition.
Behavioral and Brain Sciences, 40, e164. https://doi.org/10.1017/S0140525X16000960

Leth-Steensen, C., & Marley, A. (2000). A model of response time effects in
symbolic comparison. Psychological Review, 107(1), 62–100. https://doi.org/10.1037/
0033-295X.107.1.162

Commentary/Clarke and Beck: The number sense represents (rational) numbers 49

https://doi.org/10.1017/S0140525X21000571 Published online by Cambridge University Press

https://doi.org/10.1016/S0079-7421(08)60476-4
https://doi.org/10.1016/S0079-7421(08)60476-4
https://doi.org/10.1093/oxfordhb/9780199642342.001.0001
https://doi.org/10.1093/oxfordhb/9780199642342.001.0001
https://doi.org/10.1093/oxfordhb/9780199642342.001.0001
https://doi.org/10.1007/s100710100086
https://doi.org/10.1007/s100710100086
https://doi.org/10.1016/j.actpsy.2016.09.003
https://doi.org/10.1016/j.actpsy.2016.09.003
https://doi.org/10.1016/j.actpsy.2016.09.003
https://doi.org/10.1126/science.aar4975
https://doi.org/10.1126/science.aar4975
https://doi.org/10.2307/1418556
https://doi.org/10.2307/1418556
https://doi.org/10.2307/1418556
https://doi.org/10.1017/S0140525X16000960
https://doi.org/10.1017/S0140525X16000960
https://doi.org/10.1037/0033-295X.107.1.162
https://doi.org/10.1037/0033-295X.107.1.162
https://doi.org/10.1037/0033-295X.107.1.162
https://doi.org/10.1017/S0140525X21000571


Merritt, D. J., & Brannon, E. M. (2013). Nothing to it: Precursors to a zero concept
in preschoolers. Behavioural Processes, 93, 91–97. https://doi.org/10.1016/j.beproc.
2012.11.001

Merritt, D. J., Rugani, R., & Brannon, E. M. (2009). Empty sets as part of the numerical
continuum: Conceptual precursors to the zero concept in rhesus monkeys. Journal of
Experimental Psychology: General, 138(2), 258–269. https://doi.org/10.1037/a0015231

Moyer, R. S., & Landauer, T. K. (1967). Time required for judgements of
numerical inequality. Nature, 215, 1519–1520. https://doi.org/10.1038/2151519a0

Nieder, A. (2013). Coding of abstract quantity by “number neurons” of the primate brain.
Journal of Comparative Physiology A, 199(1), 1–16. https://doi.org/10.1007/s00359-
012-0763-9

Nieder, A. (2016). Representing something out of nothing: The dawning of zero. Trends
in Cognitive Sciences, 20(11), 830–842. https://doi.org/10.1016/j.tics.2016.08.008

Okuyama, S., Kuki, T., & Mushiake, H. (2015). Representation of the numerosity “zero”
in the parietal cortex of the monkey. Scientific Reports, 5, 10059. https://doi.org/10.
1038/srep10059

Pepperberg, I. M., & Gordon, J. D. (2005). Number comprehension by a grey parrot
(Psittacus erithacus), including a zero-like concept. Journal of Comparative
Psychology, 119, 197–209. https://doi.org/10.1037/0735-7036.119.2.197

Pinhas, M., & Tzelgov, J. (2012). Expanding on the mental number line: Zero is perceived
as the “smallest.” Journal of Experimental Psychology: Learning, Memory, and
Cognition, 38(5), 1187–1205. https://doi.org/10.1037/a0027390

Pinhas, M., Buchman, C., Lavro, D., Mesika, D., Tzelgov, J., & Berger, A. (2015). The neu-
ral signatures of processing semantic end values in automatic number comparisons.
Frontiers in Human Neuroscience, 9, 645. https://doi.org/10.3389/fnhum.2015.00645

Ramirez-Cardenas, A., Moskaleva, M., & Nieder, A. (2016). Neuronal representation of
numerosity zero in the primate parieto-frontal number network. Current Biology,
26, 1285–1294. https://doi.org/10.1016/j.cub.2016.03.052

Seife, C. (2000). Zero: The biography of a dangerous idea. Penguin. https://doi.org/10.
1086/426210

Zaks-Ohayon, R., Pinhas, M., & Tzelgov, J. (2021a). On the indicators for perceiving
empty sets as zero. Acta Psychologica, 213, 103237. https://doi.org/10.1016/j.actpsy.
2020.103237

Zaks-Ohayon, R., Pinhas, M., & Tzelgov, J. (2021b). Nonsymbolic and symbolic represen-
tations of null numerosity. Psychological Research. https://doi.org/10.1007/s00426-021-
01515-4

Numerosity, area-osity, object-osity?
Oh my

Sami R. Yousif

Department of Psychology, Yale University, New Haven, CT 06520-8205, USA.
sami.yousif@yale.edu; samiyousif.org

doi:10.1017/S0140525X21001084, e203

Abstract

There is ongoing debate about whether number is perceived
directly. Clarke and Beck suggest that what plagues this debate
is a lack of shared understanding about what it means to perceive
number in the first place. I agree. I argue that the perception of
number is held to a different standard than, say, the perception
of objecthood; considering this, I explore what it might mean for
the number system to represent rational numbers.

Forget number for a moment. Consider another question: Do we
perceive objects? The answer to this question must be an unam-
biguous “yes!”; our understanding of attention depends on the
notion of “objects.”

But what is an object? Let’s start with a rectangle. That’s obvi-
ously an object. If we cut that rectangle right down the middle to
form two separate squares, now we have two objects. Simple
enough. What about cases in between? Suppose we connect our
two separated squares with a thin line. Is this one object or

two? If your answer is “two,” then ask: How thick does that line
have to become before your answer becomes “one”? Now, con-
sider the opposite. Start with a single rectangle, and cut a hole
out of the middle of it (and imagine that this hole is as wide as
the gap between the two squares you imagined before). Is that
still one object? If so, how tall does that hole have to become
before the rectangle becomes two objects? These examples hardly
scratch the surface of objecthood edge cases.

Both the perception of objecthood and the perception of num-
ber blur the lines between the continuous and the discrete. On the
one hand, the essence of objects is that they discretize attention;
on the other hand, multiple independent cues simultaneously
influence our impressions of objecthood (e.g., Feldman, 2007),
resulting in continuous effects on attention and on spatial/tempo-
ral perception (e.g., Yousif & Scholl, 2019). Similarly, it seems as if
number must be discrete (what would it mean to perceive 16.5
objects?); yet, at the same time, we often talk about “numerosity”
as if to imply that we perceive something vaguer and more impre-
cise than a discrete number. The perception of number and the
perception of objecthood share this same ambiguity, yet, for
some reason, there aren’t multiple BBS papers (see also
Leibovich, Katzin, Harel, & Henik, 2017) discussing whether we
perceive objects – and nobody has yet felt the need to coin the
term “objectosity.” What’s the difference?

Here’s my best guess: This boils down to the fact that object-
hood has consequences; objecthood influences attention, and
that’s measurable (e.g., Egly, Driver, & Rafal, 1994). If we want
to know whether objecthood was manipulated, we can simply
ask whether object-based attention effects are attenuated.
Imagine though if we did not have measures of object-based
attention. How would we determine that objecthood is continu-
ous – having observers make quick key press judgments about
which of two things was more “object-like”? We would never be
satisfied with such evidence. We may argue endlessly about this
confound, or that one. Every few years, someone would come
up with a new confound to argue over. We’d devote several
BBS papers to discuss this deep, crucial matter of whether the
visual system actually perceives objects. So it is with number.

How should this influence how we think about number in rela-
tion to other spatial properties? Traditionally, we think of number
and area as things that ought to be perceived separately. There is a
general thought that if area interferes with number perception, we
must not be perceiving number directly, or veridically (see “The
Argument from Confounds”; but see also Yousif & Keil, 2020).
Clarke and Beck’s argument indirectly raises a radical possibility:
If the number system represents fractions, does that mean that the
number system represents partial objects (i.e., can distinguish
between 16 vs. 16.5 objects)?

If it is true that the number system represents partial objects, it
would force us to reconsider how we think about confounds in
quantity perception tasks. Consider again this idea that the visual
system is tasked with counting objects. Now, imagine a display
with 20 identical rectangles (see Fig. 1). Suppose we conduct a
numerosity estimation task on this display, and we find that
observers perceive and represent the display as having approxi-
mately 20 things. Now, imagine that we have a similar display,
except that seven of the 20 rectangles have been cut in half,
such that what remains in the display are 13 full rectangles and
7 half rectangles. Stated differently: there remain 16.5 full rectan-
gles. We should expect that this latter display is perceived as less
numerous, and we would traditionally explain this effect in terms
of a congruency between number and area. But what if, instead,
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the number system is just representing the fact that there are par-
tial entities in the display? What if the number system is repre-
senting the rational number 16.5?

If true, this leads to the novel prediction above: that area ought
to influence number perception (insofar as area reflects partial
wholes). After all, spatial cues influence the perception object-
hood (Franconeri, Bemis, & Alvarez, 2009; Yu, Xiao, Bemis, &
Franconeri, 2019), and the visual system must be counting
objects. This would be ecologically realistic. Seven half meals
are equivalent to 3.5 full meals; it could be argued that this latter
quantity, and not the former, is the better one to represent. (At
the extremes, this would not be viable. One massive object prob-
ably ought not to be equated with 100 tiny objects of equivalent
size. But, under most circumstances, similar objects are often of
a fairly similar size. Edges cases such as these likely would not
occur very often in the natural environment. Or, maybe they
do! My suggestion is only that future research could consider
this intriguing possibility.)

This possibility may or may not pan out empirically, yet it is
one of many ways that Clarke and Beck’s suggestion could radi-
cally alter how we think about quantity perception moving
forward.
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Abstract

To investigate mechanisms of rational representation, I consider
(1) construction of an ordered continuum of psychophysical
scale of magnitude of sensation; (2) counting mechanism lead-
ing to an approximate numerosity scale for integers; and (3)
conjoint measurement structure pitting the denominator against
the numerator in tradeoff positions. Number sense of resulting
rationals is neither intuitive nor expedient in their manipulation.

The proposal by Clarke and Beck (C&B) that the approximate
number system (ANS) represents rational numbers is specific
and intriguing. In this comment, I shall speculate on representa-
tional mechanisms through which rationals are deployed by the
mind as a numerical representation of magnitude continuum.

Representation of magnitude of sensations was long under-
stood, through the ideas of “just-noticeable difference” (Weber
fraction) and Fechner’s logarithmic scaling of sensation in relation
to the intensity of eliciting stimuli. With a series of psychophysical
experiments using a variety of direct-scaling paradigms (e.g., mag-
nitude estimation, magnitude production, and cross-modality
matching), Stevens (Stevens, 1936, 1956; Stevens & Galanter,
1957) unequivocally established this psychophysical scale as an
ordered continuum admitting concatenation operation, and

Figure 1 (Yousif). Two sets, one with 20 “full” objects, and one with 16.5 “full”
objects. Does the number system represent these partial objects?
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proposed the power-law to map physical intensities to a psycho-
logical scale (Stevens, 1957). Fechner’s logarithmic scaling and
Stevens’ power scaling can be reconciled as the former can be
taken as the extreme case of the latter, when the exponent β
approaches zero:

1
b
(Ib − 1) � log I.

When it comes to numerical representation of the magnitude
scale, things become subtler because of co-existing, symbolic
and non-symbolic aspects of numerals (Feigenson, Carey, &
Spelke, 2002; Feigenson, Dehaene, & Spelke, 2004; Lemer,
Dehaene, Spelke, & Cohen, 2003; Xu, Spelke, & Goddard, 2005).
Numerosity as the pre-linguistic faculty to represent numerical
information, possibly congruent with the psychophysical scale
mentioned above, is clearly different from counting (Carey,
2001, 2009; Le Corre & Carey, 2007; Sarnecka & Carey, 2008),
which involves the mastery of an array of cognitive routines
such as a “successor” function, one-to-one correspondence, and
“cardinality” and “equality” of sets for establishing the concept
of integer (Carey & Barner, 2019). Whether or not subitization
(the process of immediate and accurate recognition of small num-
bers) plays any role for enabling the counting routine, the result-
ing system of integers acquires an approximate numerosity scale,
and maps linearly or logarithmically to the psychophysical scale
(Dehaene, Izard, Spelke, & Pica, 2008; Núñez, Cooperrider, &
Wassmann, 2012). This is possible because both counting
(which is anchored on “successor function”) and numerosity esti-
mation (which is subject to Weber’s Law) are predicated on indi-
viduation of objects.

The authors referenced the work of He, Zhang, Zhou, and
Chen (2009). In that paper, participants were briefly presented
with visual displays of dots in random positions and were asked
to judge their numerosities; the brevity of stimulus presentations
precluded any counting strategies. In some displays, pairs of adja-
cent dots were connected by line segments whereas in others, line
segments were freely hanging without touching the dots (see the
reproduced Fig. 1d of C&B). The line segments were introduced
to manipulate object individuation aspect of numerosity estima-
tion. Results clearly showed that connecting the pairs of dots by
line segments led to an underestimation of dot numbers in
those patterns because of decreased individuation. Thus, we sug-
gested “two different stages underlying numerosity perception:
first, the individuation of items in a visual display, followed by
magnitude estimation based on the distinct number of items”
(p. 517).

Numerosity estimation mechanism (approximate integer scale)
mentioned above is, of course, congruent with the psychophysical
scale revealed in Steven’s direct-scaling experiments. In the lan-
guage of axiomatic foundation of measurement (FoM) (Krantz,
Luce, Suppes, & Tversky, 1971), the common underlying mea-
surement structure is that of ordered concatenation group.
Their difference is that numerosity scale is countable, and hence
the group of integers (Z, +), whereas the psychophysical scale is
uncountable, and hence the group of reals (R, +) which is isomor-
phic to the group of positive reals (R+, ×). Note that in any
ordered concatenation structure (M, ⊕), there is only one binary
operator, ⊕, on the set M (which can be R, R+, or Z) of elements
whose magnitude are in total “order.” This binary operator ⊕,
takes in two elements of the set and outputs another element
larger than any of its inputs. That (R, +) and (R+, ×) are

mathematically isomorphic can be easily seen by the identity:
log(a × b) = log a + log b. Cohen and Narens (Cohen & Narens,
1979; Narens, 1981) developed the elaborative theory of
ratio-scalability for extensive concatenation systems and the asso-
ciated scale types.

The magnitude system conceptualized as above does not auto-
matically come with a multiplication or ⊗ operation that accom-
panies (and distributes across) the ⊕ operation. That is, the
magnitude system is not an algebra with two interwoven opera-
tions. To remedy this in FoM, Narens (Luce & Narens, 1987;
Narens & Luce, 1986) proposed to use the automorphism
group on the representational space, either (R, +) or (R+, ×), as
a surrogate of⊗. An automorphism σ of a measurement structure
is a bijective transformation from the structure to itself (i.e., map-
ping one element to another) that preserves the order relationship
among its elements:

s(a⊕ b) = s(a)⊕ s(b), a . b iff s(a) . s(b).

All automorphisms form (generally non-commutative) group,
with group multiplication operation ⊗ implemented as successive
application of two automorphisms: σ2(σ1(a)) = (σ2⊗ σ1)(a).
Distributivity of ⊗ over ⊕ always holds, but ⊗ is, in general, a
non-commutative multiplication.

In FoM (Krantz et al., 1971), commutative multiplication ⊗ of
two elements is through the construction of a conjoint measurement
structure. This is the structure involved in tradeoff of Utility and Risk
in Value = (Utility, Risk), and Length and Width in Area = (Length,
Width). In the current case, we have Q = (D, N ) where D is the
denominator and N the numerator of a rational number Q. Here,
both (D, +) and (N, +) are integer or numerosity structure (Z, +).

Additive conjoint structure is axiomatized by various cancella-
tion conditions across its two underlying “components.” Essential
to an additive conjoint measurement is the independence
assumptions about its components and the existence of tradeoff,
or the “indifference curve” of equal value.

When the rational field Q = (D, N ) is constructed this way,
addition and multiplication of two rationals Q1 and Q2 can be
quite convoluted. Therefore, achieving “dense” representation of
magnitude scale using rationals, as C&B suggested, has a heavy
price toll when computing the fraction addition and fraction mul-
tiplication using only the routines for (D, +) and (N, +).
Interference effects should readily be expected.

To summarize, I endorse the proposal of C&B to construct
ANS by rationals, and amend it with a suggestion that such rep-
resentation is achieved through conjoint measurement and trade-
off between the approximate integer (numerosity) representations
of the denominator and the numerator.
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Abstract

In our target article, we argued that the number sense represents
natural and rational numbers. Here, we respond to the 26 com-
mentaries we received, highlighting new directions for empirical
and theoretical research. We discuss two background assump-
tions, arguments against the number sense, whether the approx-
imate number system (ANS) represents numbers or
numerosities, and why the ANS represents rational (but not irra-
tional) numbers.

We are humbled to have received 26 commentaries from 62
researchers, among them many of our academic heroes.
Unsurprisingly, these commentaries reflect a diversity of opinion.
Some endorse and build upon the main conclusions of our paper;
others highlight points of disagreement. Although we remain con-
fident in our main theses, we learned a great deal from our com-
mentators – about soft spots in our arguments, points that require

development, where we could have been clearer, and avenues for
future research. We’re extremely grateful for their insights.

Our replies follow the order of our target article. We discuss
two background assumptions, arguments against the number
sense, whether the approximate number system (ANS) represents
numbers or numerosities, and why the ANS represents rational
(but not irrational) numbers.

R1. Background assumptions

Explanation needs to start somewhere, and our discussion presup-
posed that the ANS is representational and that it sometimes oper-
ates in perception, enabling numbers to enter perceptual contents.
Some commentators challenged these background assumptions.

R1.1. Is the ANS representational?

While the idea that the ANS represents anything at all is relatively
uncontroversial among ANS researchers (but see Beck [2015] for
a defense), Jones, Zahidi, and Hutto (Jones et al.) suggest that
our commitment to representations imports unnecessary “philo-
sophical baggage.” They recommend instead embracing an anti-
representational Radical Enactivism.

In general, we’re dubious when people tell us we can avoid phil-
osophical baggage by embracing views with “radical” in the name.
Jones et al.’s “radical” vision is that we acquire a perceptual sensi-
tivity to numbers simply by virtue of our sensitivity to the affor-
dances they enable: “The ‘sevenness’ is not a property of the
apples, nor of the perceiver, but of what the perceiver can do
with them.” The trouble is: It’s essentially open ended what you
can do when you perceive there to be seven of something. So we
don’t see how the perception of number can be specified in these
terms. Furthermore, representation is fundamental to explanations
of the ANS’s internal computations. For instance, when children
use their ANS to add the number of blue dots and red dots in a
sequence of events (e.g., Barth et al., 2005), it’s not just that they’re
afforded with (say) the sevenness of the blue dots, the tenness of
the red dots, and then magically afforded with the seventeenness
of the red and blue dots; they engage in a computational transition,
in which internal states of the organism interact in content respect-
ing ways. This presupposes representation.

R1.2. Are numbers perceivable?

Aulet and Lourenco, Marshall, Novaes and dos Santos, and
Opfer, Samuels, Shapiro, and Snyder (Opfer et al.) all ques-
tioned our assumption that numbers are perceivable.

Because numbers are higher-order, Novaes and dos Santos
and Marshall think they cannot be perceived. Marshall proclaims
that “second-order entities are no part of the sensible realm,”
while Novaes and dos Santos write that numbers “emerge only
after an agent has adopted a given sortal” and thus are not “out
there, inexact or otherwise, to be represented.” But we find this
puzzling. Surely, it’s an objective fact that the apples on the
kitchen counter total five in number. This fact is “out there”
and does not require anyone’s mind to “emerge.” It’s also the
sort of thing one should expect perceptual systems to be capable
of picking up on. We’re not sure why anyone would think other-
wise unless they were committed to an outdated view of percep-
tion according to which perception only represents properties
for which we have dedicated sensory transducers. But perception
is not sensation. At least since Helmholtz, we’ve known that
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perception is a constructive and ampliative process whose outputs
go beyond its inputs. The visual system makes assumptions that
are non-demonstrative but generally ecologically valid. Some of
these assumptions concern default sortals that individuate the
incoming sensory array into objects and are used to enumerate
concrete pluralities. There is no mystery concerning how some-
thing higher-order could be perceivable.

Aulet and Lourenco object that our contention that we per-
ceive numbers “conflates the percept with the concept.” But stud-
ies show adaptation to number in external coordinates (Burr &
Ross, 2008; DeSimone et al., 2020), including cross-modal adap-
tation (Arrighi et al., 2014), which naturally controls for most
non-numerical confounds. Because adaptation is a mark of the
perceptual (Block, 2014), these studies suggest that we really do
perceive numbers.

Opfer et al.’s rich commentary questions whether numbers
are perceivable on different grounds. Because we assume numbers
enter perception through property attribution, they accuse us of
assuming the Identity Thesis, according to which, “Natural num-
bers are identical to cardinality properties.” They object that the
Identity Thesis is linguistically problematic because it’s felicitous
to say things like (1) but not (2).

(1) The number of women at the party is four.
(2) ?? The number of women at the party is the number four.

We’re wary of drawing strong metaphysical conclusions from facts
about how people talk (does the language faculty have a hotline to
the Forms?) but happily concede that the Identity Thesis might be
false. Plausibly, being eight in number is a property, while the
number eight is an (abstract) particular. But, contrary to what
Opfer et al. suggest, we don’t think we’re committed to denying
this or affirming the Identity Thesis. We simply maintain that
perception attributes properties like being eight in number, and
that the attributed properties are complex, and include reference
to natural numbers. For example, the attribution is eight in num-
ber includes reference to the number eight even though it is not
identical to the number eight. (Compare: The property of being
as rich as Jeff Bezos is not identical to Jeff Bezos; but when you
wish you were as rich as Jeff Bezos you refer to Jeff Bezos.)
When we said that “the ANS refers to numbers… by enabling
numbers to enter into contents via property attribution,” this is
what we meant.

Opfer et al. raise a further objection that may now seem press-
ing: if (as we suggested in our target article) there’s a puzzle about
how numbers qua abstracta could be referred to in perception,
and we maintain that attributing cardinality properties involves
referring to numbers, how do we avoid our original puzzle? The
answer lies in the fact that the puzzle was not supposed to be
that it’s mysterious how perception could refer to abstract entities.
Rather, our worry was that it’s mysterious how perception could
veridically refer to abstract entities on their own, without simulta-
neously referring to something concrete. That’s why we said, you
can’t “perceive the number seven itself – on its own.” To veridi-
cally refer to the number seven in perception, you need to simul-
taneously perceive a concrete plurality. When you perceive the
apples as being seven in number, you refer to a concrete plurality
of apples and attribute a property to it, with reference to the num-
ber seven occurring within that attribution. (Admittedly, we could
have been clearer on this point.)

Now, even though our worry didn’t concern how perception
could refer to abstract objects full stop, this is a worry others

might have. But note two things. First, the worry is not unique to
perception. Others have worried about how we can think about
numbers given that they are abstract objects (Benacerraf, 1973).
There is, thus, a version of this puzzle that arises for everyone.

Second, with respect to the specific puzzle of perceiving num-
bers, we don’t see it as fundamentally different from the puzzle of
how one can be perceptually related to other abstracta, such as
shapes and colors. Even Opfer et al.’s linguistic point doesn’t dis-
tinguish between these.

(3) The {color/shape} of the ball is {orange/a sphere}.
(4) ?? The {color/shape} of the ball is the {color orange/shape a

sphere}.

Admittedly, colors and shapes are often taken to be universals
rather than abstract particulars, and if that’s right, the two puzzles
are not identical. To say exactly how they differ, however, would
require staking out various controversial positions in metaphysics
and the philosophy of mathematics. In an article addressed to an
interdisciplinary audience, we tried to bracket such issues. But the
two perceptual relations (to shapes/colors and numbers) strike us
as sufficiently similar that we’ve been able to sleep at night. Still,
this issue deserves further attention and we’re grateful to Opfer
et al. for highlighting it.

R2. Arguments against the orthodox view

In our target article, we cleared space for the orthodox view that the
ANS represents numbers by noting a lack of compelling arguments
to the contrary. Thus, our target article replied to three arguments
which have been pressed against this orthodox view – the argu-
ments from congruency, confounds, and imprecision.

Notably, few commentators came out in support of these argu-
ments. Indeed,Marinova, Fedele and Reynvoet (Marinova et al.)
suggest that we “somewhat misinterpreted” the “key message” of
the congruency and numerical interference studies they have
been involved with – studies which formed the backbone of the
arguments from congruency and confounds. Their commentary
is helpful because it serves to distinguish two closely related
views these studies could be seen to support. A radical interpreta-
tion uses them to argue that the ANS fails to exist or represent
numbers at all. This radical interpretation seems to be in play
when, for instance, Gebuis et al. (2016) claim that congruency
studies of this sort indicate that “the output” of the ANS “is not
an abstract number” (p. 28). By contrast, a modest interpretation
simply takes these results to support an indirect model of ANS
processing, on which numerical quantity is derived from contin-
uous percepts. Our aim was to tease these possibilities apart and
rebut the radical interpretation. It’s good to learn that researchers
behind some of these studies also want to distance themselves
from the radical interpretation.

Marinova et al. also helpfully observe – and we agree – that it
may not be necessary to choose between direct and indirect mod-
els of the ANS. Rather, there could be multiple ways perception
extracts number, some direct and some indirect.

Aulet and Lourenco were more dubious. They note (correctly)
that on our view “whether elephants, mice, or apples” are being
counted, the ANS can attribute a numerical value to these “irre-
spective of their physical differences.” Against this, they claim
that “number is not (perceptually) independent of other magni-
tudes,” citing evidence that number and area are perceived as inte-
gral dimensions. Two dimensions are integral when they cannot
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be represented independently and separable otherwise. But repre-
senting A and B as integral dimensions doesn’t preclude repre-
senting A. Loudness and pitch are integral dimensions, and
each is perceptually represented. Two integral dimensions may
even be represented by distinct vehicles, with their integrality
(often measured by interference effects) deriving from causal or
structural relations among vehicles (Lande, 2020).

Aulet and Lourenco criticize one reason we provided for
thinking that number is represented by the ANS. In our target
article, we emphasized work by Cicchini et al. (2016) and others,
suggesting that when subjects estimate the area, density, and
number of dots in a visual array, they are more sensitive to num-
ber than area or density, and thus do not simply represent area
and density, but also number. Against this, Aulet and Lourenco
cite evidence that when perceived area is distinguished from
true area, we are less sensitive to number. Barth and
Shusterman bolster the objection, citing a wider range of studies
in support of this claim. Thus, both commentaries suggest that
when perceived area is distinguished from mathematical area,
it’s not true that we’re more sensitive to number than area or
other non-numerical confounds.

These are fascinating issues. But it’s vital to keep three things in
mind. First, the correct interpretation of these studies remains
hotly contested, so it’s probably too early to draw strong
conclusions. For instance, Park (in press) objects that studies
which control for perceived area tend to introduce massive incon-
gruencies between number and non-numerical magnitudes – so,
given that incongruencies of this sort suppress numerical
sensitivity (DeWind et al., 2015), counterevidence of this sort prob-
ably underestimates true numerical sensitivity. Second, our target
article did acknowledge some of the counterevidence these authors
cite. For instance, we discussed Yousif and Keil’s study, suggesting
that subjects are more sensitive to “additive area” than number.
But, as we noted then, Yousif and Keil are clear that their results
cannot be fully explained by non-numerical confounds and still
require that numbers are represented. But third, even if none of
this were so, the idea that number is uniquely salient was just
one reason we gave for rejecting the arguments from congruency
and confounds (the arguments in which these studies featured).
The arguments also fail for independent reasons. For example,
the argument from congruency overgeneralizes in absurd ways;
and the argument from confounds relies on an ad hoc strategy of
explaining away success in number tasks that struggles to explain
key findings (e.g., cross-modal comparisons and dumbbell effects).

R3. Number versus numerosity

We next proposed that the ANS represents numbers rather than
numerosities or other exotic entities. To this end, we observed
that the ANS tracks the cardinal number of entities in concrete
pluralities (albeit imprecisely), supports arithmetic computations,
and exhibits a higher-order sensitivity that’s characteristic of
number representation. We also argued that the thesis that the
ANS represents number admits of no plausible alternatives, pro-
motes integration with other sciences, and avoids a curious double
standard with respect to the treatment of non-numerical quanti-
ties. Our commentators pushed back on many of these claims.

R3.1. Higher-order sensitivity

One reason to think the ANS represents number is that the ANS
is sensitive to the higher-order character of number. Numerical

quantities are assigned relative to a sortal, and this distinguishes
them from other kinds of quantity. To illustrate, note that the
group entering the restaurant is one party of diners, four couples,
and eight people, while the group’s weight remains constant irre-
spective of which sortal we apply. That the ANS is sensitive to this
higher-order feature of number is especially clear from the dumb-
bell studies reviewed in our target article (Franconeri et al., 2009;
He et al., 2009). Judgments of the number of items are influenced
by whether they are connected to one another (even though sub-
jects are told to ignore the connecting lines), suggesting that the
system takes a stand on how items are individuated.

Marshall complains that we “hang an awful lot” on these
dumbbell studies in making this point, but he doesn’t question
our logic or criticize the studies themselves. By contrast,
Buijsman objects that the dumbbell studies only contain “a rela-
tively small number of connected dots/squares” and that, as such,
performance might result from the object-tracking (or subitizing)
system rather than the ANS. But this worry appears to be based
on a misinterpretation of the original studies. Buijsman writes,
“the fourth experiment of Franconeri et al. (2009) has four circles,
and in the connected format these form two dumbbell shapes.”
While that accurately describes the figure accompanying
Franconeri et al.’s fourth experiment, the text clarifies that the
actual stimuli consisted of 12, 24, or 48 circles, of which 0, 25,
50, 75, or 100% were connected.

This is not a one-off finding. Fornaciai et al. (2016) report that
numerical adaptation effects are influenced by whether the post-
adaptation stimuli consist of 20 unconnected dots or 10 pairs of
connected dots. Fornaciai and Park (2018) confirmed that dis-
plays of 16 or 32 dots were underestimated when they were con-
nected (compared to displays containing unconnected dots). In
fact, the stimuli needn’t really be connected. Kirjakovski and
Matsumoto (2016) found that pacman-like stimuli that only
appeared to be connected via Kanisza-like illusory contours also
caused subjects to underestimate their total.

Aulet and Lourenco object that the dumbbell studies do not
reveal that the ANS has a higher-order character because “if num-
ber perception was genuinely second-order, then it should be just
as easy to continue perceiving the number of dots, instead of
being biased towards the number of dumbbells.” But this worry
conflates two things: whether the ANS is higher-order, and
whether the sortals it uses are under voluntary control.
Crucially, the ANS could be higher-order even if the sortals it
uses aren’t under voluntary control.

Consider that the visual system is biased toward individuating
the world into what are sometimes called Spelke objects –
bounded, coherent, three-dimensional, continuous wholes
(Carey, 2009; Spelke, 1990; but see Green, 2018.) Consequently,
when the ANS takes inputs from the visual system, it enumerates
Spelke objects by default. That is what the dumbbell studies show
because connecting two items turns them into a single Spelke
object. These studies evince a higher-order character to the refer-
ents of ANS representations because they show that the ANS is
applying a sortal – the sortal Spelke object. This default can be
overridden to some extent (subjects do not treat 10 pairs of con-
nected circles as numerically identical to 10 unconnected circles),
but not completely. Moreover, it is only the default in certain cir-
cumstances. The ANS also spontaneously enumerates events such
as rabbit jumps, heard tones, and, as Burr, Anobile, Castaldi,
and Arrighi demonstrate, self-generated actions such as hand
taps. Thus, the sortal used by the ANS is capable of varying,
even if (like most of the mind) it isn’t under full voluntary control.
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R3.2. Numerosity

In our target article, we objected to the idea that the ANS repre-
sents numerosities rather than numbers themselves. For one, we
objected that, while the term “numerosity” is widely used, no
one seems to know what a numerosity is. This prompted many
commentators to tell us just what a numerosity is, although
their disagreements are notable, suggesting that insofar as
researchers associate a distinctive meaning with “numerosity,”
it’s not universally shared.

In their commentaries, Núñez, d’Errico, Gray, and Bender
(Núñez et al.) and Novaes and dos Santos trace the term
“numerosity” to S. S. Stevens. As Núñez et al. report, Stevens
(1939/2006, p. 23) defined numerosity as “a property defined by
certain operations performed upon groups of objects.” We’ll con-
fess, this doesn’t exactly clear things up for us.

Some commentators had more to say. Novaes and dos Santos,
along with Bermúdez and Opfer et al., suggest that numerosities
are cardinalities. By contrast, Núñez et al. double down on the
idea that the ANS is quantical rather than numerical, while
Buijsman and Gross, Kowalsky, and Burge (Gross et al.) defend
the view that numerosities are pure magnitudes. We discuss each
of these proposals in the following sub-sections. First, however, we
want to reply to two further commentaries that defend the con-
cept of numerosity without neatly fitting into these three
proposals.

Barth and Shusterman wonder whether researchers share an
“understanding of what ‘numerosity’ means.” Given the variety of
proposals made by our commentators, we think it’s clear they do
not. The common term masks a diversity of concepts. Still, Barth
and Shusterman think that the term should be retained.
According to them, “number” is ambiguous because it can refer
to a number word, a numeral, a mathematical entity, or a prop-
erty of a stimulus. They think it is useful to have a term that refers
just to the last of these, and that “numerosity” is up to the task.

Our view is that words and numerals are clearly not numbers –
no more than the word “square” has four equal sides or the dinner
bell is fit to eat. Therefore, we don’t think anyone should be con-
cerned about confusion on that front. (If one is concerned, using
“number word” and “numeral” for number words and numerals,
respectively, should guard against mix-ups.) We do think there’s a
difference between mathematical entities and properties of stim-
uli, but that’s not a distinction that’s unique to numbers. When
a mathematician says, “A square is a plane figure with four
equal sides and right angles,” she’s talking about a mathematical
entity, not a property of a stimulus. But the tiles on Rachael Ray’s
kitchen floor can have the property of being square just as surely
as they can have the property of being 30 in number. Would
Barth and Shusterman also want to introduce the term “squar-
eosity” to capture the shape property that these stimuli can
have? If not, why introduce “numerosity” to capture their numer-
ical property? Barth and Shusterman don’t say.

Gallistel also defends the term “numerosity,” arguing that
“coherent discussion” requires a three-way distinction between
numerons, numbers, and numerosities. A numeron is “a symbol
in a computing machine like the brain.” This strikes us as a help-
ful concept. Just as we use numerals (e.g., in Arabic notation) in
language, the brain uses numerons in its internal code.
Numerons are thus vehicles of representation – symbols in the
language of thought. But Gallistel also says that numbers are sym-
bols. This leaves us confused. If numerons and numbers are both
symbols, aren’t they the same thing? And wouldn’t numbers then

be vehicles of representation too? This seems like a mistake, anal-
ogous to confusing a rose with the word “rose.” Symbols refer to
numbers, but they aren’t identical to numbers. After all, different
symbols can refer to the same number (e.g., “4,” “four,” and “IV”),
and the same symbol can refer to different numbers in different
notations (e.g., “100” refers to one hundred in decimal notation
and to four in binary).

Finally, Gallistel claims that a numerosity is “the number you
get when you correctly count” a collection. But, if a numerosity is
just a number, Gallistel has one more distinction than he needs.

Gallistel provides one further reason to think that we need
“numerosity” in addition to “number.” Just as psychophysicists
use “brightness” for the percept and “luminance” for the distal
stimulus, they need “number” for the percept and “numerosity”
for the distal stimulus. But, while some objective magnitudes
have an associated term that naturally applies to the percept
(e.g., luminance/brightness, sound wave amplitude/loudness,
and sucrose concentration/sweetness), others do not (e.g., dis-
tance/?, duration/?, and area/?). And yet psychophysicists seem
to get along just fine measuring these percepts. As such, we
should ask what feature of the percept “numerosity” is supposed
to capture. Is it the vehicle? Gallistel already gave us “numeron”
for that. Perhaps, instead, it’s the phenomenal character of the
percept (as it might be with “brightness”)? But, beyond the oddity
of using “number” to refer to a phenomenal property, it’s far from
clear that there’s a phenomenal character that’s common to how
number is represented in vision, audition, action, and so on. The
distinction between number and numerosity serves no apparent
purpose.

R3.3. Cardinalities

Novaes and dos Santos write that “in the contemporary literature
one finds ‘numerosity’ defined as a synonym for cardinality.” In
defense of this claim, they cite Nieder (2016, p. 366), who writes,
“Cardinality (also known as numerosity) corresponds to the
empirical property of quantity, and is the number of countable
elements in a given group (for example, five runners).”

On one interpretation of this passage, cardinalities are just a
specific type of number: cardinal numbers. And to represent a
cardinality is to represent a cardinal number. This interpretation
is obviously consistent with the hypothesis that the ANS repre-
sents numbers.

On a second interpretation, cardinalities are properties of con-
crete pluralities rather than numbers themselves. This would put
Novaes and dos Santos in line with Barth and Shusterman and
Opfer et al. Here, a distinction is drawn between the number five
(a mathematical entity) and being five in number (a property of a
concrete pluralities). To represent the cardinality of the runners is
to represent the runners as being five in number – that is, as hav-
ing a particular property. As we noted in section R1.2, we agree
that the ANS attributes cardinality properties in this sense; but
we maintain that in so doing it refers to numbers. Therefore,
this proposal is also compatible with our hypothesis.

Is there some other way to use cardinality as an alternative to
number? The notion of a cardinality derives from set theory, and
Novaes and dos Santos suggest appealing to the set-theoretic
notion of one-to-one correspondence, such that two sets have
the same cardinality if and only if their members can be put in
one-to-one correspondence. Bermúdez develops this suggestion,
showing how it predicts that the ANS can represent comparative
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properties, but not absolute properties. That’s because a computa-
tion of one-to-one correspondence can tell you whether two col-
lections are equinumerous or not, but not how many elements are
in either one. Bermúdez argues this proposal is consistent with
much of the data associated with the ANS, including the many
studies that require subjects to determine which of two presented
pluralities is greater, and Weber’s Law itself.

One might worry that this proposal falsely predicts that
numerical comparisons will be precise, because the operation of
one-to-one correspondence is precise. (It grounds some defini-
tions of the integers.) Carey and Barner (2019) reject the proposal
on exactly these grounds, writing that “the ANS lacks a mecha-
nism like one-to-one correspondence that can establish the
exact equality of sets” (pp. 826–827). But we see no reason that
noise couldn’t corrupt a computation that places representations
in one-to-one correspondence, thereby giving rise to the impreci-
sion associated with the ANS.

There are, however, two difficulties with the proposal. First,
while numerous studies show that ANS representations can be
stored in working memory, working memory for seen objects
degrades quickly after three or four objects (Alvarez &
Cavanagh, 2004; Vogel et al., 2001). A large collection of objects
is not represented in memory in full detail, but as an “ensemble”
using summary statistics (Alvarez, 2011). For example, the mean
area of a collection of dots might be recorded in memory, but not
the individual areas (Ariely, 2001). And similarly for orientation,
brightness, location, and other properties. But, if the collection of
individual objects in a display aren’t stored in memory, then the
comparative cardinality view cannot explain how subjects per-
form numerical comparisons once that collection is no longer
perceivable. Consider the studies by Barth et al. (2005) that
Bermúdez cites. In the very first experiment, preschoolers see
some dots on a screen, then see those dots being covered, and
then see some new uncovered dots. They then have to say whether
the covered dots are more or less numerous than the uncovered
dots. To do this, they must maintain in memory either a represen-
tation of the covered dots themselves or a summary representation
of the covered dots’ number. If they maintained a representation
of the covered dots themselves, then they could put those dots in
one-to-one correspondence with the still-visible dots to determine
their comparative cardinality. But the displays contained up to 58
dots, well above the limits of visual working memory. Therefore,
memory must instead store a summary representation of their
total number.

Second, when Bermúdez writes, “Clarke and Beck readily con-
cede that there is no evidence that the ANS is sensitive to the suc-
cessor function or to basic arithmetical operations,” he’s only half
right. We did concede that the ANS isn’t sensitive to the successor
function. But we noted “that ANS representations enter into
arithmetic computations such as greater-than and less-than com-
parisons, addition, subtraction, multiplication, and division.” This
matters because most arithmetic computations require more than
one-to-one correspondence. While other set-theoretic operations
might be appealed to (e.g., addition might be explained in terms
of the union operation), this approach gets trickier when we con-
sider that ANS representations are believed to enter into arith-
metic computations with other magnitudes. For example, there
is evidence that the mind takes representations of number and
divides by its representations of duration to yield representations
of rate (Gallistel, 1990). We find it hard to envision how compar-
ative cardinalities can explain such computations. (Núñez et al.
claim it’s a “biological no-go” to suppose that the nervous system

implements arithmetic operations such as division. But they don’t
explain why; nor do they provide an alternative explanation of the
many studies we cited that are indicative of such operations.)

R3.4. The quantical

Núñez et al. accuse us of “biological misconceptions,” “mathe-
matical naïveté,” “serious inconsistencies,” having “only [one]
novel claim,” “erroneous” characterizations, “misrepresent[ing]”
distinctions, “an unnecessary condescending tone,” and torturing
puppies for fun. (We’re reading between the lines on that last
one.)

In an earlier article, Núñez argued that the capacities associ-
ated with the ANS “are not about numbers, but are about quan-
tity, and therefore should not qualify as numerical… I propose to
refer to these biologically endowed capacities as quantical”
(Núñez, 2017, p. 419; emphasis in original). We interpreted
these claims as implying that the ANS does not represent number,
and instead represents something “quantical.” Núñez et al. stress
that “quantical” is an adjective to describe non-numerical quanti-
ties, and not a noun as we sometimes used it in our article. Fair
enough. But, if the ANS is about something “quantical” rather
than something numerical, what exactly does it represent?
Núñez (2017) tells us that “quantical” pertains to quantity. But
as we stressed in section 5.3 of our target article, just saying
that the ANS represents quantities doesn’t capture its second-
order sensitivity or distinguish it from systems that represent
magnitudes such as distance or duration.

Núñez et al. offer some clarificatory remarks. For one, they say
that the quantical–numerical distinction is not about (im)preci-
sion. This was one of Núñez’s (2017) stated reasons for thinking
that the ANS is non-numerical, when he wrote, “A basic compe-
tence involving, say, the number ‘eight,’ should require that the
quantity is treated as being categorically different from ‘seven,’
and not merely treated as often – or highly likely to be – different
from it” (p. 417). And again, when he wrote that quantifying “in
an exact and discrete manner” is part of the “minimal criteria” for
a capacity to be numerical (p. 418). In section 5.3 of our target
article we argued that this is not a good reason to reject the
hypothesis that the ANS represents numbers. Núñez et al. seem
to agree.

Núñez et al. claim that the core difference between quantical
and numerical cognition lies in the distinction between non-
symbolic and symbolic reference. By a “symbol” they seem to
mean public symbols from a spoken or written language, and
not internal mental symbols such as Gallistel’s numerons.
(Thus, they deny not only that the ANS is symbolic, but also
that subitizing is symbolic even though subitizing has been argued
to recruit demonstrative-like mental symbols [Pylyshyn, 2007].)
The way they use the quantical–numerical distinction is open to
two interpretations, however, one weak and one strong.

According to the weak interpretation, the distinction is merely
supposed to emphasize that the capacities that come online with
public numerical symbols are importantly different from the
capacities associated with the ANS. We agree wholeheartedly
and said as much in our target article. Mastering a public numer-
ical system makes it possible to do things that one could not do
before. According to the strong interpretation, not only are the
capacities different, but also the capacities associated with the
ANS are not numerical, and so the ANS does not represent num-
bers. For reasons glossed above, we interpret Núñez (2017) as
endorsing this stronger interpretation. But, as we note in our
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target article, the stronger claim faces two problems Núñez et al.
don’t address. First, it struggles to explain the higher-order sensi-
tivity of the ANS. And second, it owes an account of what the
ANS represents, if not numbers. Saying that it is “quantical” is
insufficient because that either reduces to the trivial claim that
internal mental representations are not public symbols (if “quant-
ical” is just taken to mean not symbolic) or else fails to distinguish
the capacities associated with the ANS from the capacities associ-
ated with systems devoted to quantities like duration or distance
(if “quantical” means quantitative).

R3.5. Pure magnitudes

Most researchers who claim that the ANS represents numerosities
fail to adequately explain what a numerosity is. Burge (2010) is an
exception. His proposal that the ANS represents Eudoxan pure
magnitudes is substantive and specific. We view this as the leading
competitor to our proposal that the ANS represents number.
Buijsman and Gross et al. defend it.

Gross et al. argue that pure magnitudes are preferable to nat-
ural numbers for two reasons. First, the ANS isn’t sensitive to the
full structure of the natural numbers. For example, its capacities
do not include “counting, one-to-one matching, or a successor
operation.” By contrast, they claim pure magnitudes have all the
structure needed to explain the ANS, and no more. We disagree.
Pure magnitudes are extremely fine grained. The ancient Greeks
introduced them to capture ratios that we would now express
using irrational numbers. But, as we argued, there is no evidence
that the ANS is sensitive to irrational numbers. Pure magnitudes
have more structure than is reflected in the ANS (Beck, 2015).

Second, Gross et al. argue that perception already represents
pure magnitudes when it represents continuous magnitudes like
length and weight. To motivate this claim, they appeal to
Peacocke’s (1986) thesis that perception is unit-free. (When you
see the length of a piano, you don’t represent that length in
meters, yards, or any other units.) But, given a background real-
ism about magnitudes like length, the view that perception repre-
sents these can also respect the unit-free character of perception.
Veridical perception of length is unit-free because length itself is
unit-free (Peacocke, 2020). Pure magnitudes aren’t needed.
Furthermore, even if pure magnitudes were needed to represent
continuous magnitudes, it wouldn’t follow that they are also
needed for the ANS unless continuous magnitude representations
and the ANS draw on the same representational elements. While
this hypothesis has been defended (Feigenson, 2007; Walsh,
2003), some recent evidence speaks against it. For example,
Odic (2018) found that the precision of continuous and numeri-
cal magnitude representations follows distinct developmental
trajectories.

We argued that the ANS represents numbers rather than pure
magnitudes because only numbers have a second-order character
and the ANS exhibits sensitivity to a second-order property of
collections. Buijsman thinks the pure magnitude hypothesis
“cannot (yet) be dismissed” because he is skeptical that ANS rep-
resentations are genuinely second order. But, as we explain above
(section R3.1), these concerns are misplaced.

Gross et al. grant that the ANS exhibits second-order sensitiv-
ity, but claim that this is equally well captured by the pure mag-
nitude hypothesis. On their view, perception represents a variety
of magnitude types in terms of pure magnitudes, including dis-
tance, weight, duration, and “aggregate membership.” (Whereas
sets are abstract, an aggregate is roughly what we called a

“concrete plurality,” or a spatiotemporally located collection.)
When pure magnitudes measure continuous magnitudes like dis-
tance, weight, and duration, sortals are not involved. But, when
they measure aggregate membership, sortals must be involved.
Thus, Gross et al. conclude that representations of pure magni-
tudes can also exhibit second-order sensitivity.

We’re not so sure. To see why, it’s helpful to distinguish the
genus pure magnitude, which divides “into discrete and continu-
ous subspecies” and “is not specific to any further type of magni-
tude – such as spatial extent or size, temporal duration, weight, and
so forth” (Burge, 2010, p. 482), from various species of pure mag-
nitude, such as duration and weight. We interpreted Burge (2010)
as claiming that the ANS represents the genus pure magnitude. On
that interpretation, we think our original criticism stands. The
genus pure magnitude does not differentiate between being first
order or second order; but the ANS is second order; so ANS rep-
resentations are, in that respect, not well captured by the genus.

By contrast, Gross et al. seem to take the ANS to represent a
particular species of pure magnitude – namely, the discrete spe-
cies that measures “aggregate membership” (see also Ball). This
evades our criticism because the discrete species is second
order. But, as we understand it, this discrete species of pure mag-
nitude just is natural number. What makes numbers a species of
pure magnitude is that they can stand in ratios (analyzed in terms
of equimultiples). But the ancient Greeks held that there is more
to numbers than that. For example, they maintained that numbers
are composed from discrete units. While it’s true that they didn’t
attempt a reductive definition of number in terms of the successor
relation or one-to-one correspondence (that would have to wait
for the late nineteenth century), it doesn’t follow that they were
talking about something else. Therefore, if Gross et al. take the
ANS to represent the discrete species of pure magnitude that mea-
sures aggregate measurement, that sounds to us like another way
of saying that the ANS represents natural numbers.

R3.6. The scientific-ontology bias

We argued that entities that appear in our scientific ontology
should be favored as contents of the ANS. We agree with Gross
et al. that this consideration is only prima facie. It can be overruled
by other considerations. While we take it to be an advantage of our
hypothesis that it meets this consideration, we never meant to claim
the advantage as unique. Other hypotheses may meet it too.

Brown objects that psychologists justifiably attribute contents
that are not part of our scientific ontology. For example, develop-
mental psychologists attribute representations that do not differ-
entiate between heat and temperature. But, in that case, there is
overwhelming evidence that children systematically conflate heat
and temperature, so neither content on its own is appropriate.
The consideration we adduced is thus overruled. But we argued
at length that the ANS does not systematically conflate number
with other magnitudes.

Brown also considers color vision. If we say that the ANS rep-
resents numbers, shouldn’t we also say that color vision represents
wavelengths? We think not. The way the ANS represents number
(and, for that matter, the way perception represents distance,
duration, weight, and a host of other magnitudes) is lawlike. By
contrast, the relation between wavelength and color percepts is
notoriously arbitrary.

If a bias toward scientific ontology can be overruled, is it
needed? One reason to think so is that mental representation is
always noisy and imprecise. The mind is an imperfect instrument
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with limited resources. Thus, one can always improve the fit of a
content assignment by inventing a new concept that accommo-
dates the noise and imprecision. But that would lead to overfit-
ting, idiosyncratic contents, and a missed opportunity to
capture genuine connections between the mind and world. The
bias serves a useful purpose.

R3.7. Modes of presentation

In claiming that the ANS represents number, we did not mean to
deny differences between ANS representations and mature num-
ber concepts. We simply argued that these could be captured by
differences in their modes of presentation. Such differences are
important, and we certainly didn’t mean to treat them as “an
afterthought” (Barth & Shusterman). On the contrary, we
emphasized differences in mode of presentation.

Jones et al. think our appeal to modes of presentation is prob-
lematic. As they see it, “the distinction between the ‘sense’ and
‘reference’ of neural representations is an ad hoc construction
without any independent justification.” They grant that modes
of presentation are legitimate when applied to person-level states,
like experiences or beliefs, but deny that this is so when applied to
sub-personal representations.

We disagree. For one, sub-personal states can differ in format
(Marr, 1982), and this implies differences in mode of presentation
because computational work is needed to translate between format
types. Elsewhere, both of us have argued that ANS representations
differ from conceptual thoughts in precisely this way (Beck, 2015;
Clarke, forthcoming). But ANS representations are also not purely
sub-personal. When you perceive a group of dots, they look to be a
certain number to you and not just some component of your brain/
mental machinery (see the demonstration in Burr and Ross, 2008).

Peacocke helpfully characterizes ANS representations as hav-
ing the form roughly that many Fs and teases apart three aspects
of their modes of presentation. ANS representations are unspecific
(they don’t refer to one specific number), non-canonical (they
don’t use a canonical system of representation to refer to num-
bers), and non-recognitional (the ANS doesn’t enable subjects to
reliably recognize the same number presented at two different
times). Peacocke suggests that these three features should be dis-
tinguished conceptually because they co-occur only contingently.
There could be a numerical perceptual system that was specific
(unlike the ANS) but also non-canonical and non-recognitional.
Its mode of presentation would have the form that many Fs.
It’s unclear to us, however, what would ground the specificity of
this hypothetical system. If you say, “That many Fs,” the specific-
ity plausibly derives from your mature counting abilities, or at
least an ability to place items in one-to-one correspondence. In
communities lacking those abilities, an utterance of “That many
Fs” would not be specific. By contrast, if we are meant to imagine
that the specificity is grounded in the perceptual system’s discrim-
inative abilities (in the way that having perfect pitch grounds ref-
erence to a specific pitch in someone who says “that pitch”), then
the system is plausibly recognitional too. While this doesn’t show
that it’s impossible for being specific, recognitional, and canonical
to come apart in the ways Peacocke suggests, there may be impor-
tant and deep connections among them.

R4. What kind(s) of number?

The preceding discussion notwithstanding, many commentators
sympathize with our suggestion that the ANS represents numbers.

But our target article considered a further question: What kinds of
number does it represent? We speculated that the system goes
beyond representing natural numbers by representing rational
numbers. At the same time, we expressed skepticism that the
ANS goes so far as representing irrational numbers and, hence,
the reals more generally. Various commentaries pick up on
these claims.

R4.1. Rational numbers

Some commentators welcome our suggestion that the ANS repre-
sents rational numbers. Libertus, Duong, Fox, Elliott,
McGregor, Ribner, and Silver highlight evidence that ANS acuity
predicts math skills at school, and suggest that it may be fruitful to
explore whether the ANS’s involvement in rational number pro-
cessing relates to children’s later understanding of fractions and
decimals. This could be an important application of the
conjecture.

In a similarly constructive spirit, Zhang draws on measure-
ment theory to offer a technical proposal for how rational num-
bers might be constructed from placing ANS representations in
the numerator and denominator of a fraction. Meanwhile,
Yousif notes that the ANS’s (alleged) representation of rational
numbers offers to reframe findings typically interpreted as con-
gruency effects. A bias toward treating smaller objects as fewer
may result not from congruency effects of area/volume on num-
ber, but from interpreting the smaller objects as partial objects.
This possibility is certainly worth testing. We also agree with
his suggestion that more attention should be paid to the concept
of a visual/perceptual object (Green, 2018, 2019).

Extending our conjecture, Pinhas, Zaks-Ohayon, and Tzelgov
review fascinating evidence that the ANS represents zero. If that’s
right, we should say that the ANS most basically represents non-
negative integers (0, 1, 2, …) rather than natural numbers. But, if
zero enters into rational number representations in the way pos-
itive integers might, an intriguing possibility arises: Zero might
feature as the denominator of a fraction, enabling the ANS to rep-
resent infinity!

Ball, Gómez, Lyons, and Peacocke took a more skeptical tone.
In our target article, we proposed that, while the ANS most basi-
cally represents natural numbers, those natural numbers can enter
into ratios, indicating that the system represents rational numbers
as well. But these commentators worry that representing a ratio of
natural numbers is not the same as representing a rational
number.

As Peacocke puts the concern: “Appreciation that 6:4, 12:8, 3:2
are all the same ratio is not yet encoding that ratio as a single
number 1 ⅔.” He then proceeds to claim that the evidence we
cited in favor of our proposal only supports the conjecture that
the ANS represents ratios, not rational numbers as we suggest.
But what’s required for representing something as a rational num-
ber as opposed to a mere ratio? At one point, Peacocke says that
this would involve representing these “as having a certain position
in a rational number line.” This suggests that if the ANS could go
beyond matching ratios (e.g., representing that 6:4 and 12:8 are
equal) by ordering these into greater/lesser relations (e.g., repre-
senting that 6:4 < 7:4), then this would go some way toward show-
ing that the ANS is capable of representing rational numbers. But,
if this were all that’s required, our proposal would be favored by
the studies we described in which subjects use their ANS to gam-
ble on the more favorable of two ratios (Matthews & Chesney,
2015; Szkudlarek & Brannon, 2021).
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Lyons thinks the evidence we cited fails to show that rational
numbers are represented because it fails to show that the ANS
represents non-natural rational numbers greater than 1. But
there are non-natural rational numbers less than 1 (e.g., ½). So,
even if Lyons were right, the ANS could still represent some non-
natural rational numbers. Moreover, the fact that subjects can
gamble on the more favorable of two ratios suggests that they
can distinguish a ratio of (say) 2:3 from a ratio of 3:2, and thus,
if they represent any rational numbers at all, they do not merely
represent non-natural rational numbers less than 1.

Gómez notes that distance effects (a signature of the ANS)
show up when subjects compare certain symbolic numerical rep-
resentations (e.g., single Arabic digits), but appear less consis-
tently when they compare symbolic fraction representations.
This leads him to infer that the ANS may not represent rational
numbers. But, whether the ANS represents rational numbers is
one thing; whether it maps those representations onto symbolic
fractions is another.

Ball offers a means of adjudicating whether the ANS repre-
sents rational numbers or just ratios. He notes that extensive mag-
nitudes (numerical or otherwise) can be added to one another,
while intensive magnitudes cannot. But rational numbers are
extensive (½ and ¼ can be summed) while ratios are not (1:2
and 1:4 cannot be summed). To decide whether the ANS repre-
sents ratios or rational numbers, we should thus investigate
whether the ANS can add rational numbers.

In short, we love this suggestion. While we don’t know of exist-
ing evidence that speaks directly to Ball’s point, it nicely distin-
guishes ratios from rational numbers and is empirically testable.
(See footnote 6 of our target article for a complementary sugges-
tion about how to distinguish ratios from fractions.)

R4.2. Precision

Lyons takes the ANS’s imprecision to imply that it represents
“approximate number” (e.g., 13ish), suggests that this is at odds
with our proposal, and claims that this is something which cannot
be “easily squared” with our suggestion that the ANS represents
rational numbers – a conjecture which attributed “greater preci-
sion [to the ANS]… when what was needed was less.” But we
suggested that the ANS might represent “numerical intervals
(5–9, 1.25–1.75, etc.) (Ball, 2017), or probability distributions
over numerical intervals.” Either option would involve the ANS
referencing numbers, and be compatible with the representation
of rational numbers. If Lyons has something else in mind by
“approximate number” and “13ish,” it’s not clear to us what it is.

Lyons also claims that ANS imprecision should be attributed
to ANS content, and not ANS vehicles. This leads naturally to
the view that the ANS represents a (probability distribution
over) a range of values. When you see 10 dots flashed on a screen,
you represent there being 8 to 12 dots (or a bell-shaped probabil-
ity distribution that peaks at 10). But that can’t fully capture the
imprecision in the ANS. For if it did, then when queried as to the
number of dots, you should be able to reliably report the mid-
point of the range or the peak of the distribution (i.e., 10). But
subjects cannot do that. Some of the imprecision associated
with the ANS is exogenous to its content.

R4.3. Is the RPS part of the ANS?

Commentators such as Dramkin and Odic, Hecht, Mills, Shin,
and Phillips (Hecht et al.), and Hubbard and Matthews raise

a quite different worry for our hypothesis. They concede that
rational numbers are represented but deny that the ANS itself pro-
duces these representations. Rather, they think that there is a sep-
arate domain-general ratio processing system (RPS) that does all
the computing over ratios (for numbers, durations, distances,
etc.).

It’s important to recognize that this algorithmic-level hypoth-
esis is consistent with our computational-level hypothesis that the
ANS represents ratios. The key to seeing this is noting that “ANS”
is ambiguous. We use it to refer to a system that is individuated in
terms of its function: representing and computing over numbers
in accordance with Weber’s Law. But these commentators use it
to refer to a module that’s individuated by its inputs, outputs,
and algorithms. On their proposal, what we call the ANS is real-
ized by (at least) two modules: a number-specific module (which
confusingly is also sometimes called the ANS) and a domain-
general module for processing ratios (the RPS). Of course, the
RPS could be a component of non-numerical systems too. (The
respiratory system is distinct from the circulatory system, but
the lungs belong to both).

On our usage, the ANS is distinctive because it concerns num-
bers (rather than other magnitudes) and because it obeys Weber’s
Law (unlike other numerical or quasi-numerical systems, such as
the subitizing system). Our conjecture was thus not wedded to any
given account of the system’s underlying architecture. By analogy,
we noted that the visual system is often said to be unified by its
computational level description, despite comprising myriad sub-
modules (Clarke, 2021; Marr, 1982).

Henik, Salti, Avitan, Oz-Cohen, Shilat, and Sokolowski
acknowledge the point about levels of description but reject the
proposed unity of the ANS, claiming that neurophysiological evi-
dence supports a multi-system architecture which involves at least
one generalized magnitude system (cf. Walsh, 2003). But, even
bracketing evidence that tells against a generalized magnitude sys-
tem (Odic, 2018; Pitt et al., 2021), such possibilities are precisely
what a computational level description of the system leaves open
(Marr, 1982).

In emphasizing a computational level description of the ANS
we didn’t mean to suggest that an algorithmic or neurophysiolog-
ical description of the system is unimportant. Indeed, our target
article offered some brief speculations on this point. For instance,
we tentatively suggested that the ANS’s representation of rational
numbers may derive from its first assigning natural numbers to
concrete pluralities and only then deriving ratios or rational num-
bers from the relations between these. In so doing, our specula-
tions went beyond a bare computational level description,
suggesting possible stages of processing in the ANS’s analysis of
rational numbers. These speculations were put under pressure
by Hubbard and Matthews. They noted evidence that one’s
capacity to discriminate ratios is not correlated with one’s acuity
discriminating natural numbers under relevant conditions, and
that ANS training does not transfer to ratio tasks. Insofar, as
these studies are successfully measuring numerical ratios, they
are hard to square with our tentative proposal. Note, however,
that they are also hard to square with the proposal by Hecht
et al. and Dramkin and Odic that there is a domain-general
RPS that takes inputs from a variety of magnitude-specific mod-
ules. For that proposal also predicts that ANS acuity and numer-
ical ratio acuity should be correlated. In any case, we agree with
Hubbard and Matthews that “More research is necessary for the
final adjudication” and look forward to learning about future
findings in this area.
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R4.4. Irrational numbers

In proposing that the ANS represents rational numbers, we
stopped short of claiming that it represents irrational numbers
and, hence, the reals more generally. Gallistel now agrees. But,
while we take it to be a contingent matter that the ANS cannot
represent irrational numbers, Gallistel thinks this nomologically
necessary, claiming that no irrational number “can be represented
exactly by any physically realized system.”

We’re reluctant to go this far. The symbols “π” and “√2” rep-
resent exact irrational numbers. Perhaps, Gallistel simply means
that use of the symbol by a physical system will never be perfectly
precise. But, short of assuming the sensitivity principle, which we
were at pains to reject (and which no commentaries sought to
defend), it’s hard to see why this should rule out the representa-
tion of irrational numbers.

Our proposal was that extant behavioral evidence fails to support
the suggestion that the ANS represents irrationals. In saying this, we
acknowledged that future research could, potentially, uncover evi-
dence in favor of this suggestion. For instance, if behavioral evidence
were to suggest that the ANS is involved in calculating square roots,
this might provide evidence that we had not gone far enough.

Dramkin and Odic object to our emphasis on behavioral stud-
ies. They point out that behavioral measures can struggle to dis-
ambiguate performance from competence and may, therefore,
lead us to underestimate the full range of numbers the ANS rep-
resents. This is a genuine methodological worry. But, to overcome
these limitations, Dramkin and Odic claim that emphasis should
be diverted away from behavioral evidence and instead placed on
psychophysical models of ANS performance which treat “percep-
tual signals as highly continuous and in the domain of the reals.”

While we don’t wish to downplay the importance of psycho-
physical models, we’re not convinced. The potential problems
are two-fold. First, models are always idealizations (Weisberg,
2013). They allow us to abstract away from details of the real
world, and it’s not always clear whether details of the model
reflect simplifying assumptions or not. A good model answers
not only to reality, but also to the convenience of the modeler.
Thus, the “highly continuous” signals in models may not reflect
psychological reality. Second, it’s important to distinguish the
question of whether a model posits internal signals that are con-
tinuous from the question of whether the model posits represen-
tational contents that are continuous. A continuous vehicle can
represent discrete contents. Thus, even if the models to which
Dramkin and Odic allude were committed to a continuous per-
ceptual signal, it wouldn’t follow that they were committed to
continuous contents.

R5. Concluding remarks

Our defense of the view that the ANS represents number, and our
attempts to clarify the kinds of number it represents, have divided
opinion. While we remain optimistic about the main proposals in
our target article, understanding what the ANS represents strikes
us as an important and neglected issue regardless. Therefore, if
our discussion has helped highlight what is (and isn’t) at issue
in these debates, and inspired the pursuit of further empirical
and conceptual lines of inquiry, we’d take our efforts, and those
of our commentators, to have been worthwhile.

Acknowledgments. The authors thank Brian Huss and Kevin Lande for
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