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1700 Fribourg, Switzerland (nic.weisskopf@gmail.com)

(Received 20 June 2016)

Abstract We discuss the cobordism type of spin manifolds with non-negative sectional curvature. We
show that in each dimension 4k � 12, there are infinitely many cobordism types of simply connected
and non-negatively curved spin manifolds. Moreover, we raise and analyse a question about possible
cobordism obstructions to non-negative curvature.
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1. Introduction

Finding obstructions to non-negative or positive curvature on closed manifolds has a
long tradition in Riemannian geometry. In the present article, we want to deal with
the question of which rational cobordism invariants can be seen as obstructions to non-
negative curvature. One such obstruction is the signature, which is bounded on connected,
non-negatively curved and oriented manifolds by Gromov’s Betti number theorem.

Normalizing the diameter and imposing an additional upper curvature bound restricts
by Chern–Weil theory the Pontryagin numbers, and therefore the possible oriented cobor-
dism classes, to finitely many possibilities. Nevertheless, Dessai and Tuschmann [4] proved
that in all dimensions 4k � 8, there are infinitely many oriented cobordism types of sim-
ply connected and non-negatively curved manifolds. We generalize this result to spin
manifolds of non-negative sectional curvature.

Theorem 1.1. In every dimension 4k � 12, there are infinitely many cobordism types
of simply connected, closed spin manifolds of non-negative sectional curvature.
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Moreover, Kotschick [7] used slight generalizations of the examples given by Dessai
and Tuschmann to show that every linear combination of Pontryagin numbers that is not
a multiple of the signature is unbounded on oriented manifolds of non-negative sectional
curvature.

We emphasize that the spin case is more difficult to treat, since there are index-theoretic
obstructions. In fact, for spin manifolds with non-negative curvature the Â-genus, which
is the index of the Dirac operator, vanishes by a Lichnerowicz-type argument (cf. [8] in a
more general setting). It follows that the lower bound on the dimension in Theorem 1.1
is optimal, since in dimensions 4 and 8, every Pontryagin number is a linear combination
of the signature and the Â-genus.

Both the signature and the Â-genus can be seen as the first coefficient of different
expansions of the elliptic genus [5]. We recall that the elliptic genus φ(M) of a spin
manifold M4k is a modular function, which takes the value of the signature in one of its
cusps. In the other cusp, the elliptic genus admits the q-expansion

φ(M) = q−k/2 · Â

⎛
⎜⎝M ;

∞⊗
n odd
n�1

Λ−qnTCM ⊗
∞⊗

n even
n�1

SqnTCM

⎞
⎟⎠

= q−k/2 · (Â(M) − Â(M ;TCM)q ± · · · ) ∈ q−k/2Z[q].

This expansion can be taken as a definition for the elliptic genus.
One might ask whether the elliptic genus is constant on spin manifolds of non-negative

sectional curvature. For positive sectional curvature, this question was raised by Dessai
[3]. To our knowledge, the question is still open.

Some evidence for a positive answer to this question is provided by the following results.
First, the constancy of the elliptic genus has been shown by Hirzebruch and Slodowy [6]
in the case of homogeneous spaces. For biquotients, Singhof [11] gave some partial results.
Moreover, several results were obtained on the vanishing of the coefficients of the elliptic
genus in the context of isometric torus actions and positive sectional curvature by Dessai
[2,3] and the second author of this paper [13].

Since it is not evident whether the elliptic genus obstructs non-negative curvature, we
would like to raise the following question, which can be thought of as a direct analogue
of Kotschick’s result for spin manifolds, where we replace the signature by the elliptic
genus.

Question 1.2. Let f : ΩSO
4k ⊗ Q → Q be a linear combination of Pontryagin numbers,

which is not contained in the span of the coefficients of the elliptic genus. Is f unbounded
on connected, non-negatively curved spin 4k-manifolds?

A positive answer to this question would imply that the elliptic genus is the only
possible obstruction to non-negative curvature on spin manifolds from the point of view
of rational oriented cobordism. Here, we prove that Question 1.2 admits a positive answer
in dimensions up to 20.

Theorem 1.3. For k � 5, every linear combination f : ΩSO
4k ⊗ Q → Q of Pontrya-

gin numbers that is not contained in the span of the coefficients of the elliptic genus
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is unbounded on simply connected, closed spin 4k-manifolds of non-negative sectional
curvature.

In dimensions 4 and 8, this theorem is trivial, since any linear combination of Pon-
tryagin numbers in these dimensions lies in the span of the signature and the Â-genus,
and thus also in the span of the coefficients of the elliptic genus. Note that the proof of
Kotschick’s theorem involves the construction of a basis sequence for the rational cobor-
dism ring consisting of non-negatively curved manifolds. In the spin case treated here,
this is not possible, since in dimension 4, any non-negatively curved spin manifold is
rationally nullbordant, owing to the only Pontryagin number p1[M4] being a multiple of
the Â-genus.

We will prove these theorems by computing the cobordism type of certain spin
projective bundles over complex projective spaces.

The paper is structured as follows. In § 2 we introduce the relevant families of projective
bundles and discuss the cobordism type as well as the curvature properties. In § 3 we give
the proofs of the theorems.

2. Projective bundles over complex projective spaces

For the proof of Theorem 1.3, we need to construct some non-negatively curved families
of spin manifolds, whose Pontryagin numbers are mutually distinct. For this purpose
we consider the projectivization of complex vector bundles of rank 2k + 2 over the base
CP2l+1. In our case, the vector bundles decompose into a sum of complex line bundles.
This construction yields a suitable family for the proof of Theorem 1.3.

2.1. Construction of the families

We start with a complex vector bundle E of rank 2k + 2 over CP2l+1. Let

c(E) = 1 + c1(E) + · · · + c2k+2(E) ∈ H∗(CP2l+1; Z)

be the total Chern class of the vector bundle E. We take the projectivization P (E) with
respect to E and obtain a fibre bundle

CP2k+1 ↪→ P (E) � CP2l+1.

It follows from the Leray–Hirsch theorem that the cohomology ring H∗(P (E); Z) is gen-
erated as a free H∗(CP2l+1; Z) module by an element a ∈ H2(P (E); Z), subject to the
following relation

a2k+2 + a2k+1c1(E) + · · · + c2k+2(E) = 0.

For the notation, we fix b ∈ H2(CP2l+1; Z) to be a generator.
Next we are concerned with the spin structures of P (E). We recall that a closed ori-

ented manifold is spin if and only if its second Stiefel–Whitney class vanishes. The latter
constitutes a homotopy invariant, and we may compute it via the Wu formula [9]. Alter-
natively, one could apply the techniques of Borel and Hirzebruch [1] to determine the
Stiefel–Whitney classes.

Lemma 2.1. P (E) is spin if and only if c1(E) is even.
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Proof. We need to determine the second Wu class v2 ∈ H2(P (E); Z2), which is
uniquely characterized by the relation

〈v2 ∪ x, μP (E)〉 = 〈Sq2(x), μP (E)〉,

where μP (E) is the fundamental class and x ∈ H∗(P (E); Z2) is any element. The only
relevant cohomology group H4k+4l+2(P (E); Z2) is generated over Z2 by the two elements
a2kb2l+1 and a2k+1b2l. We use the Cartan formula to compute the Steenrod squares

Sq2(a2kb2l+1) = 0 and Sq2(a2k+1b2l) = c1(E)a2k+1b2l.

Thus, the second Wu class vanishes if and only if c1(E) is even, and so does the second
Stiefel–Whitney class by the Wu formula. �

We recall a general recipe for the computation of the Pontryagin classes of P (E). Our
approach is based on the techniques of Borel and Hirzebruch. First, we observe that the
fibre bundle structure of P (E) induces a splitting of the tangent bundle

TP (E) = π∗TCP2l+1 ⊕ ηE , (2.1)

where π∗TCP2l+1 is the pullback bundle induced by the projection and ηE is the complex
bundle along the fibres. Following [1, § 15.1, p. 515] the Chern classes of ηE are given by

c(ηE) =
2k+2∑
i=0

(1 + a)2k+2−ici(E).

From here, one can easily deduce the Pontryagin classes of ηE and, in view of the splitting
(2.1), the Pontryagin classes of P (E) can be determined via the product formula.

Following these general considerations we turn our attention to Theorem 1.3 and give
explicit families for the relevant dimensions. In dimension 12 we consider complex vector
bundles E4 → CP3 of the type

E4 = (c · γ1) ⊕ ε3 for c ∈ Z,

where γ1 denotes the dual Hopf bundle, c · γ1 is the c-fold tensor product of γ1 and ε3 is
the trivial vector bundle of rank 3 over CP3. The total Chern class is then given by

c(E) = 1 + c1(E) = 1 + c · b ∈ H∗(CP3; Z).

As before, we take the projectivization, which we write as X12
c . In view of the recipe, we

compute the Pontryagin numbers of X12
c .

Lemma 2.2. The Pontryagin numbers of X12
c are given by

p3
1[X

12
c ] = −8c3, p1p2[X12

c ] = −6c3, p3[X12
c ] = −c3.
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In dimension 16 we take complex vector bundles E4 → CP5 of the type

E4 = (c · γ1) ⊕ (2c · γ1) ⊕ (−3c · γ1) ⊕ ε1 for c ∈ Z.

Therefore, the total Chern class is given by

c(E) = 1 − 7c2 · b2 − 6c3 · b3 ∈ H∗(CP5; Z).

In particular, the first Chern class vanishes. As before, we projectivize these bundles
to obtain a family Y 16

c of CP3 bundles over CP5. The computation of the Pontryagin
numbers is carried out according to the recipe.

Lemma 2.3. The Pontryagin numbers of Y 16
c are given by

p4
1[Y

16
c ] = 768c3(12 + 56c2), p2

1p2[Y 16
c ] = 384c3(15 + 56c2),

p1p3[Y 16
c ] = 48c3(42 + 56c2), p2

2[Y
16
c ] = 144c3(24 + 56c2), p4[Y 16

c ] = 288c3.

Our family of 20-dimensional examples is similar to the one in dimension 12. We take
the rank 4 complex vector bundles

E4 = (c · γ1) ⊕ ε3 for c ∈ Z

over CP7. We denote the projectivizations as Z20
c .

Lemma 2.4. The Pontryagin numbers of Z20
c are given by

p5
1[Z

20
c ] = −64c3(3c4 + 30c2 + 80), p3

1p2[Z20
c ] = −2c3(39c4 + 480c2 + 1456),

p2
1p3[Z20

c ] = −3c3(3c4 + 80c2 + 352), p1p
2
2[Z

20
c ] = −c3(27c4 + 456c2 + 1616),

p1p4[Z20
c ] = −8c3(3c2 + 29), p2p3[Z20

c ] = −c3(3c4 + 96c2 + 580),

p5[Z20
c ] = −28c3.

Finally, it is important to note that the elliptic genus vanishes on our families X12
c ,

Y 16
c and Z20

c . This follows from a result by Ochanine [10] stating that the elliptic genus
is multiplicative in spin fibre bundles.

2.2. Non-negative curvature on the families

Next, we show that the examples we will use to prove the theorems admit a metric of
non-negative curvature. We do so in a slightly more general setting.

Let E be a complex vector bundle of rank k over the base B = CPl and assume it
decomposes as a Whitney sum E =

⊕k
i=1 γi of complex line bundles γi. Let P be a

principal Tk bundle such that E = P ×Tk Ck = (P × Ck)/Tk. Using a theorem of Stewart
[12] it is possible to lift the standard action of SU(l + 1) on CPl to P . Then, P is a
homogeneous space P = (SU(l + 1) × Tk)/ρ(U(l)) where the first component ρ1 of ρ is a
standard embedding, such that CPl = SU(l + 1)/ρ1(U(l)) and ρ2 depends on the principal
torus bundle.
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Since ρ2|SU(l) has to be trivial, we obtain

P̂ = SU(l + 1)/ρ(SU(l)) ∼= S2l+1 × Tk.

Let Ê = P̂ ×Tk Ck. For the associated sphere bundles we get S(Ê) = P̂ ×Tk S2k−1 ∼=
S2l+1 × S2k−1 and S(E) = S(Ê)/S1. So the projectivized bundle P(E) is a quotient of
S2l+1 × S2k−1 by a free, isometric T2-action and therefore carries a metric of non-negative
curvature.

3. Proofs of the theorems

We combine the topological and geometric ingredients to prove Theorem 1.3. It follows
from the modular properties of the elliptic genus that its coefficients span a (k + 1)-
dimensional subspace of the dual space of ΩSO

8k ⊗ Q and ΩSO
8k+4 ⊗ Q, respectively. For the

proof it suffices to show that the remaining linear combinations of Pontryagin numbers
are unbounded on our families.

Proof of Theorem 1.3 for k = 3. Let f : ΩSO
12 ⊗ Q → Q be a linear combination of

Pontryagin numbers that is not contained in the span of the coefficients of the elliptic
genus. From Thom’s work, it is well known that ΩSO

12 ⊗ Q is a three-dimensional Q-vector
space. Using

sign(M) =
1

945
(62p3[M ] − 13p1p2[M ] + 2p3

1[M ])

and

Â(M) =
1

967680
(−16p3[M ] + 44p1p2[M ] − 31p3

1[M ])

it is simple to check that the linear combination f is given by

f([M ]) = λ1sign(M) + λ2Â3(M) + λ3p3[M ] for λi ∈ Q.

Moreover, the coefficients of the elliptic genus in dimension 12 are spanned by the
signature and the Â-genus, and so we conclude that λ3 
= 0.

We now evaluate the linear combination f on the family X12
c . We recall that the latter

is non-negatively curved and spin when c is even. We also note that by multiplicativity,
the elliptic genus vanishes on X12

2c . By Lemma 2.2, we conclude that

f([X12
2c ]) = λ3p3[X12

2c ] = −8λ3c
3

and f is unbounded. Thus, we have shown that f is unbounded on non-negatively curved
spin manifolds, which is exactly the claim. �

Proof of Theorem 1.3 for k = 4. The proof goes along the same lines as the pre-
vious case. In this dimension, the coefficients of the elliptic genus are spanned by the
signature, the Â-genus and the index of the twisted Dirac operator Â(M ;TCM). Moreover,
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ΩSO
16 ⊗ Q is a five-dimensional Q-vector space and f is expressed by a linear combination

f([M ]) = λ1sign(M) + λ2Â4(M) + λ3Â4(M ;TCM) + λ4p
4
1[M ] + λ5p4[M ]

for some λi ∈ Q. By the multiplicativity in spin fibre bundles, the elliptic genus vanishes
on Y 16

c and, in view of Lemma 2.3, the evaluation yields

f([Y 16
c ]) = c3(768(12 + 56c2)λ4 + 288λ5).

Clearly, this is unbounded for (λ4, λ5) 
= (0, 0), and the claim follows. �

Proof of Theorem 1.3 for k = 5. In this dimension, a linear combination of Pon-
tryagin numbers f : ΩSO

20 ⊗ Q → Q has the form

f([M ]) = λ1sign(M) + λ2Â5(M) + λ3Â5(M ;TCM) + λ4p5[M ]

+ λ5p1p4[M ] + λ6p2p3[M ] + λ7p
2
1p3[M ]

with coefficients λi ∈ Q. Evaluating on Z20
2c , we obtain by Lemma 2.4

f([Z20
2c ]) = 27 · c7(−3λ6 − 9λ7) + 25 · c5(−24λ5 − 96λ6 − 240λ7)

+ 23 · c3(−28λ4 − 232λ5 − 580λ6 − 1056λ7).

By the product formula for the Pontryagin classes we compute

f([X12
2c × HP2]) = 23 · c3(−7λ4 − 46λ5 − 73λ6 − 108λ7).

Both families are spin and non-negatively curved. If f([Z20
2c ]) and f([X12

2c × HP2]) are
bounded, then all coefficients of these polynomials in c must vanish, which implies λ4 =
λ5 = λ6 = λ7 = 0. So a bounded linear combination f must be contained in the span of
the coefficients of the elliptic genus. �

As a consequence, we are able to prove Theorem 1.1. The proof follows from the
polynomial structure of the rational oriented cobordism ring.

Proof of Theorem 1.1. For a given dimension, we need to find a family of non-
negatively curved spin manifolds with mutually distinct cobordism types. We recall that
the rational cobordism type is uniquely determined by the Pontryagin numbers. In dimen-
sions 12 and 16, such families are given by X12

2c and Y 16
c , and the claim follows from

Theorem 1.3.
For the dimensions 4k � 20, the family X12

2c × HPk−3 has the desired properties. In
fact, this family is spin and non-negatively curved via the product metric. On the other
hand, it is well known that

ΩSO
∗ ⊗ Q = Q[[X2(4)], [HP2], [HP3], . . .].

In other words, the K3 surface X2(4) and the quaternionic projective spaces form a
sequence generating the rational cobordism ring as a polynomial ring. Therefore, multi-
plication with the element [HPk−3] is injective for k � 5. Hence, the cobordism types of
X12

2c × HPk−3 are mutually distinct, which completes the proof. �
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