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Abstract: Organochlorine contaminants (OCs) and polybrominated diphenyl ethers (PBDEs) were
investigated in the eggs of five bird species from the South Shetland Islands. Additionally, OCs and
PBDEs were also analysed in embryos of two species. The concentration ranges in eggs were (ng g-1 wet
weight) 2.11 to 541 for polychlorinated biphenyls (PCBs), < 0.25 to 0.88 for PBDEs, 2.45 to 405 for
p,p’-DDE and 1.50 to 603 for mirex. The PCBs were predominant in the eggs ofMacronectes giganteus,
Catharacta antarctica and Larus dominicanus, whereas hexachlorobenzene (HCB) was the major
compound found in the eggs of Pygoscelis antarcticus and Sterna vittata. The PBDE congeners were
detected only in the eggs of C. antarctica (PBDE 47 and 153) and S. vittata (PBDE 47). There were
differences in OC concentrations of up to two orders of magnitude betweenM. giganteus embryos which
were related to the development stage and OC concentrations in the respective eggs. Trophic ecology and
post-breeding dispersal exerted an influence on contaminant patterns. Comparisons with data from the
literature indicate an increase in the concentrations of some OCs over recent years.
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Introduction

Many organic contaminants undergo long-range transport
and can be found at relatively high concentrations in
remote environments (Bustnes et al. 2007). Recent studies
have demonstrated the presence of organochlorine
pesticides (OCPs), polychlorinated biphenyls (PCBs)
and polybrominated diphenyl ethers (PBDEs) in the
Antarctic marine food web (Schiavone et al. 2009,
Taniguchi et al. 2009, Corsolini et al. 2011, Cipro et al.
2013). Monitoring such contaminants is important to
gain a better understanding of the dynamics in polar
regions and to assess the impact of these compounds on
the environment.

Bird eggs have proven to be particularly useful as
bioindicators of organohalogens in aquatic environments
and have been used in environmental contamination
studies at high latitudes (e.g. Braune et al. 2007,
Schiavone et al. 2009, Vander Pol et al. 2009, Corsolini
et al. 2011, Cipro et al. 2013). Contaminant concentrations
in eggsmay also assist in the assessment of hazards faced by
adult birds, as the composition of these contaminants
directly reflects that in maternal tissues (Russell et al. 1999).

Little data is available regarding contamination in
developing embryos, which are often exposed to similar
levels of organic contaminants as adults but exhibit

greater toxicological sensitivity (Barron et al. 1995,
Russell et al. 1999). Field and experimental studies have
shown embryonic exposure during development due to
the absorption of contaminants from yolk (Bargar et al.
2001, Zheng et al. 2014). Information on embryonic
exposure to contaminants is important both to evaluate
toxic effects in early life stages and in making ecological
risk assessments.

Ecological patterns may influence the levels of
contaminants in birds (Corsolini et al. 2011). Thus, the
comparison of species in different trophic positions and
with diverse distribution and/or migration patterns is
useful in assessing the differences in exposure to
contaminants. For example, species that forage or breed
in Antarctica in the summer and migrate to lower latitudes
may accumulate a greater amount of contaminants if they
winter in polluted areas compared to birds that breed on
the Antarctic continent or islands and overwinter in the
Southern Ocean (Corsolini 2009).

This study assessed levels of OCPs, PCBs and PBDEs
in the eggs of southern giant petrels (Macronectes
giganteus (Gmelin)) and chinstrap penguins (Pygoscelis
antarcticus (Forster)) breeding in the South Shetland
Islands. These birds have distinct distribution ranges
and feeding habits. In order to contribute to the scarce
data relating to contamination levels in some bird species
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in the area, organohalogen concentrations are also
reported for a small number of eggs from brown skuas
(Catharacta antarctica Lesson), kelp gulls (Larus
dominicanus (Lichtenstein)) and Antarctic terns (Sterna
vittata Gmelin), as well as for embryos of M. giganteus
and S. vittata. These data provide a qualitative and
quantitative indication of the impact of contaminants in
the Antarctic ecosystem.

Material and methods

Sampling

The eggs of five seabird species [C. antarctica (n = 2),
L. dominicanus (n = 1), S. vittata (n = 3), M. giganteus
(n = 8) and P. antarcticus (n = 7)] from the South
Shetland Islands (62°S, 58°W), Antarctica, were collected
during the summers of 2011 and 2012. Sampling was
opportunistic and only unhatched or deserted eggs were
collected. Egg contents (yolk, albumen and embryos) were
stored in glass vials (previously decontaminated at 450°C
for 4 hours) and kept frozen at -20°C until analysis. In the
case of eggs containing embryos, the residual yolk and
albumen were carefully removed, stored and analysed
separately from the embryos.

The incubation stage of the embryos was estimated
based on Romanoff (1960), Hays & LeCroy (1971) and
Freeman & Vince (1974) using morphological characters
and the amount of yolk and albumen in the egg, which are
consumed during embryo growth. Albumen is a reserve of
protein and water that the embryo does not utilize in the
early stages of incubation (Carinci & Manzoli-Guidotti
1968). In later development stages, the albumen and a
portion of the yolk are consumed, which is the only source
of lipids during embryo growth. Part of the yolk remains
after hatching to provide immediate post-hatching energy
to the chicks (Romanoff 1960, Freeman & Vince 1974).

Chemical analyses

The egg content (yolk and albumen) and whole embryos
were homogenized in an Ultra-Turrax apparatus. The
analytical procedure was optimized from the method
described by MacLeod et al. (1986). Five grams of wet
sample were extracted, after the addition of anhydrous
Na2SO4, in a Soxhlet apparatus for 8 hours using 80 ml
of n-hexane and methylene chloride (1:1, v/v). Before
extraction, 2,2’,4,5’,6-pentachlorobiphenyl (PCB 103)
and 2,2’,3,3’,4,5,5’,6-octachlorobiphenyl (PCB 198) were
added to all samples, blanks and reference material as
surrogates for OCPs, PCBs and PBDEs. The extractable
lipids were determined by gravimetric method using a
100 µl aliquot. The extracts were cleaned using column
chromatography with 8 g of silica and 16 g of alumina,
both 5% water deactivated, eluted with 80 ml of

methylene chloride. The fraction was further purified by
high-performance liquid chromatography using methylene
chloride as the eluent, with a flow of 5mlmin-1. The extract
was concentrated to a volume of 0.9 ml in hexane. The
internal standard 2,4,5,6-tetrachlorometaxylene (TCMX)
was added before the gas chromatographic analysis.
A procedural blank was included for each set of eight
samples.

The OCP identification and quantification analyses were
performed using an Agilent Technologies 6890N gas
chromatograph with an electron capture detector (GC-
ECD) with a 30mx0.25mm i.d. capillary column coated
with a 5% phenyl-substituted dimethylpolysiloxane phase
(0.25 μm film thickness). Automatic splitless injections of
2 μl were applied and the total purge rate was adjusted
to 50mlmin-1. Hydrogen was the carrier gas (constant
pressure of 40 kPa at 100ºC) and nitrogen was the make-up
gas at a rate of 60ml min-1. The PCBs and PBDEs were
quantitatively analysed using a gas chromatograph (5973N
Agilent Technologies) coupled to a mass spectrometer
(GC-MS) in the selected ion mode (SIM 70 eV) with
a 30mx0.25mm i.d. capillary column coated with 5%
phenyl-substituted dimethylpolysiloxane phase (0.25 μm
film thickness). The volume injected was 1 µl in automatic
splitless mode. Helium was used as the carrier gas (constant
flow of 1.1ml min-1).

For the quality assurance/control, the analytical
methodology was validated using a standard reference
material (SRM) for PCBs, OCPs and PBDEs (SRM 1945;
organics in whale blubber, www.nist.gov) purchased from
the National Institute of Standards and Technology
(NS&T). The recovery of analytes and surrogates in the
SRM, spiked blanks and matrices produced satisfactory
results within the range accepted by the NS&T (Wade &
Cantillo 1994). Analytes in laboratory blanks were
subtracted from the samples. Method quantification
limit (QL) values were (ng g-1 wet weight): < 0.11 to 1.27
for OCPs, < 0.11 to 2.36 for PCBs, and < 0.25 to 1.29 for
PBDEs. The quantification of analytes was performed
using a nine-level analytical curve and followed the
internal standard procedure.

The concentration of organochlorines was expressed on a
wet weight basis. Fifty-one PCB congeners (International
Union of Pure andApplied Chemistry (IUPAC) # 8, 18, 28,
31, 33, 44, 49, 52, 56, 60, 66, 70, 74, 77, 81, 87, 95, 97, 99,
101, 105, 110, 114, 118, 123, 126, 128, 132, 138, 141, 149,
151, 153, 156, 157, 158, 167, 169, 170, 174, 177, 180, 183,
187, 189, 194, 195, 201, 203, 206 and 209) and seven PBDEs
(IUPAC# 28, 47, 100, 99, 154, 153 and 183) were analysed.
The OCPs analysed were DDTs (o,p’-DDT, p,p’-DDT,
o,p’-DDD, p,p’-DDD, o,p’-DDE and p,p’-DDE), HCHs
(α, β-, δ- and γ-isomer), chlordanes (α-, γ-chlordane and
oxychlordane), drins (aldrin, isodrin, dieldrin and endrin),
heptachlor, heptachlor epoxideA andB, endosulfan I and II,
methoxychlor, hexachlorobenzene (HCB), and mirex.
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Results

Eggs

Generally, PCBs were predominant in the eggs of
C. antarctica, L. dominicanus and M. giganteus (followed
by p’p-DDE and HCB). Among OCs, mirex had the
highest concentration in some C. antarctica and
M. giganteus eggs. In P. antarcticus and S. vittata eggs,
HCB was the major compound (Table I). The PBDE
congeners were detected only in eggs of C. antarctica
(PBDE 47 and 153) and S. vittata (PBDE 47), but at
concentrations close to the QL.

The eggs of C. antarctica and M. giganteus had the
highest concentrations of OCs, which were from one to
two orders of magnitude higher than those found in the
eggs of P. antarcticus and S. vittata. Intermediate levels
of OCs were exhibited by L. dominicanus, lower than
C. antarctica andM. giganteus but higher thanP. antarcticus
and S. vittata (Table I). The only M. giganteus egg that
showed low concentrations of OCs (two orders of
magnitude lower than the other eggs) contained an
embryo in an advanced stage of development.

The PCB profiles in the eggs of C. antarctica,
M. giganteus and L. dominicanus were very similar, with

Table I. Concentration range (ng g-1 wet weight) of organochlorine and brominated contaminants in bird eggs and embryos from Antarctica.

Σ PCBs Σ PBDEs HCB γ-HCH Oxychlordane Dieldrin p,p'-DDE p,p'-DDT p,p'-DDD Mirex Lipids %

Eggs
Catharacta antarctica 492.00 0.33 139.00 < 0.18 31.60 4.61 270.00 13.76 3.97 603.00 11.30
Catharacta antarctica 541.00 0.88 44.20 < 0.18 13.70 3.61 144.00 7.63 1.99 351.00 6.40
Macronectes giganteus 201.00 < 0.25 84.10 < 0.18 19.20 2.51 148.00 < 0.47 < 0.27 35.10 7.32
Macronectes giganteus 241.00 < 0.25 214.00 < 0.18 26.20 < 0.12 101.00 < 0.47 < 0.27 2.69 11.00
Macronectes giganteus 220.00 < 0.25 162.00 < 0.18 24.30 1.89 160.00 < 0.47 < 0.27 8.38 11.50
Macronectes giganteus 96.60 < 0.25 80.80 < 0.18 14.40 1.77 62.50 < 0.47 < 0.27 1.50 9.22
Macronectes giganteus* 7.80 < 0.25 3.35 0.45 1.38 < 0.12 11.90 < 0.47 < 0.27 25.20 13.10
Macronectes giganteus* 112.00 < 0.25 54.30 < 0.18 11.40 1.83 90.80 6.51 < 0.27 104.00 7.78
Macronectes giganteus 148.00 < 0.25 105.00 < 0.18 20.60 2.59 167.00 13.30 < 0.27 259.00 7.62
Macronectes giganteus* 138.00 < 0.25 49.00 < 0.18 17.40 1.98 143.00 9.05 < 0.27 272.00 8.10
Larus dominicanus 74.20 < 0.25 34.56 < 0.18 4.57 0.43 45.83 < 0.47 < 0.27 17.95 7.80
Sterna vittata 25.80 0.65 36.10 1.20 1.68 < 0.12 17.70 < 0.47 < 0.27 12.20 14.30
Sterna vittata 8.23 < 0.25 10.70 < 0.18 < 0.67 < 0.12 10.00 < 0.47 < 0.27 3.38 7.48
Sterna vittata* 11.90 0.31 20.10 < 0.18 0.87 < 0.12 16.50 < 0.47 < 0.27 6.15 10.50
Pygoscelis antarcticus 2.11 < 0.25 18.70 < 0.18 1.19 1.11 12.40 0.91 < 0.27 4.03 6.06
Pygoscelis antarcticus 2.84 < 0.25 14.70 < 0.18 1.03 0.94 15.90 1.45 < 0.27 3.39 5.60
Pygoscelis antarcticus 5.16 < 0.25 30.00 0.60 0.96 1.54 16.80 < 0.47 < 0.27 4.12 7.39
Pygoscelis antarcticus 3.09 < 0.25 34.60 < 0.18 1.24 1.47 18.00 1.17 < 0.27 4.64 7.90
Pygoscelis antarcticus 2.57 < 0.25 19.30 0.26 1.06 1.05 15.10 0.88 < 0.27 2.15 8.24
Pygoscelis antarcticus 3.89 < 0.25 29.40 0.75 1.06 0.80 17.40 0.75 < 0.27 3.43 8.32
Pygoscelis antarcticus 3.14 < 0.25 15.20 0.31 < 0.67 0.68 10.60 0.59 < 0.27 2.35 8.24
Embryos
Macronectes giganteus 344.00 < 0.25 199.00 < 0.18 43.80 3.29 405.00 16.00 < 0.27 495.00 0.66
Macronectes giganteus 5.33 < 0.25 2.83 < 0.18 1.02 < 0.12 7.21 0.72 < 0.27 17.60 0.36
Macronectes giganteus 4.10 < 0.25 2.66 < 0.18 1.27 < 0.12 11.00 0.86 < 0.27 13.70 0.42
Sterna vittata 2.63 < 0.25 2.49 < 0.18 < 0.67 < 0.12 2.45 < 0.47 <0.27 1.98 1.22

*Eggs containing an embryo.

Fig. 1. Contribution of polychlorinated biphenyl (PCB) congeners, according to chlorination number, in the eggs of a. brown skuas
(Catharacta antarctica), southern giant petrels (Macronectes giganteus) and kelp gulls (Larus dominicanus), and b. chinstrap
penguins (Pygoscelis antarcticus) and Antarctic terns (Sterna vittata).
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a predominance of hexa- and heptachlorobiphenyls and
the presence of congeners with eight and nine chlorine
atoms. In contrast, in the eggs of P. antarcticus and
S. vittata hexachlorobiphenyls were clearly the predominant
congeners and PCBs with a lower chlorination number
were also detected (Fig. 1).

Embryos

Three out the eightM. giganteus eggs contained embryos.
The incubation time of this species is c. 60 days. Based on
the presence of few external structures (wings, beak) and a
large quantity of albumen and yolk, two embryos were
thought to be in the early stages of development. One
embryo was in a later development stage, with well-
defined external structures (claws, toes, culmen, wings
and eyes) and the egg contained only a small portion of
yolk and no albumen.

Differences in OC concentrations were up to two orders
of magnitude in the M. giganteus embryos (Table I). The
embryos in initial growth stage had lower concentrations

than their respective eggs (albumen and yolk). The
embryo in the more advanced stage of development had
the highest OC concentrations and its egg had the lowest
concentrations of all OCs detected (Fig. 2).

The incubation time of S. vittata is c. 24 days. An
S. vittata embryo found in one of the eggs was estimated
to be 9–12 days old, with down just breaking out along
dorsal tract and tail, wings, toes and claws visible, but
still with a significant amount of yolk and albumen
(approximately half of the internal space of the egg). In
the S. vittata embryo, PCBs, HCB, p’p-DDE and mirex
were detected but at lower concentrations relative to the
M. giganteus embryos (Table I).

The S. vittata embryo had a predominance of
hexachlorobiphenyls (also seen in the eggs of this
species), but also a contribution of tri-, tetra- and
pentachlorobiphenyls. Whereas M. giganteus embryos
had a predominance of hexa- and heptachlorobiphenyls
and the presence of heavier congeners (octa- and
nonachlorobiphenyls) (Fig. 3).

Discussion

The OC concentrations in the eggs of M. giganteus and
P. antarcticus reflect the trophic ecology of these birds and
the differences in post-breeding dispersal. Macronectes
giganteus is a migratory species and its females have a
greater dependence on marine prey, such as fish and
cephalopods, although they also feed on carrion of other
birds and marine mammals (Hunter 1983, Forero et al.
2005). On the other hand, P. antarcticus forages only in
the Southern Ocean and feeds mainly on krill and small
fish (Volkman et al. 1980), which explains the lower
concentrations of contaminants in the eggs of this species.

Despite the small number of samples, the OC levels found
in the eggs of the other Antarctic birds included in this study
also indicated the influence of trophic status on contaminant
patterns (C. antarctica > L. dominicanus > S. vittata).
Catharacta antarctica feeds mainly on carrion, eggs and
chicks of penguins and Procellariiformes (Pietz 1987,
Phillips et al. 2004). Larus dominicanus feeds on a variety
of prey, from carrion to amphipods, but the Antarctic
limpet (Nacella concinna (Strebel)) is its primary food in
the breeding season (Favero et al. 1997). Sterna vittata
represents the lower trophic level among the three species,
with a diet similar to P. antarcticus (Volkman et al. 1980,
Casaux et al. 2008).

Mirex is one of the most stable and persistent
pesticides, which was primarily used as an insecticide in
many countries of South America and South Africa
(Ritter et al. 1995). It was banned under the Stockholm
Convention on Persistent Organic Pollutants in 2001.
During the non-breeding season, M. giganteus and
C. antarctica travel to these areas to feed (Del Hoyo et al.
1996, Sander et al. 2010). Thus, the higher concentrations of

Fig. 2. Concentrations of the major organochlorine (OC)
compounds found in the embryos of southern giant petrels
(Macronectes giganteus) and their respective eggs. Circled
markers correspond to the values detected for the egg/embryo
in later development stage, while the remaining markers show
the values for the eggs/embryos in earlier development stage.

Fig. 3. Contribution of polychlorinated biphenyl (PCB)
congeners, according to chlorination number, in the
embryos of southern giant petrels (Macronectes giganteus)
and Antarctic terns (Sterna vittata).
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mirex in the eggs of both species are probably associatedwith
their migration habits, additional to biomagnification.

Hexachlorobenzene is a semi-volatile compound that
reaches the coldest regions of the planet by long-range
atmospheric transport (Simonich & Hites 1995). An
increase in HCB concentrations in recent years is
evident through a comparison with data reported in
previous studies (Zhang et al. 2007, Schiavone et al. 2009,
Corsolini et al. 2011). In the present investigation, HCB
levels were up to one order of magnitude higher relative to
levels reported in the eggs of P. antarcticus collected
between 2003 and 2005 in the same region (Schiavone
et al. 2009). Macronectes giganteus eggs also had higher
HCB concentrations than those reported in eggs collected
in 2001 and 2002 on the Fildes Peninsula (Zhang et al.
2007). A similar increase in PCBs and p,p’-DDE has
also occurred in the eggs of M. giganteus in comparison
to data reported by Zhang et al. (2007), whereas
P. antarcticus eggs exhibited very similar concentrations
to those described by Schiavone et al. (2009). This
could be an indication of a rise in the levels of some
contaminants at lower latitudes of the Southern
Hemisphere, as well as the Southern Ocean.

Low chlorinated PCBs are expected to reach polar regions
faster due their greater volatility in comparison to highly
halogenated congeners (Wania & Dugani 2003). The PCBs
with low chlorination levels are reported to be predominant
in key species from the base of the Antarctic marine
food web, such as silverfish (Pleuragramma antarcticum
Boulenger) and krill (Euphasia superba Dana), although
heavier PCB congeners have also been found (Corsolini et al.
2002, Cipro et al. 2010). Species that feed at lower trophic
positions, P. antarcticus and S. vittata, exhibited low
chlorinated PCBs (although these compounds were not
predominant). Higher chlorinated PCBs were prevalent in
the eggs ofM. giganteus,C. antarctica andL. dominicanus
as a result of bioaccumulation and biomagnification.
High chlorinated PCBs are usually predominant in long-
living predators that feed at high trophic positions
(Corsolini et al. 2011, Cipro et al. 2013) due to the easier
transformation and elimination of PCB congeners of a
low molecular weight, which results in the accumulation
of compounds with a greater number of chlorines
(Maervoet et al. 2004).

Generally, PBDEs are found at lower concentrations in
comparison to other organic contaminants, such as PCBs
andDDTs (Corsolini et al. 2006, Yogui & Sericano 2009).
However, PBDE 47, which was detected in the eggs of
both S. vittata andC. antarctica, has greater volatility and
water solubility and is the most abundant congener in krill
and fish in Antarctica (Corsolini et al. 2006). Similar to
some high halogenated PCBs, PBDE 153 is more resistant
to biotransformation and tends to accumulate at higher
trophic positions, which explains its occurrence only in
the eggs of C. antarctica.

The inverse association between concentrations in the
residual egg contents and in the embryos of M. giganteus
in different development stages may be an indication of
the transfer of contaminants during embryo growth.
Custer et al. (1997) reported the transfer of contaminants
from yolk to the embryo, but suggest that no metabolic
changes appear to occur during embryo growth and
lipid mobilization. Yolk is a lipid-rich energy source
that remains in the embryo (c. 30%) after hatching
(McLaughlin et al. 1963) and contains up to 60% of the
total concentrations of OCs (Custer et al. 1997). Most of
the contaminant load in the egg may be transferred to the
embryo, but not readily absorbed and metabolized.

As was observed in the eggs, the PCB profiles in
embryos of M. giganteus and S. vittata also reflect the
differences associated with trophic status. In comparison
to M. giganteus, S. vittata has a lower trophic status and
exhibited a predominance of tri- (19.6%), tetra- (16.7%),
penta- (17.1%) and hexachlorobiphenyls (38.2%), which
accounted for 91.6% of total PCBs, whereas 92.2% of
total PCBs in M. giganteus were constituted by hexa-
(46.2%), hepta- (37.9%) and octachlorobiphenyls (8.1%).

Conclusions

The present analysis of bird eggs and embryos
demonstrates the influence of ecological factors, such as
dispersal and diet, on contaminant levels and patterns.
These factors should be carefully considered when
comparing contamination data between different species
and populations. Despite the small number of samples,
long-range migratory species, such as M. giganteus
and C. antarctica, exhibited contamination from both
breeding and migration areas, whereas OCs in resident
birds mainly reflected the compounds found at higher
concentrations in the Antarctic environment due to
atmospheric transport, such as HCB. In agreement with
data found in the literature, lower levels of PBDEs
were found in comparison to OCs. Comparisons with
data from previous studies indicate an increase in
concentration of some contaminants, such as HCB,
PCBs and p,p’-DDE. The use of eggs (regardless the
incubation stage) as bioindicators is an easy, efficient
method for the continuous monitoring and evaluation of
changes in contaminant concentrations in the Antarctic
environment.
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