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Abstract. We define a new class of shift spaces which contains a number of classes of
interest, like Sturmian shifts used in discrete geometry. We show that this class is closed
under two natural transformations. The first one is called conjugacy and is obtained by
sliding block coding. The second one is called the complete bifix decoding, and typically
includes codings by non-overlapping blocks of fixed length.
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1. Introduction
Shift spaces are the sets of two-sided infinite words avoiding the words of a given language
F denoted by X F . In this way the traditional hierarchy of classes of languages translates
into a hierarchy of shift spaces. The shift space X F is called of finite type when one starts
with a finite language F and sofic when one starts with a regular language F .

There is a natural equivalence between shift spaces called conjugacy. Two shift spaces
are conjugate if there is a sliding block coding sending bijectively one upon the other
(in this case the inverse map has the same form). Many basic questions are still open
concerning conjugacy. For example, it is surprisingly not known whether the conjugacy of
shifts of finite type is decidable.

The complexity of a shift space X is the function n 7→ p(n) where p(n) is the number
of admissible blocks of length n in X . The complexities of conjugate shifts of linear
complexity have the same growth rate (see [19, Corollary 5.1.15]).

In this paper, we are interested in shift spaces of at most linear complexity. This class
is important for many reasons and includes the class of Sturmian shifts which are by
definition those of complexity n + 1, which play a role as binary codings of discrete lines.
Several books are devoted to the study of such shifts (see [19] or [21] for example). We
define a new class of shifts of at most linear complexity, called eventually dendric, which
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extends the class of dendric shifts introduced in [5] (under the name of tree sets given
to their language) which themselves extend naturally strict episturmian shifts (also called
Arnoux–Rauzy shifts [1]) and interval exchange shifts.

Our first main result is that this class is closed under conjugacy. We also prove that it is
closed under a second transformation, namely complete bifix decoding, which is important
because it includes coding by non-overlapping blocks of fixed length. These two results
show the robustness of the class of eventually dendric shifts, giving a strong motivation for
its introduction.

Recently, Michael Damron and Jon Fickenscher have studied a class of recurrent shifts
satisfying a condition called the regular bispecial condition. They proved that the number
of ergodic measures on such shifts is bounded by (K + 1)/2, where K is the limiting value
of the differences p(n + 1)− p(n) and p is the complexity [11]. We will see that these
shifts are precisely the recurrent eventually dendric shifts.

The class of dendric shifts (defined below) is known to be closed under complete bifix
decoding (see [7]) but it is not closed under conjugacy. This fact was the initial motivation
for introducing eventually dendric shifts, following a suggestion of F. Durand.

We now describe the results in some more detail.
A dendric shift X is defined by introducing the extension graph of a word in the

language L(X) of X and by requiring that this graph is a tree for every word in L(X).
It has many interesting properties which involve free groups. In particular, in a dendric
shift X on the alphabet A, the group generated by the set of return words to some word in
L(X) is the free group on the alphabet and, in particular, has Card A free generators. This
generalizes a property known for Sturmian shifts whose link with automorphisms of the
free group was noted by Arnoux and Rauzy.

The class of eventually dendric shifts, introduced in this paper, is defined by the property
that the extension graph of every wordw in the language of the shift is a tree for every long
enough word w.

Our main results are that the class of eventually dendric shifts is closed under:
• conjugacy (Theorem 6.1); and
• complete bifix decoding (Theorem 9.2).

The paper is organized as follows. In the first section, we introduce the definition of
the extension graph and of an eventually dendric shift. In §3, we recall some mostly
known properties on the complexity of a shift and of special words. We prove a result
which characterizes eventually dendric shifts by the extension properties of special words
(Proposition 3.5). In §4, we use the classical notion of asymptotic equivalence to give a
second characterization of eventually dendric shifts (Theorem 4.6). In §5, we introduce
the notion of a simple tree and we prove that for an eventually dendric shift, the extension
graph of every long enough word is a simple tree (Proposition 5.1), a property which holds
trivially for every word in a Sturmian shift. In §6 we prove the first of our main results
(Theorem 6.1).

In the next section (§7), we prove additional properties of eventually dendric shifts. We
first prove that the cardinality of sets of return words is eventually constant (Theorem 7.3).
Next, we prove that eventually dendric shifts are minimal as soon as they are irreducible
(Theorem 7.6), a property already known for dendric shifts [13].
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In §8 we introduce generalized extension graphs in which extension by words of fixed
length replace extension by letters. We prove that one obtains an equivalent definition of
eventually dendric shifts using these generalized extension graphs (Theorem 8.4).

Finally, in §9, we prove that the class of eventually dendric shifts is closed under
complete bifix decoding, a result already known for dendric shifts.

Preliminary versions of the results of this paper have been presented at the conferences
CSR 2019 [14] and WORDS 2019 [15].

2. Eventually dendric shifts
Let A be a finite alphabet. We consider the set AZ of bi-infinite words on A as a topological
space for the product topology. The shift map σA : AZ

→ AZ is defined by y = σA(x) if
yi = xi+1 for every i ∈ Z. It is a one-to-one continuous map.

We also consider the topological space AN of one-sided infinite words. We still denote
by σA the map from AN to AN defined by σA(x)= y if yi = xi+1 for all i ∈ N. Note that
σA is not one-to-one as soon as Card(A)≥ 2.

A shift space on the alphabet A is a subset X of the set AZ which is closed and
invariant under the shift, that is, such that σA(X)= X (for more on shift spaces see, for
instance, [19]).

We denote by A∗ the set of (finite) words on the alphabet A. A subset of A∗ is
called a language on A. A word w ∈ A∗ is a factor of a bi-infinite word x ∈ AZ if
w = xi · · · xi+n−1 for some i ∈ Z.

We denote by L(X) the language of X , which is the set of finite factors of the elements
of X . A language L on the alphabet A is the language of a shift if and only if it is factorial
(that is, it contains the factors of its elements) and extendable (that is, for any w ∈ L there
are letters a, b ∈ A such that awb ∈ L).

For n ≥ 0 we write

Ln(X)=L(X) ∩ An,

L≥n(X)=
⋃
m≥n

Lm(X).

For w ∈ L(X) and n ≥ 1, we write

Ln(w, X)= {u ∈ Ln(X) | uw ∈ L(X)},
Rn(w, X)= {v ∈ Ln(X) | wv ∈ L(X)},
En(w, X)= {(u, v) ∈ Ln(w, X)× Rn(w, X) | uwv ∈ L(X)}.

The extension graph of order n of w, denoted by En(w, X), is the undirected bipartite
graph whose set of vertices is the disjoint union of Ln(w, X) and Rn(w, X) and whose
edges are the elements of En(w, X).

When the context is clear, we write Ln(w), Rn(w), En(w) and En(w) instead of
Ln(w, X), Rn(w, X), En(w, X) and En(w, X).

A path in an undirected graph is reduced if it does not contain successive equal edges
(such a path is also called simple). For any w ∈ L(X), since any vertex of Ln(w) is
connected to at least one vertex of Rn(w), the bipartite graph En(w) is a tree if and only
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FIGURE 1. The graphs E1(a) and E3(a).

FIGURE 2. The extension graph E1(ε).

if there is a unique reduced path between every pair of vertices of Ln(w) (respectively
Rn(w)).

The shift X is said to be eventually dendric with threshold m ≥ 0 if E1(w) is a tree for
every word w ∈ L≥m(X). It is said to be dendric if we can choose m = 0. Thus, a shift X
is dendric if and only if E1(w) is a tree for every word w ∈ L(X).

The languages of dendric shifts were introduced in [5] under the name of tree sets.
An important example of dendric shifts is formed by strict episturmian shifts (also called
Arnoux–Rauzy shifts), which are by definition such that L(X) is closed by reversal and
such that for every n there exists a uniquewn ∈ Ln(X) such that Card(R1(wn))= Card(A)
and such that for every w ∈ Ln(X)\{wn} one has Card(R1(w))= 1 (see [5]).

Example 2.1. Let X be the Fibonacci shift, which is generated by the morphism a 7→
ab, b 7→ a. It is well known that it is a Sturmian shift (see [19]). The graph E1(a) is shown
in Figure 1 on the left. The graph E3(a) is shown on the right.

The tree sets of characteristic c ≥ 1 introduced in [4, 13] give an example of eventually
dendric shifts. The language L(X) of a shift space X is said to be a tree sets of
characteristic c if for any w ∈ L≥1(X), the extension graph E1(w) is a tree and if E1(ε) is
a disjoint union of c trees.

Example 2.2. Let X be the shift generated by the morphism a 7→ ab, b 7→ cda, c 7→
cd, d 7→ abc. Its language is a tree set of characteristic 2 [4, Example 4.2] and it is actually
a specular set. The extension graph E1(ε) is shown in Figure 2.

Since the extension graphs of all non-empty words are trees, the shift space is eventually
dendric with threshold 1.

Example 2.3. Let S be the Tribonacci set, which is the set of factors of the fixed point of
the morphism ψ : a 7→ ab, b 7→ ac, c 7→ a. Then S is an Arnoux–Rauzy set and a dendric
set (see [5]).
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3. Complexity of shift spaces
Let X be a shift space. For a word w ∈ L(X) and k ≥ 1, we write

`k(w)= Card(Lk(w)), rk(w)= Card(Rk(w)), ek(w)= Card(Ek(w)).

For any w ∈ L(X), we have 1≤ `k(w), rk(w)≤ ek(w). The word w is left-k-special if
`k(w) > 1, right-k-special if rk(w) > 1 and k-bispecial if it is both left-k-special and right-
k-special. For k = 1, we use `, e, r instead of `1, e1, r1 and we simply say special instead
of k-special.

We define the multiplicity of w as (see [9])

m(w)= e(w)− `(w)− r(w)+ 1.

We say that w is strong if m(w) > 0, weak if m(w) < 0 and neutral if m(w)= 0.
It is clear that:

(1) if E1(w) is acyclic, then w is weak or neutral;
(2) if E1(w) is connected, then w is strong or neutral;
(3) if E1(w) is a tree, then w is neutral.

PROPOSITION 3.1. Let X be a shift space and let w ∈ L(X). If w is neutral, then

`(w)− 1=
∑

b∈R1(w)

(`(wb)− 1). (3.1)

Proof. Since w is neutral, we have e(w)= `(w)+ r(w)− 1. Thus∑
b∈R1(w)

(`(wb)− 1)= e(w)− r(w)

= `(w)− 1. �

Note that the symmetrical of Proposition 3.1 also holds: if w ∈ L(X) is neutral then

r(w)− 1=
∑

b∈L1(w)

(r(bw)− 1).

Set further

pn(X)=Card(Ln(X)),

sn(X)= pn+1(X)− pn(X),

bn(X)= sn+1(X)− sn(X).

The sequence pn(X) is called the complexity of the shift space X .
The following result is from [8] (see also [5, Lemma 2.12] and [9, Theorem 4.5.4]). We

include a proof for convenience.

PROPOSITION 3.2. We have for all n ≥ 0,

sn(X)=
∑

w∈Ln(X)

(`(w)− 1)=
∑

w∈Ln(X)

(r(w)− 1) (3.2)

and
bn(X)=

∑
w∈Ln(X)

m(w). (3.3)

In particular, the number of left-special (respectively right-special) words of length n is
bounded by sn(X).
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FIGURE 3. The extension graphs of abc and bca.

Proof. We have∑
w∈Ln(X)

(`(w)− 1)=
∑

w∈Ln(X)

`(w)− Card(Ln(X))

=Card(Ln+1(X))− Card(Ln(X))= pn+1 − pn

= sn(X)

with the same result for
∑
w∈Ln(X)(r(w)− 1). Moreover, we have∑

w∈Ln(X)

m(w)=
∑

w∈Ln(X)

(e(w)− `(w)− r(w)+ 1)

= pn+2(X)− 2pn+1(X)+ pn(X)= sn+1(X)− sn(X)= bn(X). �

We will use the following easy consequence of Proposition 3.2.

PROPOSITION 3.3. Let X be a shift space. If X is eventually dendric, then the sequence
sn(X) is eventually constant.

Proof. Let n ≥ 1 be such that the extension graph of every word in L≥n(X) is a tree.
Then bm(X)= 0 for every m ≥ n. Thus sm(X)= sm+1(X) for every m ≥ n, whence our
conclusion. �

The previous result implies that eventually dendric sets have eventual linear complexity.
The converse of Proposition 3.3 is not true, as shown by the following example.

Example 3.4. Let X be the Chacon ternary shift, which is the substitutive shift space
generated by the morphism ϕ : a 7→ aabc, b 7→ bc, c 7→ abc. It is well known that the
complexity of X is pn(X)= 2n + 1 and thus that sn = 2 for all n ≥ 0 (see [19, §5.5.2]).
The extension graphs of abc and bca are shown in Figure 3.

Thus m(abc)= 1 and m(bca)=−1. Let now α be the map on words defined by α(x)=
abcϕ(x). Let us verify that if the extension graph of x is the graph of Figure 3 on the
left, the same holds for the extension graph of y = α(x). Indeed, since axa ∈ L(X), the
word ϕ(axa)= aabcϕ(x)aabc = ayaabc is also in L(X) and thus (a, a) ∈ E1(y). Since
cxa ∈ L(X) and since a letter c is always preceded by a letter b, we have bcxa ∈ L(X).
Thus ϕ(bcxa)= bcyaabc ∈ L(X) and thus (c, a) ∈ E1(y). The proof of the other cases
is similar. The same property holds for a word x with the extension graph on the right of
Figure 3. This shows that there is an infinity of words whose extension graph is not a tree
and thus the Chacon set is not eventually dendric.

Let X be a shift space. We define LSn(X) (respectively LS≥n(X)) as the set of
left-special words of L(X) of length n (respectively at least n). We write LS(X)=⋃

n≥1 LSn(X).
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The following result expresses the fact that eventually dendric shift spaces are
characterized by an asymptotic property of left-special words which is a local version
of the property defining Sturmian shift spaces.

PROPOSITION 3.5. A shift space X is eventually dendric if and only if there is an integer
n ≥ 0 such that any word w of LS≥n(X) has exactly one right extension wb ∈ LS≥n+1(X)
with b ∈ A. Moreover, in this case, one has `(wb)= `(w).

Proof. Assume first that X is eventually dendric with threshold m. Then any word w in
LS≥m(X) has at least one right extension in LS(X). Indeed, since R1(w) has at least two
elements and since the graph E1(w) is connected, there is at least one element of R1(w)

which is connected by an edge to more than one element of R1(w).
Next, equation (3.1) shows that for any w ∈ LS≥m(X) which has more than one right

extension in LS(X), one has `(wb) < `(w) for each such extension. Thus the number of
words in LS≥m(X) which are prefix of one another, and which have more than one right
extension, is bounded by Card(A). This proves that there exists an n ≥ m such that for any
w ∈ L≥n(X) there is exactly one b ∈ A for which wb ∈ LS(X). Moreover, one has then
`(wb)= `(w) by equation (3.1).

Conversely, assume that the condition is satisfied for some integer n. For any word w
in L≥n(X), the graph E1(w) is acyclic since all vertices in R1(w) except at most one have
degree 1. Thus w is weak. Let N be the length of w. Then for every word u of length
N and every b ∈ R1(u), one has `(ub)= 1 except for one letter b such that `(ub)= `(u).
Thus, by Proposition 3.2,

sN (X)=
∑

u∈LN (X)

(`(u)− 1)=
∑

v∈LN+1(X)

(`(v)− 1)= sN+1(X).

This shows that bN = 0 for every N ≥ n and thus, by Proposition 3.2 again, all words in
L≥n(X) are neutral. Since all graphs E1(w) are moreover acyclic, this forces that these
graphs are trees and thus that X is eventually dendric with threshold n. �

A symmetric result on left extensions of right-special words also holds.
In [11], a bispecial word is called regular if it has only one left extension which is right-

special and only one right extension which is left-special. A shift space is said to satisfy
the regular bispecial condition (RBC) if every long enough bispecial word is regular. The
following statement is a direct consequence of Proposition 3.5.

COROLLARY 3.6. A shift space satisfies the regular bispecial condition if and only if it is
eventually dendric.

We give below an example of a shift space which is shown to be eventually dendric
using Proposition 3.5.

Example 3.7. Let X be the Tribonacci shift, which is the strict episturmian shift space
generated by the substitution ϕ : a 7→ ab, b 7→ ac, c 7→ a and let α be the morphism α :

a 7→ a, b 7→ a, c 7→ c. Let ϕω(a) be the right infinite word having all ϕn(a) for n ≥ 1 as
prefixes. The left-special words for X are the prefixes of ϕω(a). Indeed, it is easy to verify
that if w is left-special, then ϕ(w) is also left-special.
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FIGURE 4. The possible left extensions of c in L(X) and in α(L(X)).

Note that the set L(X) ∩ c{a, b}∗c is

{cabac, cabaabac, cababac}.

Since these three words are of distinct lengths, it follows that the restriction of α to the set
L(X) ∩ c{a, b}∗c is injective.

Next we claim that the left-special words for α(X) containing a letter c are the prefixes
of α(ϕω(a)) or aaα(ϕω(a)) containing a letter c. Indeed, if w is a prefix of ϕω(a), we
have L1(w, X)= {a, b, c} and thus L1(α(w), α(X))= {a, c} showing that α(w) is left-
special. Next, L3(w, X)= {aba, bac, cab} and thus L1(aaα(w), α(X))= {a, c} showing
that aaα(w) is left-special. Conversely, assume that u is left-special for α(X) and contains
a c. Since u is a prefix of a word ending with c, we may assume that u ends with c. Set
u = a j cvc with j ≥ 0. By a previous remark, there is a unique word s ∈ L(X) such that
csc ∈ L(X) and α(csc)= cvc. Since every word in L(X) of length at least 7 contains a
c, we have j ≤ 6. It is easy to verify by inspection of the possible left extensions of c in
L(X) that u is left-special only when j = 3 or j = 5 (see Figure 4).

If j = 3, then u = α(w) where w = abacsc is left-special in L(X) and thus is a prefix
of ϕω(a). If j = 5, then u is the common image by α of ababacsc and baabacsc. Then
w = abacsc is left-special in X and thus is a prefix of ϕω(a). Since u = aaα(w), the claim
is proved.

It follows from the claim that the shift space α(X) satisfies the condition of
Proposition 3.5 with n = 4. Thus we conclude that α(X) is dendric with threshold at most
4. The threshold is actually 4 since a3 has multiplicity 1 in α(X).

4. Asymptotic equivalence
The orbit of x ∈ AZ is the equivalence class of x under the action of the shift
transformation. Thus y is in the orbit of x if there is an n ∈ Z such that x = σ n

A(y). We
say that x is a shift of y if they belong to the same orbit.

For x ∈ AZ, write

x− = · · · x−2x−1 and x+ = x0x1 · · ·

and x = x− · x+. When X is a shift space, we denote by X+ the set of right infinite words
u such that u = x+ for some x ∈ X .

A right infinite word u ∈ AN is a tail of the two-sided infinite word x ∈ AZ if u = y+

for some shift y of x , that is, u = xn xn+1 · · · for some n ∈ Z.
Let X be a shift space on the alphabet A. The right asymptotic equivalence is the

equivalence on X defined as follows. Two elements x, y of X are right asymptotically
equivalent if there exists two shifts x ′, y′ of x, y such that x ′+ = y′+. In other words, x, y
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FIGURE 5. Two right asymptotic sequences x, y.

are right asymptotic equivalent if they have a common tail (see Figure 5 where we assume
x = x ′ and y = y′).

The classes of the right asymptotic equivalence not coinciding with only one orbit are
called right asymptotic classes (they are called in [16] asymptotic components).

Example 4.1. The Fibonacci shift X has one only right asymptotic class. It is formed of
the shifts of the two elements x, y ∈ X such that x+ = y+ = ϕω(a) where ϕω(a) is the
Fibonacci word, that is, the right infinite word having all ϕn(a) for n ≥ 1 as prefixes.
Indeed, let x, y ∈ X be such that x+ = y+ with x 6= y. Then all finite prefixes of x+ = y+

are left-special and thus are prefixes of ϕω(a) (see, for instance, [19]). Thus x+ =
y+ = ϕω(a).

If C is a right asymptotic class, it is, by the definition of asymptotic equivalence, a union
of orbits. The following result is proved in [16, Lemma 3.2] under a weaker hypothesis that
we shall not need here. We give a proof for the sake of completeness.

PROPOSITION 4.2. Let X be a shift space such that the sequence sn(X) is bounded by k.
Then the number of right asymptotic classes is finite and at most equal to k.

Proof. Let (x1, y1), . . . , (x`, y`) be ` pairs of distinct elements of X belonging to
asymptotic classes C1, . . . , C` such that for all 1≤ i ≤ `, one has x+i = y+i and (xi )−1 6=

(yi )−1. For n large enough the prefixes of length n of the x+i are ` distinct left-special
words and thus `≤ sn(X) since by Proposition 3.2 the number of left-special words is
bounded by sn(X). This shows that the number of right asymptotic classes is finite and
bounded by k. �

Let X be a shift space. For an asymptotic class C of X , we write ω(C)=
Card(o(C))− 1 where o(C) is the set of orbits contained in C . For a right infinite word
u ∈ X+, let

`C (u)= Card{a ∈ A | x+ = au for some x ∈ C}.

We denote by LSω(C) the set of right infinite words u such that `C (u)≥ 2.
The following statement can be seen as an infinite counterpart of Proposition 3.2.

PROPOSITION 4.3. Let X be a shift space and let C be a right asymptotic class. Then

ω(C)=
∑

u∈LSω(C)

(`C (u)− 1) (4.1)

where both sides are simultaneously finite.

In order to prove Proposition 4.3, we use the notion of a cluster of trees that we now
define.
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FIGURE 6. A cluster of trees.

A cluster of trees is a directed graph which is the union of a (non-trivial) cycle 0 and
a family of disjoint trees (oriented from child to father) Tv with root v indexed by the
vertices v on 0 (see Figure 6). It is easy to verify that a finite connected graph is a cluster
of trees if and only if every vertex has outdegree 1 and there is a unique strongly connected
component.

In a cluster of trees, the number of leaves (that is, the leaves of the trees Tv not reduced
to their root) is equal to

∑
u(d
−(u)− 1), where d− stands for the indegree function and

the sum runs over the set of internal nodes. Indeed, this is true for one cycle alone since
there are no leaves and every internal node has indegree 1. The formula remains valid when
suppressing a leaf in one of the trees not reduced to its root.

Proof of Proposition 4.3. We first suppose that C does not contain periodic points which
implies that LSω(C) does not contain periodic points either.

It is easy to verify that if u, v ∈ LSω(C), there exist n, m ≥ 0 such that σ n(u)= σm(v).
We build a graph T (C) as follows. The set of vertices of T (C) is o(C) ∪ LSω(C). There

will be for each vertex u of T (C) at most one edge going out of u, called its father.
Let first x ∈ C and let u be the orbit of x . There is, up to a shift of x , at least one y ∈ C

with x 6= y such that y+ = x+. Let n ≥ 0 be the minimal integer such that x−n 6= y−n .
Then v = σ−n+1(x)+ is in LSω(C) and depends only on the orbit u of x . We choose the
vertex v as the father of u.

Next, for every u ∈ LSω(C), we consider the minimal integer, if it exists, such that
v = σ n(u) is in LSω(C). Then we choose v as the father of u.

Assume now that ω(C) is finite. Then LSω(C) is also finite and T (C) is a finite tree.
Indeed, if u ∈ LSω(C), there is at least one x ∈ C such that x+ = u and thus such that u
is an ancestor of the orbit of x . By the claim made above, any two elements of LSω(C)
have a common ancestor. Since C does not contain periodic points, two vertices cannot be
ancestors of one another. Thus there is a unique element of LSω(C) which has no father,
namely the unique u ∈ SL(C)with a maximal number of elements of o(C) as descendants.
Since it is an ancestor of all vertices of T (C), this shows that T (C) is a finite tree.

Formula (4.1) now follows from the fact that in any finite tree with n leaves and a set V
of internal vertices, one has n − 1=

∑
v∈V (d

−(v)− 1).
Assume next that the right hand side of equation (4.1) is finite. Then the set LSω(C) is

finite and thus T (C) is again a tree with a finite number of internal nodes. Since the degree
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FIGURE 7. The asymptotic class C and the tree T (C).

of each node is finite, it implies that it has also a finite number of leaves. Thus ω(C) is
finite and equation (4.1) also holds.

Finally, assume that C contains a periodic point. It follows from the definition of an
asymptotic class that there is exactly one such periodic orbit, since two periodic points
having a common tail are in the same orbit.

The proof follows the same lines as in the first case, but this time T (C) will be a cluster
of trees instead of a tree.

The set of leaves of T (C) is, as above, the set o(C) of non periodic orbits and the
other vertices are the elements of LSω(C). The unique father of a vertex is defined in the
same way as above. The fact that there is a unique strongly connected component is a
consequence of the fact that there is a unique periodic orbit in C . Finally, Formula (4.1)
holds with since the number of leaves is equal to

∑
(d−(u)− 1)− 1, where the sum runs

over the set of internal nodes and the −1 corresponds to the unique periodic orbit. �

Example 4.4. Consider again the image α(X) of the Tribonacci shift by the morphism
α : a 7→ a, b 7→ a, c 7→ c (Example 3.7).

There is one asymptotic class C made of three orbits represented in Figure 7 on the left.
The class is formed of the orbits of x, y, z where x+ = α(ϕω(a)) and y+ = z+ = aax+.
The tree T (C) is shown on the right.

In the next example we use the notation uω for the right infinite word uuu · · · and
symmetrically ωu for the left-infinite word · · · uuu.

Example 4.5. Let X be the shift space which is the closure under the shift of the set
{
ωc · (ab)ω ∪ω d · (ab)ω ∪ω (ab) · (ab)ω}. The shift has just one right asymptotic class

C , the one associated to the tail (ab)ω, containing three orbits. Since the tail (ab)ω can be
prolonged on the left by either c, d or b, we have that Formula 4.1 is verified. The cluster
of trees T (C) is represented in Figure 8 where we denote by xy the orbit of x · y.

Let us now deduce from Proposition 3.5 a characterization of eventually dendric shift
spaces in terms of asymptotic classes. For a shift space X , write

ω(X)=
∑

ω(C)

where the sum is over the asymptotic classes C of X .

THEOREM 4.6. A shift space X is eventually dendric if and only if the following both hold.
(1) The sequence sn(X) is eventually constant.
(2) We have lim sn(X)= ω(X).
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FIGURE 8. The cluster T (C).

Proof. Assume first that X is eventually dendric. Then assertion (1) holds by
Proposition 3.3. To prove assertion (2), consider an integer n large enough so that the
condition of Proposition 3.5 holds (it implies that sm(X) is constant for m ≥ n). Let us
consider an asymptotic class C .

Let π be the map assigning to u ∈ AN its prefix of length n. Then π maps LSω(C) into
LSn(X). The map π is injective since otherwise some word in LS≥n(X) would have more
than one extension on the right, contrary to Proposition 3.5. Next the sets π(LSω(C)) for
all asymptotic classes C form a partition of LSn(X).

Thus, by equation (3.2),

sn(X)=
∑

w∈LSn(X)

(`(w)− 1)=
∑

C

∑
u∈LSω(C)

(`C (u)− 1)

=

∑
C

ω(C)

where the last equality follows from equation (4.1).
Conversely, if the two conditions are satisfied, let n be large enough so that sm(X)=

sn(X) for all m ≥ n. We may also assume that n is large enough so that the prefixes of
length n of the words of LSω(C) for every asymptotic class C are distinct. Then, every
word w of LSn(X) has exactly one right extension wb in LSn+1(X). It is moreover such
that `(w)= `(wb) and thus X is eventually dendric by Proposition 3.5. �

For example, the Tribonacci shift is such that sn(X)= 2 for every n ≥ 0 and ω(X)= 2
since there is only one asymptotic class made of three orbits. Note that the Chacon shift
X (Example 3.4) satisfies condition (1) of Theorem 4.6 but not condition (2). Indeed, one
can verify that sn(X)= 2 for all n ≥ 0 but ω(X)= 1.

5. Simple trees
The diameter of a tree is the maximal length of simple paths. We call a tree simple if its
diameter is at most 3. Note that if the simple tree is the extension graph En(w) in some shift
space X of a bispecial word w, then the diameter of En(w) is equal to 3 and this happens
if and only if any two vertices of En(w) on the same side (that is, both in Ln(x) or both in
Rn(w)) are connected to a common vertex on the opposite side.

Note that Corollary 3.6 expresses the fact that a shift space X is eventually dendric if and
only if for any long enough word w ∈ L(X), the extension graph E1(w) is a simple tree.
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However, E1(w) can be a simple tree while Ek(w) for k > 1 is not. For example, if X is the
Fibonacci shift, then E1(a) is simple while E3(a) is not (see Example 2.1).

We prove the following additional property of the graphs Ek(w).

PROPOSITION 5.1. Let X be an eventually dendric shift space. For any k ≥ 1 there exists
an n ≥ 1 such that Ek(w) is a simple tree for every w ∈ L≥n(X).

We first prove the following lemma.

LEMMA 5.2. Let X be an eventually dendric shift space. For every k ≥ 1 there is an n ≥ 1
such that if p, w ∈ L(X) with |p| ≤ k and |w| ≥ n are such that pw, w ∈ LS(X), then
pw, w have a unique right extension in LS(X) by some letter b ∈ A which is moreover
such that `(pwb)= `(pw) and `(wb)= `(w).

Proof. Consider two asymptotic classes C, D and let u ∈ LSω(C), v ∈ LSω(D). If C, D
are distinct, we cannot have pu = v for some word p. Thus there is an integer n such that
ifw is the prefix of length n of u, then pw is not a prefix of v. Since there is a finite number
of words p of length at most k, a finite number of asymptotic classes (by Proposition 4.2)
and since for each such class the set LSω(C) is finite, we infer that for every k there exists
an n such that for every pair of asymptotic classes C, D and any u ∈ S(C), v ∈ LS(D), if
w is a prefix of u and pw a prefix of v, with |p| ≤ k and |w| = n, then C = D.

Next, assume that w is a prefix of u and pw a prefix of v with u, v ∈ S(C) for some
asymptotic class C . If v 6= pu, then there is a right extension w′ of w such that pw′ is not
a prefix of v. By contraposition, if n is large enough, we have v = pu.

We thus choose n large enough so that the following properties hold.
(1) All elements of LSω(C) for all asymptotic components C have distinct prefixes of

length n.
(2) For every pair of asymptotic classes C, D and any u ∈ LSω(C), v ∈ LS(D), if w is

prefix of u and pw is prefix of v with |p| ≤ k and |w| = n then C = D and pu = v.
We moreover assume that n is large enough so that the condition of Proposition 3.5 holds.

Consider p, w with |p| = k and |w| = n such that pw, w are left-special. By condition
1, there are asymptotic components C, D and elements u ∈ LSω(C) and v ∈ LS(D) such
that w is a prefix of u and pw a prefix of v. Because of condition (2), we must have
σ k(v)= u (and in particular C = D). Thus there is a unique letter b ∈ A such that
wb, pwb ∈ LS(X) which is moreover such that `(wb)= `(w) and `(pwb)= `(pw) by
Proposition 3.5. �

Proof of Proposition 5.1. We choose n such that Proposition 3.5 and Lemma 5.2 hold.
We prove by induction on ` with 1≤ `≤ k that E`(w) is a simple tree and thus that for

any p, q ∈ L`(w) there is an r ∈ Rk(w) such that pwr, qwr ∈ L(X).
The property is true for `= 1. Indeed, set p = a and q = b. Apply iteratively

Proposition 3.5 to obtain letters c1, . . . , ck such that `(wc1 · · · ci )= `(wc1 · · · ci ci+1)

and set r = c1 · · · ck . Then awr, bwr ∈ L(X).
Assume next that the property is true for `− 1 and consider ap, bq ∈ L`(w) with

a, b ∈ A. Replacing if necessary w by some longer word, we may assume that p, q end
with different letters and thus that w is left-special. By the induction hypothesis, there
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FIGURE 9. The extension graphs E1(ε) and E1(vw).

is a word r ∈ Rk(w) such that pwr, qwr ∈ L(X). By Lemma 5.2, the first letter of r is
the unique letter c such that `(pwc)= `(pw) and `(qwc)= `(qw). Thus apwc, bqwc ∈
L(X). Applying Lemma 5.2 iteratively in this way, we obtain that apwr, bqwr ∈ L(X). �

6. Conjugacy
Let A, B be two alphabets, and X ⊂ AZ and Y ⊂ B Z be two shift spaces. A map φ : X→
Y is called a sliding block code if there exists m, n ∈ N and a map f : Lm+n+1(X)→ B
such that φ(x)i = f (xi−m · · · xi+n) for all i ∈ Z and x = (xi ) ∈ X . It can be shown that a
map φ : X→ Y is a sliding block code if and only if it is continuous and commutes with
the shift, that is, φ ◦ σA = σB ◦ φ (see, for instance, [20]).

Two shift spaces X, Y are said to be conjugate when there is a bijective sliding block
code φ : X→ Y . The following result shows that the property of being eventually dendric
is a dynamical property, in the sense that it only depends on the conjugacy class of a shift.

THEOREM 6.1. The class of eventually dendric shift spaces is closed under conjugacy.

We first treat the following particular case of conjugacy. Let X be a shift space on
the alphabet A and let k ≥ 1. Let f : Lk(X)→ Ak be a bijection from the set Lk(X) of
blocks of length k of X onto an alphabet Ak . The map γk : X→ AZ

k defined for x ∈ X by
y = γk(x) if for every n ∈ Z

yn = f (xn · · · xn+k−1)

is the kth higher block code on X . The shift space X (k) = γk(X) is called the kth higher
block shift space of X . It is well known that the kth higher block code is a conjugacy.

We extend the bijection f : Lk(X)→ Ak to a map still denoted by f from L≥k(X)
to L≥1(X (k)) by f (a1a2 · · · an)= f (a1 · · · ak) · · · f (an−k+1 · · · an). Note that all non-
empty elements of L(X (k)) are images by f of elements of L(X), that is, L(X (k))=
{ f (w) | w ∈ L≥k(X)} ∪ {ε}.

Example 6.2. Let X be the Fibonacci shift. We show that the 2-block extension X (2) of X is
eventually dendric with threshold 1. Set A2 = {u, v, w} with f : aa 7→ u, ab 7→ v, ba 7→
w. Since X is dendric, the graph E1(w) is a tree for every word w ∈ L(X (2)) of length at
least 1 (but not for w = ε). Thus X (2) is eventually dendric. It is actually a tree shift space
of characteristic 2 since the graph E1(ε) is the union of two trees (see Figure 9).

LEMMA 6.3. For every k ≥ 1, the kth higher block shift space X (k) is eventually dendric
if and only if X is eventually dendric.
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FIGURE 10. The sliding block code.

FIGURE 11. The map f (on the left), the graph Ek (u) (on the center) and the graph E1(w) (on the right).

Proof. We define for every w ∈ L≥k(X) a map from E1(w) to E1( f (w)) as follows.
To every a ∈ L1(w) we associate the first letter λ(a) of f (aw), and to every b ∈ R1(w)

we associate the last letter ρ(b) of f (wb). Then, since f (awb)= λ(a) f (w)ρ(b), the pair
(a, b) is in E1(w) if and only if (λ(a), ρ(b)) is in E1( f (w)). Thus, the maps λ, ρ define
an isomorphism from E1(w) onto E1( f (w)).

Thus we conclude that X is eventually dendric with threshold m if and only if X (k) is
eventually dendric with threshold M with 0≤ M ≤max(1, m − k + 1). �

Example 6.4. Let X be the Fibonacci shift. For all k ≥ 2, X (k) is an eventually dendric
shift space with threshold 1.

Example 6.5. Let X be the shift space associated to the two-sided infinite word · · · abab ·
abab · · · . X is an eventually dendric shift space with threshold 1 (the empty word has two
connected components). For every k ≥ 1, the shift space X (k) is eventually dendric with
threshold 1.

A morphism α : A∗→ B∗ is called alphabetic if α(A)⊂ B.

LEMMA 6.6. Let X be an eventually dendric shift space on the alphabet A and let α :
A∗→ B∗ be an alphabetic morphism which induces a conjugacy from X onto a shift
space Y . Then Y is eventually dendric.

Proof. Since α is invertible, there exists an integer r ≥ 0 and a map f : B2r+1
→ A such

that for x = (xk)k∈Z and y = (yk)k∈Z, one has y = α(x) if and only if for every k ∈ Z, one
has (see Figure 10)

xk = f (yk−r · · · yk−1 yk yk+1 · · · yk+r ).

We extend the definition of f to a map from L≥2r+1(X) to A as follows. For w =
b1−r · · · bn+r ∈ L≥2r+1(Y ), set f (w)= a1 · · · an where ai = f (bi−r · · · bi · · · bi+r ).
Note that if u = f (w) and w = svt with s, t ∈ Lr (Y ), then v = α(u) (see Figure 11).
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Let n be the integer given by Proposition 5.1 for k = r + 1. We claim that every graph
E1(w) for |w| ≥ n + 2r is a tree. Let indeed s, t ∈ Lr (Y ) and v ∈ L≥n(Y ) be such that
w = svt . Let u = f (svt) (see Figure 11).

Let E ′k(u)= {(p, q) ∈ Lk(u)× Rk(u) | α(puq) ∈ BwB} and let L ′k(u) (respectively
R′k(u)) be the set of p ∈ Lk(u) (respectively q ∈ Rk(u)) which are connected to Lk(u)
(respectively Rk(u)) by an edge in E ′k(u). Let E ′k(u) be the subgraph of Ek(u) obtained by
restriction to the set of vertices which is the disjoint union of L ′k(u) and R′k(u) (and that
has, thus, E ′k(u) as set of edges).

Claim 1. The graph E ′k(u) is a simple tree. Indeed, by Proposition 5.1, the graph Ek(u) is
a simple tree. We may assume that u is k-bispecial (otherwise, the property is obviously
true). Let (p, q) be an edge of E ′k(u). Then (p, q) is an edge of Ek(u) and since the latter is
a simple tree either p is the unique vertex in Lk(u) such that pu is right-special or q is the
unique vertex in Rk(u) such that uq is left-special (both cases can occur simultaneously).
Assume the first case, the other being proved in a symmetric way. If (p′, q ′) is another
edge of E ′(u), then (p, q ′) is an edge of Ek(u). Since α(p) ∈ Bs and α(q) ∈ t B, we have
actually (p, q ′) ∈ E ′k(u). Thus E ′k(u) contains the two vertices of Ek(u) connected to more
than one other vertex and this implies that E ′k(u) is a simple tree.

For p ∈ L ′k(u), let λ(p) be the first letter of α(p) and for q ∈ R′k(u), let ρ(q) be the last
letter of α(q).

Claim 2. The graph E1(w) is the image by the maps λ, ρ of the graph E ′k(u). Indeed,
one has (a, b) ∈ E1(w) if and only if there exist (p, q) ∈ E ′k(u) such that λ(p)= a and
ρ(q)= b.

Let us consider a graph homomorphism φ preserving bipartiteness and such that left
vertices are sent to left vertices and right vertices to right ones: then, it is easy to verify
that the image of a simple tree by φ is again a simple tree. Thus E1(w) is a simple tree,
which concludes the proof. �

We are now ready to prove the theorem.

Proof of Theorem 6.1. Every conjugacy is a composition of a higher block code and
an alphabetic morphism (see [20, Proposition 1.5.12]). Thus Theorem 6.1 is a direct
consequence of Lemmas 6.3 and 6.6. �

Example 6.7. We have seen in Example 3.7 that the image Y = α(X) of the Tribonacci
shift X by the morphism α : a 7→ a, b 7→ a, c 7→ c is eventually dendric. This is actually a
consequence of Theorem 6.1. Indeed α is a injective by Example 3.7, and thus a conjugacy
from X to α(x)= Y . The images of a Sturmian shift space by a non-trivial alphabetic
morphism have been investigated in [22].

7. Minimal eventually dendric shifts
A shift space X is irreducible if for any u, v ∈ L(X) there is a word w such that uwv ∈
L(X) (equivalently L(X) is called recurrent).
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A non-empty shift space is minimal if it does not contain properly another non-empty
shift space. As is well known, X is minimal if and only if it is uniformly recurrent, that
is, for any w ∈ L(X) there exists an n ≥ 0 such that w is a factor of any word in Ln(X).
If X is minimal and infinite, then there exists for every w ∈ L(X) an integer n ≥ 1 such
that wn /∈ L(X). Indeed, otherwise, L(X) contains the periodic word with period w and
thus X is equal to the finite shift space formed by the shifts of · · · ww · ww · · · .

A minimal shift space is irreducible but the converse is false, since for example the full
shift AZ is irreducible but not minimal as soon as A has at least two elements.

Let X be a shift space. The set of complete return words to a word w ∈ L(X) is the set
CRX (w) of words having exactly two factors equal to w, one as a proper prefix and the
other one as a proper suffix. It is clear that X is minimal if and only if it is irreducible and
if for every word w the set of complete return words to w is finite.

If wu is a complete return word to w, then u is called a (right) return word to w. We
denote by RX (w) the set of return words to w. Clearly Card(CRX (w))= Card(RX (w)).

Example 7.1. Let X be the Tribonacci shift (see Example 3.7). The image of X
under the morphism α : a, b→ a, c→ c. Then RX (a)= {a, ba, ca} and RX (c)=
{abac, ababac, abaabac}.

By a result of [2], if X is minimal and neutral (a fortiori if X is dendric) the set R(w)
has Card(A) elements for every w ∈ L(X). This is not true anymore for eventually dendric
shift spaces, as shown in the following example.

Example 7.2. Let X be the Tribonacci shift and let Y = α(X) be, as in Example 6.7 the
image of X under the morphism α : a, b→ a, c→ c. Then, using Example 7.1, we find
RY (a)= {a, ca} while RY (c)= {aaac, aaaaac, aaaaaac}.

We will prove that for eventually dendric sets, a weaker property is true. It implies that
the cardinality of sets of return words is eventually constant.

For w ∈ L(X), set ρX (w)= r1(w)− 1 and for a set W ⊂ L, set ρX (W )=
∑
w∈W

ρX (w) (if W is infinite, ρX (W ) is the supremum of the values of ρX (U ) over the finite
subsets U of W ). By the symmetric of Proposition 3.1, for every neutral word w ∈ L(X),
we have

ρX (w)=
∑

a∈L1(w)

ρX (aw). (7.1)

THEOREM 7.3. Let X be an irreducible shift space which is eventually dendric with
threshold m. For every w ∈ L(X), the set RX (w) is finite. Moreover, for every w ∈
L≥m(X), we have

Card(RX (w))= 1+ ρX (Lm(X)). (7.2)

Note that for m = 0, we obtain Card(RX (w))= Card(A) since ρX (ε)= Card(A)− 1.
To prove Theorem 7.3 we need to introduce some definitions.
Let X be a shift space on an alphabet A. A prefix code (respectively a suffix code)

is a set of non-empty words such that none of them is a prefix (respectively a suffix) of
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FIGURE 12. The sets U and 1u(u) (on the left) and V and 1′v(V ) (on the right).

another one. A prefix code (respectively a suffix code) U ⊂ L(X) is called X-maximal if
it is not properly contained in a prefix code (respectively suffix code) V ⊂ L(X) (see, for
instance, [3]).

Let U ⊂ L(X) be a finite X -maximal suffix code, let v be a word such that Av ∩
L(X)⊂U . We write (see Figure 12, left)

1u(U )= (U\Au) ∪ {u}. (7.3)

Conversely, given a suffix code V ⊂ L(X) and a word v ∈ V , we write (see Figure 12,
right)

1′v(V )= (V \{v}) ∪ (Av ∩ L(X)). (7.4)

For a finite set U we denote by `(U ) the sum of the lengths of the words of U . The
following elementary lemma will be used repeatedly.

LEMMA 7.4. Let U, V, u, v be as above.
(1) The set1u(U ) is either reduced to the empty word or it is an X-maximal suffix code.

Moreover, `(1u(U )) < `(U ).
(2) The set 1′v(V ) is a suffix code.
(3) One has U =1′u(1u(U )) and V =1v(1′v(V )).

PROPOSITION 7.5. Let X be a shift space which is eventually dendric with threshold m.
Then ρX (U ) is finite for every suffix code U ⊂ L(X). If U is a finite X-maximal suffix code
with U ⊂ L≥m(X), then

ρX (U )= ρX (Lm(X)). (7.5)

Proof. For any suffix code U ⊂ L(X), let Um be the union

Um = (U ∩ L<m(X)) ∪ (Lm(X) ∩ S),

where S is the set of words which are suffixes of some words of U . Note that Um is a finite
suffix code. It is equal to Lm(X) if U is X -maximal and contained in L≥m(X).

Assume first that U ⊂ L(X) is a finite X -maximal suffix code. We prove by induction
on the sum `(U ) of the lengths of the words of U that

ρX (U )= ρX (Um). (7.6)

If all words of U are of length at most m, then U =Um and thus equation (7.6) holds.
Otherwise, letw ∈U be of maximal length. Setw = au with a ∈ A. Then Au ∩ L(X)⊂U .
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Set U ′ =1u(U ). Since U =1′u(U
′) by Lemma 7.4, we have by equation (7.4)

ρX (U )= ρX (U ′)− ρX (u)+
∑

a∈L1(v)

ρX (au).

Since u is neutral (because |u| ≥ m), we have, by equation (7.1),

ρX (U )= ρX (U ′).

By induction hypothesis, equation (7.6) holds for U ′. Since Um =U ′m , we have
ρX (U )= ρX (U ′)= ρX (U ′m)= ρX (Um) and equation (7.6) is proved.

If U ⊂ L≥m(X), then Um = Lm(X) and thus equation (7.5) is proved.
If U is infinite, then ρX (U ) is the supremum of the values of ρX (V ) on the finite

subsets V of U . Any finite suffix code V ⊂ L(X) is contained in a finite X -maximal suffix
code W and ρX (V )≤ ρX (W ). By equation (7.6), this implies ρX (V )≤ ρX (Wm). There
is a finite number of possible Wm and thus ρX (V ) is bounded. We conclude that ρX (U )
is finite. �

Proof of Theorem 7.3. Consider a word w ∈ L(X) and let P be the set of proper prefixes
of CR(w). For p ∈ P , write α(p)= Card{a ∈ A | pa ∈ P ∪ CR(w)} − 1. Then CR(w) is
finite if and only if P is finite. Set α(P)=

∑
p∈P α(p). Since CR(w) is a prefix code, it

is the set of leaves of a tree with f = Card(CR(w)) leaves, i internal nodes and α(P)+ i
edges. Since f = e − i + 1, we have

Card(CR(w))= α(P)+ 1. (7.7)

Let U be the set of words in P which are not proper prefixes of w. We claim that U is
an X -maximal suffix code.

Indeed, if u, vu ∈U , then w is a proper prefix of u and thus is an internal factor of vu,
a contradiction unless v = ε. Thus U is suffix.

Consider r ∈ L(X). Then, since L(X) is recurrent, there is some s ∈ L(X) such that
wsr ∈ L(X). Let u be the shortest suffix of wsr which has a proper prefix equal to w.
Then u ∈U . This shows that U is an X -maximal suffix code.

We have α(p)= 0 for any proper prefix p of w since any word in CR(w) has w as a
proper prefix. Next we have α(p)= ρX (p) for any p ∈U . Indeed, if ua ∈ L(X) for u ∈ P
and a ∈ A, then ua ∈ CR(w) ∪ P since L(X) is recurrent. Thus we have α(P)= ρX (U ).

By Proposition 7.5, ρX (U ) is finite. Therefore, equation (7.7) shows that
Card(CR(w))= Card(R(w)) is finite.

Assume finally that |w| ≥ m. Then U ⊂ L≥m(X) and thus, by Proposition 7.5, we have
ρX (U )= ρX (Lm(X)). Thus we have

α(P)= ρX (Lm(X)).

By equation (7.7), this implies equation (7.2). �

It is known that for dendric shift spaces, irreducibility is enough to guarantee
minimality [13]. We obtain as a direct corollary of Theorem 7.3 that this still holds for
eventually dendric shifts.

https://doi.org/10.1017/etds.2020.35 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2020.35


2042 F. Dolce and D. Perrin

COROLLARY 7.6. An eventually dendric shift space is minimal if and only if it is
irreducible.

Proof. Let X be an irreducible shift space. By Theorem 7.3, the set R(w) is finite for
every w ∈ L(X). Thus X is minimal. �

Note that the proof shows that Corollary 7.6 holds for the more general class of shift
spaces which are eventually neutral with threshold m, in the sense that every word of
length at least m is neutral.

The class of eventually neutral shift spaces includes the shift spaces X such that L(X)
is neutral with characteristic c introduced in [13]. By definition, L(X) is neutral with
characteristic c if every non-empty word w ∈ L(X) is neutral and if m(ε)= 1− c. Such a
set is eventually neutral with threshold at most 1. Corollary 7.6 is proved in [13] for neutral
sets of characteristic c with a similar proof.

As observed in [11], one may use the result on neutral sets with characteristic c to obtain
a proof of Corollary 7.6. Indeed, if X is eventually dendric with threshold m, then the mth
higher block shift space X (m) is eventually neutral with threshold at most 1 (a priori, we
know nothing about the behavior of the empty word).

Note also that Theorem 7.3 shows that in a minimal eventually dendric shift space the
cardinality of sets of complete return words is bounded. There exist minimal shift spaces
which do not have this property (see [18, Example 3.17]).

8. Generalized extension graphs
We will now see how the conditions on extension graphs can be generalized to graphs
expressing the extension by words having different length. We will prove the following
statement.

PROPOSITION 8.1. For every n ≥ 1 and m ≥ 0, the graph En(w) is a tree for all w ∈
L≥m(X) if and only if En+1(w) is a tree for all words w ∈ L≥m(X).

We will need the following notions which allow us to replace in the graphs En(X) the
set of all words of length n by a set of words of different lengths.

Let X be a shift space on an alphabet A. A set U ⊂ L(X) is said to be right X-complete
(respectively left X-complete) if every word of L(X) either has a prefix (respectively
suffix) in U or is a prefix (respectively suffix) of a word of U .

It is not difficult to show that a prefix code (respectively a suffix code) U ⊂ L(X) is
X -maximal if and only if it is right X -complete (respectively left X -complete).

For U, V ⊂ A∗ and w ∈ L(X), let

LU (w)= {u ∈U | uw ∈ L(X)} and RV (w)= {v ∈ V | wv ∈ L(X)}.

Let U ⊂ A∗ (respectively V ⊂ A∗) be a suffix code (respectively prefix code) and
w ∈ L(X) be such that LU (w) is an X -maximal suffix code (respectively RV (w) is
an X -maximal prefix code). The generalized extension graph of w relative to U, V
is the following undirected bipartite graph EU,V (w). The set of vertices is the disjoint
union of LU (w) and RV (w). The edges are the pairs (u, v) ∈ LU (w)× RV (w) such that
uwv ∈ L(X). In particular En(w)= ELn(X),Ln(X)(w).
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The proof uses the following statement. The only if part of the next result is [5,
Lemmas 3.8 and 3.10].

LEMMA 8.2. Let X be a shift space and let w ∈ L(X). Let U ⊂ L(X) be a finite X-
maximal suffix code and let V ⊂ L(X) be finite X-maximal prefix code. Let ` ∈ L(X) be
such that A` ∩ L(X)⊂U and such that EA,V (`w) is a tree. Set U ′ =1`(U ). The graph
EU ′,V (w) is a tree if and only if the graph EU,V (w) is a tree.

Proof. We need only to prove the if part.
First, note that the hypothesis that EA,V (`w) is a tree guarantees that the left vertices A`

in EU,V (w) are clusterized: for any pair of vertices a`, b` there exists a unique reduced
path from a` to b` in EU,V (w) using as left vertices only elements of A`. Indeed, such
a path exists since the subgraph EA`,V (w) of EU,V (w) is isomorphic to EA,V (`w) that is
connected. Since EU,V (w) is a tree, this path is unique.

Let v, v′ ∈ RV (w) be two distinct vertices and let π be the unique reduced path from
v to v′ in EU,V (w). We show that we can find a unique reduced path π ′ from v to v′ in
EU ′,V (w).

If π does not pass by A`, we can simply define π ′ = π . Otherwise, we can decompose
π in a unique way as a concatenation of a path π1 from v to a vertex in A` not passing by
A` before, followed by a path from A` to A` (using on the left only vertices from A`) and
a path π2 from A` to v′ without passing in A` again. We consider in EU ′,V (w) the unique
path π ′1 from v to ` obtained by replacing the last vertex of π1 by ` and the unique reduced
path π ′2 from ` to v′ obtained by replacing the first vertex of π2 by `. In this case we define
π ′ as the concatenation of π ′1 and π ′2.

The reduced path π ′ is unique. Indeed, let us suppose that we have a different path π∗

from v to v′ in EU ′,V (w). If π∗ does not pass (on the left) by ` then we would find a path
having the same vertices in EU,V (w) which is impossible since the graph is acyclic. Let
us suppose that both π ′ and π∗ passes by `. Without loss of generality let us suppose that
we have a cycle in EU ′,V (w) passing by ` and v (the case with v′ being symmetric). Let
us define by π ′0 and π∗0 the two distinct subpaths of π ′ and π∗ respectively going from
v to `. Since L(X) is extendable, we can find a`, b` ∈U , with a, b ∈ A not necessarily
distinct, and two reduced paths π1 from v to a` and π2 from v to b` in EU,V (w) obtained
from π ′0 and π∗0 by replacing the vertex ` by a` and b` respectively. From the remark at
the beginning of the proof we know that we can find a reduced path in EU,V (w) from a`
to b`. Thus we can find a non-trivial cycle in EU,V (w), which contradicts the acyclicity of
the graph. �

A symmetric statement of Lemma 8.2 holds. To state it, we introduce the following
complement to the 1 operator. For a finite X -maximal prefix code V and a word r such
that r A ∩ L(X)⊂ V , set

0r (V )= (V \r A) ∪ {r}. (8.1)

Conversely, for a finite X -maximal prefix code W and r ∈W , we write

0′r (W )= (W\{r}) ∪ (r A ∩ L(X)). (8.2)
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A symmetric statement of Lemma 7.4 holds. It allows us to state a symmetric statement
of Lemma 8.2 for r ∈ L(X) such that r A ∩ L(X)⊂ V and EU,A(wr) is a tree, with V ′ =
0r (V ): the graph EU,V (w) is a tree if and only if EU,V ′(w) is a tree.

LEMMA 8.3. Let n ≥ 1, let m ≥ 0 and let V be a finite X-maximal prefix code. If
ELn(X),V (w) is a tree for every w ∈ L≥m(X), then for each word u ∈ L≥m+n−1(X), the
graph EA,V (u) is a tree.

Proof. Set u = `w with |w| = m. The graph EA,V (u) is obtained from ELn(X),V (u) by
identifying the vertices of Ln(u) ending with the same letter. Since ELn(X),V (u) is
connected, EA,V (u) is also connected.

Set `= `′`′′ with |`′| = n − 1. The graph EA,V (`w) is isomorphic to EA`′,V (`
′′w)which

is a subgraph of En(`
′′w) and thus it is acyclic.

Thus EA,V (u) is a tree. �

A symmetric statement holds. For n ≥ 1, m ≥ 0 and U a finite X -maximal suffix
code, if EU,Ln(X)(w) is a tree for every w ∈ L≥m(X), then EU,A(v) is a tree for every
v ∈ L≥m+n−1(X).

Proof of Proposition 8.1. We proceed in several steps.

Step 1. Assume first that En(w) is tree for every word w ∈ L≥m(X). We fix some w ∈
L≥m(X).

Step 1.1. We claim that for any finite X -maximal suffix code U formed of words of length
n or n + 1, the graph EU,Ln(X)(w) is a tree by induction on γn+1(U )= Card(LU (w) ∩

An+1).
The property is true for γn+1(U )= 0, since then EU,Ln(X)(w)= En(w). Assume now

that γn+1(U ) > 0. Let a` with a ∈ A be a word of length n + 1 in LU (w). Since U is an
X -maximal suffix code with words of length n or n + 1, we have A` ∩ L(X)⊂U . Let
us consider U ′ =1`(U ). Since γn+1(U ′) < γn+1(U ), by induction hypothesis the graph
EU ′,Ln(X)(w) is a tree. Moreover, by Lemma 8.3, the graph EA,Ln(X)(`w) is a tree.

Thus, by Lemma 8.2, the graph EU,Ln(X)(w) is a tree. This proves the claim.

Step 1.2. We now claim that for any finite X -maximal prefix code V formed of words of
length n or n + 1, the graph ELn+1(X),V (w) is a tree. We use an induction on δn+1(V )=
Card(RV (w) ∩ An+1).

The property is true for δn+1(V )= 0, since the graph ELn+1(X),V (w)=

ELn+1(X),Ln(X)(w), is a tree by Step 1.1. Assume now that δn+1(V ) > 0. Let ra with
a ∈ A be a word of length n + 1 in RV (w). Since V is an X -maximal prefix code with
words of length n or n + 1, we have r A ∩ L(X)⊂U . Let us consider V ′ = 0r (V ).
Since δn+1(V ′) < δn+1(V ), by induction hypothesis the graph ELn+1(X),V ′(w) is a tree.
Moreover, by the symmetric version of Lemma 8.3, the graph ELn+1(X),A(wr) is a tree.
This proves the claim.

Since En+1(w)= ELn+1(X),Ln+1(X)(w), we conclude that En+1(w) is a tree.

Step 2. Assume now that En+1(w) is a tree for everyw ∈ L≥m(X). Fix somew ∈ L≥m(X).
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Step 2.1. We first claim that EU,Ln+1(X) is a tree for every X -maximal suffix code U formed
of words of length n or n + 1 by induction on γn(U )= Card(LU (w) ∩ An).

The property is true if γn(U )= 0, since then EU,Ln+1(X)(w)= En+1(w).
Assume next that γn(U ) > 0. Let ` ∈ LU (w) ∩ An . Set W =1′`(U ) or equivalently

U =1`(W ). Then δn(W ) < δn(U ) and consequently EW,Ln+1(X)(w) is a tree by induction
hypothesis. On the other hand, by Lemma 8.3, the graph EA,Ln+1(X)(`w) is also a tree. By
Lemma 8.2, the graph EU,Ln+1(X)(w) is a tree and thus the claim is proved.

Step 2.2. We now claim that ELn(X),V (w) is a tree for every X -maximal prefix code V
formed of words of length n or n + 1 by induction on δn(V )= Card(RV (w) ∩ An).

The property is true if δn(V )= 0 by Step 2.1. Assume now that δn(V ) > 0. Let
r ∈ RV (w) ∩ An and let T = 0′r (V ) or equivalently V = 0r (T ). Then δn(T ) < δn(V ) and
thus ELn(X),T (w) is a tree by induction hypothesis. On the other hand, by the symmetric
version of Lemma 8.3, the graph ELn(X),A(wr) is also a tree. By Lemma 8.2, the graph
ELn(X),T (w) is a tree and thus the claim is proved.

Since En(w)= EU,V (w) for U = V = Ln(X), it follows from the claim that En(w) is a
tree. �

The following result shows that in the definition of eventually dendric shift spaces, one
can replace the graphs E1(w) by En(w) with the same threshold.

THEOREM 8.4. Let X be a shift space. For every m ≥ 1, the following conditions are
equivalent.
(i) The shift X is eventually dendric with threshold m.
(ii) The graph En(w) is a tree for every n ≥ 1 and every word w ∈ L≥m(X).
(iii) There is an integer n ≥ 1 such that En(w) is a tree for every word w ∈ L≥m(X).

Proof. (i) ⇒ (ii). This is proved by ascending induction on n using iteratively
Proposition 8.1.

(ii)⇒ (iii). This is obvious.
(iii)⇒ (i). This is proved by descending induction on n using Proposition 8.1. �

9. Complete bifix decoding
Let X be a shift space on an alphabet A. A subset of L(X) is two-sided X-complete if it is
both left and right X -complete.

A bifix code is both a prefix code and a suffix code. A bifix code U ⊂ L(X) is X -
maximal if it is not properly contained in a bifix code V ⊂ L(X). If a bifix code U ⊂ L(X)
is right X -complete (respectively left X -complete), it is an X -maximal bifix code since it is
already an X -maximal prefix code (respectively suffix code). It can be proved conversely
that if X is irreducible, a finite bifix code is X -maximal if and only if it is two-sided X -
complete (see [3, Theorem 4.2.2]). This is not true in general, as shown by the following
example.

Example 9.1. Let X be the shift space such that L(X)= a∗b∗. The set U = {aa, b} is an
X -maximal bifix code. Indeed, it is a bifix code and it is left X -complete as one may verify.
However it is not right X -complete since no word in ab∗ has a prefix in U .

https://doi.org/10.1017/etds.2020.35 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2020.35


2046 F. Dolce and D. Perrin

Let X be a shift space and let U be a two-sided X -complete finite bifix code. Let ϕ :
B→U be a coding morphism for U , that is, a bijection from an alphabet B onto U
extended to a morphism from B∗ into A∗. Then ϕ−1(L(X)) is factorial and, since U is
two-sided complete, it is extendable. Thus it is the language of a shift space called the
complete bifix decoding of X with respect to U .

For example, for any n ≥ 1, the set Ln(X) is a two-sided complete bifix code and the
corresponding complete bifix decoding is the decoding of X by non-overlapping n-blocks.
It can be identified with the dynamical system (X, σ n).

In [5, Theorem 3.13] it is proved that the maximal bifix decoding of an irreducible
dendric shift space is a dendric shift space. Actually, the hypothesis that X is irreducible
is only used to guarantee that the X -maximal bifix code used for the decoding is also an
X -maximal prefix code and an X -maximal suffix code. In the definitions used here of a
maximal bifix decoding, we do not need this hypothesis.

THEOREM 9.2. Any complete bifix decoding of an eventually dendric shift space is an
eventually dendric shift space having the same threshold.

Note that any X -maximal suffix code U one has Card(U )≥ Card(L1(X)). Indeed,
every a ∈ L1(X) appears as a suffix of (at least) an element of X .

LEMMA 9.3. Let X be an eventually dendric shift space with threshold n. For any
w ∈ L≥n(X), any X-maximal suffix code U and any X-maximal prefix code V , the graph
EU,V (w) is a tree.

Proof. We use an induction on the sum of the lengths of the words in U, V . The property
is true if the sum is equal to 2 Card(L1(X)). Indeed, for every w ∈ L≥n(X) one has U =
L(w) and V = R(w) and thus EU,V (w)= E1(w) is a tree. Otherwise, we may assume that
U contains words of length at least 2 (the case with V being symmetrical). Let u ∈U
be of maximal length. Set u = a` with a ∈ A. Since U is an X -maximal suffix code, we
have A` ∩ L(X)⊂U . Set U ′ =1`(U ). By induction hypothesis, the graphs EU ′,V (w) and
EA,V (`w) are trees. Thus, by Lemma 8.2, EU,V (w) is also a tree. �

Proof of Theorem 9.2. Assume that X is eventually dendric with threshold n. Let ϕ : B→
U be a coding morphism for U and let Y be the decoding of X corresponding to U .
Consider a word w of L(Y ) of length at least n. By Lemma 9.3, and since |ϕ(w)| ≥ n,
the graph EU,U (ϕ(w)) is a tree. But for b, c ∈ B, one has bwc ∈ L(Y ) if and only if
ϕ(bwc) ∈ L(X), that is, if and only if (ϕ(b), ϕ(c)) ∈ E1(ϕ(w)). Thus E1(w) is isomorphic
to EU,U (ϕ(w)) and thus E1(w) is a tree. This shows that Y is eventually dendric with
threshold n. �

Example 9.4. Let X be the Fibonacci shift. Then U = {aa, aba, b} is an X -maximal bifix
code. Let ϕ : {u, v, w} →U be the coding morphism for U defined by ϕ : u 7→ aa, v 7→
aba, w 7→ b. The complete bifix decoding of X with respect to U is an eventually dendric
shift space with threshold 0. It is actually the natural coding of an interval exchange
transformation on three intervals (see [6]). The extension graphs E1(ε, Y ) and E1(v, Y )
are shown in Figure 13.
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FIGURE 13. The graphs E1(ε, Y ) and E1(w, Y ).

A particular case of complete bifix decoding is related to the skew product of two
dynamical systems, a notion which is well known in topological dynamics (see [10]).
Indeed, assume that we start with a shift space X , a transitive permutation group G on a
set Q and a morphism f : A∗→ G. We denote by q 7→ q · w the result of the action of the
permutation f (w) on the point q ∈ Q. The skew product of X and (G, Q) is the shift space
Y on the alphabet A × Q formed by the bi-infinite words (ai , qi ) such that (ai ) ∈ X and
pi+1 = pi · f (ai ) for all i ∈ Z. Fix a point i ∈ Q. The set of words w such that i · w = i is
a submonoid generated by a bifix code U which is two-sided complete. The decoding of
S = L(X) with respect to U ∩ S is the language of the dynamical system induced by Y on
the set of y ∈ Y such that y0 = (a, i) for some a ∈ A (see [6] for more details).

Example 9.5. Let X be the Fibonacci shift, i.e. the shift whose language is the Fibonacci
set. Let Q = {1, 2}, G = Z/2Z and f : A∗→ G defined by a 7→ (12), b 7→ (1). Choosing
i = 1, the bifix code U built as above is U = {aa, aba, b} as in Example 9.4.

10. Conclusion
The class of eventually dendric shifts is shown in this paper to have strong closure
properties. It leaves open the question of whether it is closed under taking factors, that
is, images by a sliding block code not necessarily bijective.

It would be interesting to know how other properties which are known to hold for
dendric shifts extend to this more general class. This includes the following.
(1) To which extent the properties of return words proved for minimal dendric shifts

extend to eventually dendric ones. For example, what can we say about the subgroup
of the free group generated by return words to a given word? In [5] it is proved that
for minimal dendric sets, every set of return words is a basis of the free group, while
in the case of specular sets, the set of return word to a fixed word is a basis of a
particular subgroup called the even subgroup (see [4]).

(2) Is there a finite S-adic representation for all minimal eventually dendric shifts? There
is one for minimal dendric shifts [7].

(3) Is the property of being eventually dendric decidable for a substitutive shift, as it is
for dendric ones [12]?

It would also be interesting to know whether the conjugacy of effectively given
eventually dendric shifts is decidable (the conjugacy of substitutive shifts was recently
shown to be decidable [17]).
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