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Summary
For robot manipulators, there are two types of disturbances. One is model parametric uncertainty; the other is
unmodelled parameters such as joint friction forces and external disturbances. Unmodelled joint frictions and exter-
nal disturbances reduce performance in terms of positioning accuracy and repeatability. In order to compensate for
unmodelled parameters, the design of a new controller is considered. First, the modelled and unmodelled parame-
ters are included in a dynamic model. Then, based on the dynamic model, a new Lyapunov function is developed.
After that, new nonlinear joint friction and external disturbance estimation laws are derived as an analytic solution
from the Lyapunov function; thus, the stability of the closed system is guaranteed. Better values of the adaptive
dynamic compensators can be extracted by fuzzy rules according to the tracking error. Limitations and knowledge
about friction and external disturbances are not required for the design of the controller. The controller compensates
for all possible model parameter uncertainties, all possible unknown joint frictions and external disturbances.

1. Introduction
Robotic manipulators are highly nonlinear systems, and they are subject to two types of disturbance.
One is model parametric uncertainty due to variations in grasped load characteristics such as the mass
moment of inertia or the exact position of the centre of the payload. The other is unmodelled parameters
such as joint friction forces and external disturbances. When the dynamic parameters of the robotic
system are not precisely known, adaptive [1–4] and robust [5–7] control laws are typical control schemes
to achieve good tracking performance for robot manipulators.

The Corless [8] or Corless–Leitmann [9] approach is popularly used in the design of robust controllers
for robot manipulators [5, 6, 10–12]. In this approach, uniform ultimate boundedness of tracking error
is shown using the Lyapunov-based theory of guaranteed stability of uncertain system. In a commonly
robust control law, the maximum upper uncertainty bound, which is the worst case of the uncertainty
bound, is used for stabilisation of control laws [5, 6]. However, a very high uncertainty bound may cause
chattering and bad behaviour of the whole system, while a very low estimation of the uncertainty bound
function may cause a higher tracking error. If the uncertainty bound of a parameter is large, large control
gains are required. However, high gain is impractical in design, and low gains are desirable for robust
control laws. This gain limitation deteriorates transient and steady-state performance [10]. In order to
obtain better tracking performance, the uncertainty bound function should be updated properly [13].
For this purpose, the upper bounding function is made adaptive in some studies [11, 12, 14]. The upper
bounding function is estimated depending on a regressed matrix [11], functions [12], or adaptive fuzzy
rule [14].

In robust control laws [5, 6, 10–12], nominal control, which is used to eliminate the known dynamics
of robotic manipulators, is recommended and regressor analysis is required. Based on function
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approximation techniques, the use of a regressor matrix is eliminated, and regressor-free robust control
of robot manipulators has been presented [15, 16]. In this approach, Fourier series expansion is used
for uncertainty estimation [16].

However, unmodelled dynamics reduce performance such as positioning accuracy and repeatability.
In order to achieve the desired performance, it is imperative to design some form of disturbance com-
pensation. In the literature concerning robotic applications, some disturbance rejection techniques are
proposed [17–19].

In order to compensate for both modelled and unmodelled parametric uncertainty, a robust control
law [10] and a robust adaptive [18] control law are designed. In these control laws [10, 20], modelled
and unmodelled parameters are included in the dynamic model. Then modelled parameter uncertainty is
separated from unmodelled parameter uncertainty. After that, a robust control law is designed for each
uncertainty group.

In the present paper, robot unmodelled parameters, joint frictions and external disturbances are
included in a dynamic model. Based on the dynamic model, new joint friction and external disturbance
estimation laws are developed. The Lyapunov theory, based on the Corless–Leitmann approach [9], was
used to design the control law, and uniform boundedness error convergence is achieved. After the sim-
ulation results, it is observed that the proposed adaptive law compensates for not only all joint frictions
and external disturbances but also all modelled parametric uncertainty.

2. Dynamic Model
The dynamic model of an n-link manipulator can be written as [10]

M(q)q̈ + C(q, q̇)q̇ + G(q) + Bq̇ + fl(q, q̇) + d = τ , (1)

where q denotes joint position, τ is the n-dimensional vector of the actuating input, C(q, q̇)q̇ is the
n-dimensional vector of Coriolis and centripetal forces, G(q)is the n-dimensional gravitational force
vector, fl(q, q̇) represents the static and low speed friction, Bq̇ is the viscous friction forces at the joints
and d is the external disturbance at the joints. The joint friction can be modelled as [10]

f = fl(q, q̇) + Bq̇, (2)

where fl(q, q̇) represents the static and low speed friction; it is a function of joint angle and velocity
and usually difficult to model and to compensate for accurately. Then the dynamic model (1) can be
written as

Y(q, q̇, q̈)π + f + d = τ (3)

where π is the p-dimensional vector of robot parameters and Y(q, q̇, q̈) is the n × p dimensional matrix
containing position, velocity and acceleration of joints. For any specific trajectory, qd, q̇d and q̈d show
the desired position, velocity and acceleration vectors, respectively. The parameters q̃ = q − qd and ˙̃q =
q̇ − q̇d are the measured actual position and velocity errors. Using the above information, the corrected
desired velocity and acceleration vectors for nonlinearities and decoupling effects are given.

q̇r = q̇d − �q̃; q̈r = q̈d − � ˙̃q (4)

The error σ is given as

σ = q̇ − q̇r = ˙̃q + �q̃, (5)

where � is an n × n dimensional positive definite diagonal matrix. During motion, the inertia param-
eter vector π is constant, not known exactly, but bounded. The upper uncertainty bound is defined
as follows:

π0 − π = π̃ ≤ ρ (6)
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It is assumed that π 0∈Rp and ρ ∈Rp are known. Then the following robust control law is given [5]:

τr = M0(q)q̈r + C0(q, q̇)q̇r + G0(q) + Y(q, q̇, q̇r, q̈r)up − Kσ

= Y(q, q̇, q̇r, q̈r)(π0 + up) − Kσ (7)

Here M0, C0, G0 and π0 are the known nominal control parameters, up is the robust control input and
Kσ is the PD action.

3. Proposed Controller
Considering the dynamic model and the nominal control law (7), the overall control law is
proposed as

τ = τr − f̂ + d̂ + ud = Y(q, q̇, q̇r, q̈r)(π0 + up) − f̂ + d̂ + ud − Kσ , (8)

where f̂ is the estimation law for joint frictions f , d̂ is the estimation law for external disturbance d,
up is the control input designed robust to modelled parametric uncertainty and ud is the control input
designed for joint frictions and disturbances. Substituting (8) into (1) and considering Equations 1–6,
Equation 9 is obtained.

M(q)σ̇ + C(q, q̇)σ = M̃(q)q̈r + C̃(q, q̇)q̇r − f̂ + d̂ + Y(q, q̇, q̇r, q̈r)up + ud

+ f + d − Kσ = Y(q, q̇, q̇r, q̈r)(π̃ + up) + ud − f̂ + d̂ + f + d − Kσ (9)

Here M̃ = M0 − M, C̃ = C0 − C, G̃ = G0 − G and π0 − π = π̃ . The unknown friction and external
disturbance parameter estimation error vector η̃ are defined as

η̃ = f̂ − d̂ (10)

It is assumed that friction f and external disturbance d are not constant but bounded as

‖ f ‖ + ‖d‖ ≤ ω (11)

Since ω ∈ R is assumed unknown, ω should be estimated with an estimation law to control the system
properly. The estimate of ω is ω̂ and the estimation error ω̃ is defined as

ω̃ = ω − ω̂ (12)

4. Theorem and Proof of Stability
In order to derive a new controller, the following theorem is given.

Theorem 1: Let α1, α2, . . . , αp, β1, β2, · · · , βp, λ1, λ2 . . . , λp, b ∈ R. The estimation law for the joint
friction force is f̂ , the estimation for external disturbances is d̂ and the estimation law for the uncertainty
bound of the unknown parameters of f and d is ω̂. The estimation laws f̂ , d̂ and ω̂ are defined as

f̂ = diag

(
(β2

i αi)
arctan(α

∫
σdt)i

(α∫σdt)2
i + 1

)
; d̂ = diag

(
λi

(α∫σdt)2
i + 1

)
i = 1, 2, · · · n; ˙̂ω = b1 ‖σ‖ (13)

The additional control input up and ud are defined as

up =

⎧⎪⎪⎨
⎪⎪⎩

− YTσ

‖YTσ‖ ‖ρ‖ if
∥∥YTσ

∥∥ > εp

−YTσ

εp

‖ρ‖ if
∥∥YTσ

∥∥≤ εp

= ; ud =

⎧⎪⎨
⎪⎩

− σ

‖σ‖ ω̂ if ‖σ‖ > εd

− σ

εd

ω̂ if ‖σ‖ ≤ εd

(14)
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If the control laws (13) and (14) are substituted into the control input (8) for control of robot manipula-
tors, then the control law (8) will be continuous and the closed-loop system will be uniformly ultimately
bounded.

Proof . In order to prove the theorem, the following Lyapunov function candidate is proposed:

V(σ , q̃, π̃ , ω̃, η̃, ) = 1

2
σ TM(q)σ + 1

2
q̃TDq̃ + 1

2b1

ω̃2 + 1

2
η̃T(KT + 2)2η̃ ≥ 0, (15)

where D ∈ Rn×n is a positive diagonal matrix and  is chosen as an n × n dimensional diagonal matrix
changing in time. The time derivative of V throughout the system (9) is

V̇ = σ TM(q)σ̇ + 1

2
σ TṀ(q)σ + q̃TD ˙̃q + 1

b1

ω̃ ˙̃ω + 2η̃T(KT + 2)̇η̃

+ η̃T(KT + 2)2 ˙̃η (16)

Substituting Eq. (9) into (16), the following equation is obtained:

V̇ = σ T

[
1

2
Ṁ(q)−C(q, q̇)

]
σ − σ TKσ + σ TY(π̃ + up) + σ T( f + d − f̂ + d̂ + ud)

+ q̃TD ˙̃q − 1

b1

(ω − ω̂) ˙̂ω + 2η̃T(KT + 2)̇η̃ + η̃T(KT + 2)2 ˙̃η (17)

Note that ˙̃ω = − ˙̂ω since ω is constant. Using the property σ T[Ṁ(q) − 2C(q, q̇)]σ = 0 ∀σ ∈ Rn and
taking D = 2�K [5], Eq. (17) becomes

V̇ = −˙̃qT
K ˙̃q − q̃T�K�q̃ + σ TY(π̃ + up) − ‖σ‖ ω + ‖σ‖ ω̂ + σ Tud + σ Tf + σ Td

+ σ T(−f̂ + d̂) + 2η̃T(KT + 2)̇η̃ + η̃T(KT + 2)2 ˙̃η (18)

KT and  are defined as a n × n dimensional diagonal matrix such that

 = diag

(
(α
∫
σdt)

i√
αiβi

)
; KT = diag

(
1

αiβi

)
; KT + 2 = diag

(
(α
∫
σdt)2

i + 1

αiβi

)
; i = 1, 2, · · · n (19)

̇ = diag

(
(ασ )i√

αiβi

)
; i = 1, 2, · · · , n. (20)

From Eq. (13), the friction and external disturbance parameter estimation error vector η̃ = f̂ − d̂ is
defined as

η̃i = β2
i α

2
i arctan(α

∫
σdt)i − λi

1 + (α
∫
σdt)

i

2 (21)

The time derivative of η̃ is

˙̃ηi = 2(ασ )i(α
∫
σdt)

i
− λi

1 + (α
∫
σdt)

i

2 η̃i + (β2
i α

2
i )σi

(1 + (α
∫
σdt)

i

2
)

2 (22)

The last two terms in Eq. (17) are written depending on the functions KT, , ̇, η̃ and ˙̃η as

2(η̃)i((KT)i + 2
i )i̇iη̃i + (η̃)i((KT)i + 2

i )
2( ˙̃η)i = (η̃)i

2(α
∫
σdt)2

i + 1)(α
∫
σdt)i(ασ )i

β2
i α

2
i

(η̃)i

−(η̃)i

2(α
∫
σdt)2

i + 1)(α
∫
σdt)i(βσ )i

β2
1 α

2
1

(η̃)i + (η̃)i

(α
∫
σdt)2

i + 1)2

β2
i α

2
i

β2
i α

2
i (σ )i

(1 + (α
∫
σdt)2

i )
2 (23)

The first and second terms cancel each other and Eq. (23) can be written as

2η̃T(KT + 2)̇η̃ + η̃T(KT + 2)2 ˙̃η = η̃Tσ (24)
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Then the derivative of the Lyapunov function is obtained as

V̇ = −˙̃qT
K ˙̃q − q̃T�K�q̃ + σ TY(π̃ + up) − ‖σ‖ ω + ‖σ‖ ω̂ + σ Tud + σ T(f + d)

≤ −˙̃qT
K ˙̃q − q̃T�K�q̃ + σ TY(π̃ + up) + ‖σ‖ (− ω + ‖f ‖ + ‖d‖ ) + ‖σ‖ ω̂ + σ Tud (25)

For stability analysis, four different cases are considered similar to the robust control law [10].

Case 1: If
∥∥YTσ

∥∥≥ εp and ‖σ‖ ≥ εd. For the first case, control inputs are defined as ud = − σ

‖σ‖ ω̂ and
(up) = − YT σ‖YT σ‖ ‖ρ‖. Then Eq. (25) is obtained as

V̇ = −˙̃qT
K ˙̃q−q̃T�K�q̃ + σ TYπ̃ − (YTσ )T YTσ

‖YTσ‖ ‖ρ‖ + ‖σ‖ ω̂

− σ Tσ ω̂

‖σ‖ + ‖σ‖ (− ω + ‖f ‖ + ‖d‖)

≤ −˙̃qT
K ˙̃q−q̃T�K�q̃ + ∥∥YTσ

∥∥ (‖π̃‖ − ‖ρ‖) + ‖σ‖ (ω̂ − ω̂) ≤ 0 (26)

Since K and � are positive definite matrices and
∥∥YTσ

∥∥ (‖π̃‖ − ‖ρ‖) + ‖σ‖ (ω̂ − ω̂) ≤ 0, the deriva-
tive of the Lyapunov function will be V̇ ≤ 0. As a result, the system will be stable. Eq. (15) shows that V
is a positive continuous function and V tends to a constant as t → ∞ and therefore V remains bounded.
Thus, ˙̃q and q̃ are bounded, that is, ˙̃q and q̃ converge to zero and this implies that σ is bounded and
converges to zero. As a result,

∫
σdtis bounded and converges to a constant. These imply that f̂ , d̂ and

ω̂ are bounded.

Case 2: If
∥∥YTσ

∥∥≥ εp and ‖σ‖ ≤ εd. For the second case, the control inputs are defined as (up) =
− YT σ‖YT σ‖ ‖ρ‖ and ud = − σ

εd
ω̂. Then Eq. (25) is obtained as

V̇ ≤ −˙̃qT
K ˙̃q − q̃T�K�q̃ + σ TYπ̃ − (YTσ )T YTσ

‖YTσ‖ ‖ρ‖ + ‖σ‖ ω̂ − σ T σ

εd

ω̂ ≤ 0

≤ −˙̃qT
K ˙̃q − q̃T�K�q̃ + ∥∥YTσ

∥∥ (‖π̃‖ − ‖ρ‖) + ‖σ‖
(

ω̂ − ‖σ‖
εd

ω̂

)
≤ 0

≤ −˙̃qT
K ˙̃q − q̃T�K�q̃ + ‖σ‖

(
ω̂ − ‖σ‖

εd

ω̂

)
≤ 0 (27)

The proof is similar to that of a robust controller [5], where xT = [ ˙̃qT , q̃T] and Q = diag[�K�K],
provided

xTQx ≥ εd

ω̂

4
. (28)

Using the relationship

δminQ ≤ xTQx ≤ δmaxQ ≤ 0 (29)

where δmin(Q) and δmax(Q) denote the minimum and maximum eigenvalues of Q, respectively, it can be
obtained that V̇ ≤ 0 if

δminQ‖x‖2 ≥ εd

ω̂

4
(30)

It is shown that V̇ ≤ 0 for ||x||, where

‖x‖ ≥
√

εdω̂

4δmin(Q)
(31)
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Figure 1. Membership functions of error values (e1, e2).

Case 3: If
∥∥YTσ

∥∥≤ εp and ‖σ‖ ≥ εd. The time derivative of the Lyapunov function is

V̇ ≤ −˙̃qT
K ˙̃q − q̃T�K�q̃ + σ TYπ̃ − (YTσ )T YTσ

εp

‖ρ‖ + ‖σ‖ ω̂ − σ Tσ ω̂

‖σ‖ ≤ 0

≤ −˙̃qT
K ˙̃q − q̃T�K�q̃ + ∥∥YTσ

∥∥ (‖π̃‖ − YTσ

εp

‖ρ‖
)

≤ 0 (32)

The maximum term of Eq. (32) will be εp
‖ρ‖

4
. The rest of the proof is given elsewhere [5].

Case 4: If
∥∥YTσ

∥∥≤ εp and ‖σ‖ ≤ εd. For the fourth case, Eq. (25) will be

V̇ = −˙̃qT
K ˙̃q − q̃T�K�q̃ + YTσ π̃ − (YTσ )T

∥∥YTσ
∥∥

εp

‖ρ‖ + ‖σ‖ ω̂ − σ Tσ

εd

ω̂ ≤ 0

≤ −˙̃qT
K ˙̃q − q̃T�K�q̃ + ∥∥YTσ

∥∥ (‖π̃‖ −
∥∥YTσ

∥∥
εp

‖ρ‖
)

+ ‖σ‖
(

ω̂ − ‖σ‖
εd

ω̂

)
≤ 0 (33)

The values
∥∥YTσ

∥∥ (‖π̃‖ − ‖YT σ‖
εp

‖ρ‖) and ‖σ‖ (ω̂ − ‖σ‖
εd

ω̂) are bounded by εp
‖ρ‖

4
and εd

ω̂

4
, respec-

tively. Thus,

V̇ ≤ −xTQx + εp

‖ρ‖
4

+ εd

ω̂

4
≤ 0 (34)

Similar to the second and third cases, it is shown that V̇ ≤ 0 for ‖x‖, where

‖x‖ ≥
√

εp ‖ρ‖
4δmin(Q)

+ εdω̂

4δmin(Q)
(35)

5. Fuzzy Logic Adaptive Disturbance Estimation Law
Fuzzy logic control has become a very important area of research after the introduction of fuzzy logic
by Zadeh [21]. This control method is very useful for a system model that is not specified exactly. A
fuzzy control system is composed of a fuzzifier, a rule base, an inference engine and a defuzzifier. The
rule base consists of a set of If–Then rules, such as If x1 is A1, xi is Ai and xn is An, then ρ is B1, where
x = [x1. . . xi. . . xn]. T and ρ are the input and output vectors of the fuzzy system, respectively. The
fuzzy sets A and B are assumed to be associated with the fuzzy membership functions. For this fuzzy
controller, we used two inputs representing the error values (e1, e2) of path tracing for the first and second
links of the robot (Fig. 1), and four outputs representing control values of the constant parameters α, β,
λ and b1 (Fig. 2).

By trial and error method, we found the ranges for membership functions as follows:

e1: [−0.05; 0.05]; e2: [−0.05; 0.05], b1: 0 − 500, α: 0 − 250, β: − 500 − +500, λ: − 200 − 200
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Table I. Rule table for fuzzy logic.

α β e11 e12 e13 e14 e15 e16 e17 e18
λ b1
e21 a1 be1 a2 be3 a6 be1 a5 be5 a7 be4 a8 be7 a1 be1 a2 be2

te1 b11 te3 b15 te2 b15 te5 b18 te4 b18 te3 b14 te1 b13 te4 b15
e22 a1 be2 a3 be4 a3 be4 a5 be3 a8 be7 a8 be7 a2 be2 a4 be4

te2 b13 te4 b16 te2 b18 te5 b14 te5 b13 te1 b13 te2 b14 te2 b17
e23 a2 be3 a4 be5 a6 be6 a8 be6 a7 be6 a5 be5 a3 be3 a6 be2

te3 b14 te5 b18 te4 b15 te6 b18 te4 b13 te4 b16 te3 b15 te4 b15
e24 a3 be4 a1 be3 a2 be5 a1 be5 a1 be2 a4 be6 a4 be4 a8 be8

te4 b15 te3 b16 te5 b16 te7 b16 te2 b18 te5 b18 te4 b16 te8 b17
e25 a2 be5 a7 be4 a1 be2 a8 be5 a2 be7 a4 be6 a5 be5 a7 be7

te1 b16 te4 b15 te3 b17 te1 b13 te8 b11 te5 b16 te5 b17 te7 b18
e26 a5 be6 a7 be6 a1 be3 a1 be7 a8 be5 a4 be7 a8 be4 a4 be4

te6 b17 te6 b18 te3 b12 te4 b15 te5 b14 te3 b14 te3 b18 te3 b15
e27 a6 be4 a7 be2 a8 be8 a5 be7 a4 be4 a4 be7 a2 be5 a6 be6

te4 b18 te4 b13 te8 b18 te5 b17 te4 b17 te3 b18 te1 b13 te4 b16
e28 a8 be8 a4 be4 a5 be5 a8 be5 a8 be8 a8 be7 a8 be1 a6 be3

te8 b15 te4 b14 te5 b11 te4 b18 te6 b18 te7 b17 te6 b18 te8 b18

Figure 2. Membership functions of the constant parameters α, β, λ and b1.

Using (If . . . and . . . Then . . .) the structure of the rule table is created and is shown in Table I. At
the defuzzification stage, we used the centroid method to obtain the output values.

6. Simulation results
For illustration, a two-link robot manipulator is given in Fig. 3 [5].

For illustration purposes, the robot’s parameters are given in the following tables [5]. Tables II and
III show the unloaded manipulator. Table IV shows nominal control parameters; Table V shows the
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Table II. Parameters of the unloaded arm [5].

m1 m2 l1 l2 lc1 lc2 I1 I2

10 5 1 1 0.5 0.5 10/12 5/12

Table III. π i for the unloaded arm [5].

π 1 π 2 π 3 π 4 π 5 π 6

8.33 1.67 2.5 5 5 2.5

Table IV. Nominal parameter vector π 0 [5].

π01 π02 π03 π04 π05 π06

13.33 8.96 8.75 5 10 8.75

Table V. Uncertainty bound [5].

ρ1 ρ2 ρ3 ρ4 ρ5 ρ6

5 7.29 6. 25 0 5 6.25

Figure 3. Two-link planar robot [5].

uncertainty bounds. Table V contains simply the differences between the values given in Tables IV and
III [5].

In simulations, joint frictions and external disturbances are assumed to be
f + d = 10Sin(10t) + 10sin(15t) + 10 at each joint. For comparison, the known pure robust control law
is given [5]:

τ = τ0 + Y(q, q̇, q̇r, q̈r)u(t) = Y(q, q̇, q̇r, q̈r)(π0 + u(t)) − Kσ (36)

Control input u(t)i is

up =

⎧⎪⎪⎨
⎪⎪⎩

− YTσ

‖YTσ‖ ‖ρ‖ if
∥∥YTσ

∥∥> εp

−YTσ

εp

‖ρ‖ if
∥∥YTσ

∥∥≤ εp

or (up)i =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− (YTσ )i

|(YTσ )i|ρi if
∣∣(YTσ )i

∣∣> (εp)i

− (YTσ )i

εp

ρi if
∣∣(YTσ )i

∣∣≤ (εp)i

(37)
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Figure 4. Response using the pure robust control law [5] for � = diag([30 30]), K = diag([60 60])
without frictions and external disturbances.
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Figure 5. Response using the pure robust control law [5] for � = diag([30 30]), K = diag([60 60])
with frictions and external disturbances f + d = 10Sin(10t) + 10sin(15t) + 10 at each joint.

The desired trajectory is selected for each joint as q1 = q2 = 1.5 cost − 1.5. The control parameters K
and � are chosen as K = diag(30 30) and � = diag(60 60). The same model, same trajectories and
same control parameters are used for simulations, and the results obtained are given in Figs. 4–11.

As shown in Fig. 4, the tracking error is large and chattering, and poor steady-state performance is
observed for the known robust controller [5]. As shown in Figs. 6–11, the results with external distur-
bances are close to the results without external disturbances. Tracking performance varies according to
the control parameters α, β, λ and b1. As shown in Fig. 9, the maximum tracking error is 4.6 × 10−3

rad for the first joint and 5.7 × 10−3 for the second joint in the transient state. The tracking error is
reduced fast after 0.2 s and becomes 1 × 10−3 rad in steady state with the control parameters b1 = 120,
β = 100, α = 100 and λ = −40. The maximum tracking error is reduced to 2.8 × 10−3 rad in Fig. 11
with the control parameters b1 = 120, β = 10, α = 100 and λ = −40. These results show that the desired
behaviour of the system is achieved by adjusting the controllers α, β, λ and b1 to appropriate values with
the same feedback gains. However, it is difficult to find the best values of the parameters for α, β, λ and
b1 by trial and error method. Therefore, fuzzy logic rules find better values of the control parameters,
and the result is given in Figs. 12 and 13.

The control parameters α, β, λ and b1 according to error values and their changes with time can be
seen in Figs. 14 and 15.
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Figure 6. Response using the proposed control law for � = diag([30 30]), K = diag([60 60]) b1 = 100,
β = 20, α = 10, λ = −80 without frictions and external disturbances.
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Figure 7. Response using the proposed control law for � = diag([30 30]), K = diag([60 60]) b1 = 100,
β = 20, α = 10, λ = −80 with frictions and external disturbances f + d = 10Sin(10t) + 10sin(15t) + 10
at each joint.
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Figure 8. Response using the proposed control law for � = diag([30 30]), K = diag([60 60]) b1 = 120,
β = 100, α = 100, λ = −40 without frictions and external disturbances.
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Figure 9. Response using the proposed control law for � = diag([30 30]), K = diag([60 60])
b1 = 120, β = 100, α = 100, λ = −40 with frictions and external disturbances f + d = 10Sin(10t)
+ 10sin(15t) + 10 at each joint.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
–3

–2

–1

0

1

2

3
x 10

–3

Time(sec)

Tr
ac

ki
ng

 e
rro

r(r
ad

)

e1
e2

Figure 10. Response using the proposed control law for � = diag([30 30]), K = diag([60 60]) b1 = 120,
β = 10, α = 100, λ = −40 without frictions and external disturbances.
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Figure 11. Response using the proposed control law for � = diag([30 30]), K = diag([60 60])
b1 = 120, β = 10, α = 100, λ = −40 with frictions and external disturbances
f + d = 10Sin(10t) + 10sin(15t) + 10 at each joint.
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Figure 12. Response using the proposed control law for � = diag([30 30]), K = diag([60 60]) for
fuzzy-logic control without frictions and external disturbances.

Figure 13. Response using the proposed control law for � = diag([30 30]), K = diag([60 60]) for
fuzzy-logic control with frictions and external disturbances f + d = 10Sin(10t) + 10sin(15t) + 10 at
each joint.

By using the fuzzy logic robust adaptive controller, the values of α, β, λ and b1 will change with
time, and better values can be extracted according to error, which varies with time and input in the fuzzy
system. Thus, better tracking performance is obtained.

In order to investigate the tracking performance of the controller, the more complicated desired tra-
jectory is selected for each joint as q1 = q2 = 2 cos 2t − 2. The control parameters are chosen the same
as those in Figs. 10 and 11 as K = diag(30 30), � = diag(60 60), b1 = 120, β = 10, α = 100, λ = −40,
and the results are given in Figs. 16–19.

As seen in Figs. 16–19, the tracking error is increased in the case of complicated trajectory. However,
it is seen that the results obtained are similar in the case of all trajectories. Tracking performance varies
with respect to the control parameters α, β, λ and b1. The proposed adaptive robust controller compen-
sates for all of the unmodelled disturbances; however, better compensation is achieved by fuzzy logic
rules. As seen in Figs. 11, 13, 17 and 19, results with and without unmodelled parameter disturbances
are almost the same by the addition of fuzzy logic rules and better compensation for the unmodelled
parameters can be achieved.
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Figure 14. Control parameters α, β, λ and b1 according to error values without friction and external
disturbances.

Figure 15. Control parameters α, β, λ and b1 according to error values with friction and external
disturbances f + d = 10Sin(10t) + 10sin(15t) + 10 at each joint.

7. Conclusion
In the present study, joint friction and external disturbance estimation laws are derived from a Lyapunov
function for the control of robots to ensure robust tracking. An upper bound of unmodelled parametric
uncertainty and knowledge about external disturbances and joint frictions are not required for the design
of the controller. Based on the Lyapunov function, stability and uniform boundedness of tracking error
are achieved.

Tracking performance can be improved by adjusting the adaptive gain parameters to appropriate
values by trial and error method. However, it is difficult to find better appropriate values by trial and
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Figure 16. Response using the proposed control law for � = diag([30 30]), K = diag([60 60]),
b1 = 120, β = 10, α = 100, λ = −40 without frictions and external disturbances.

Figure 17. Response using the proposed control law for � = diag([30 30]), K = diag([60 60]),
b1 = 120, β = 10, α = 100, λ = −40 with frictions and external disturbances f + d =
10Sin(10t) + 10sin(15t) + 10 at each joint.

error. By using fuzzy logic, gains are made adaptive and better values can be extracted according to the
error, which varies with time via the fuzzy system. Before creating the fuzzy logic rule table, the effect
of α, β, λ and b1 on the trajectory tracking error is investigated. While doing this research, α, β, λ and b1

are taken in a wide range, and all their combinations were tried to determine the effect on the trajectory
tracking error. The rule table is created by taking the intervals that have better effect on the reduction of
the trajectory tracking error. Membership functions in the rule table are determined according to these
intervals. Our values are made variable by choosing the best membership function containing α, β, λ

and b1 values that will minimize the error in a certain time.
The aim of the estimation laws is not to determine the actual values of the friction and external

disturbance parameters. The estimation law is the dynamic compensators designed to obtain a very
small tracking error, that is, to estimate the greatest estimation of dynamics compensators and to obtain
a very small tracking error with small feedback gains. As shown in the figures, the tracking error is very
small. These results also verify that the fundamental shortcoming of the robust controllers is remedied
and a very small tracking error with small feedback gain is achieved.
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Figure 18. Response using the proposed control law for � = diag([30 30]), K = diag([60 60]) for
fuzzy-logic control without frictions and external disturbances.

Figure 19. Response using the proposed control law for � = diag([30 30]), K = diag([60 60]) for
fuzzy-logic control with frictions and external disturbances f + d = 10Sin(10t) + 10sin(15t) + 10 at
each joint.
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Appendix A

π1 = m11c1
2 + m2l1

2 + I1,π2 = m2lc2
2 + I2, π3 = m2l1lc2, π4 = m1lc1, π5 = m2l1, π6 = m2lc2,

With this parameterization, the dynamic model in Eq. (1) can be written asY(q, q̇, q̈ )π = τ

The component yij of Y(q, q̇, q̈ ) are given as

y11 = q̈1;y12 = q̈1 + q̈2; y13 = cos (q2)(2q̈1 + q̈2) − sin (q2)(q̇
2
2 + 2q̇1q̇2), y14 = gc. cos (q1),

y15 = gc. cos (q1), y16 = gc. cos (q1 + q2), y21 = 0, y22 = q̈1 + q̈2, y23 = cos (q2)q̈1 + sin (q2)(q̇
2
1)

y24 = 0, y25 = 0, y26 = gc. cos (q1 + q2).

Y(q, q̇,q̇r, q̈r)in Eq. (7) have the components

y11 = q̈r1;y12 = q̈r1 + q̈r2, y13 = cos(q2)(2q̈r1 + q̈r2) − sin(q2)(q̇1q̇r2 + q̇1q̇r2 + q̇2q̇r2)

y14 = gc. cos (q1);y15 = gc. cos (q1);y16 = gc. cos (q1 + q2);y21 = 0;y22=q̈r1+q̈r2 ,

y23 = cos(q2)q̈r1 + sin(q2)(q̇1q̇r1);y24 = 0,y25 = 0, y26 = gc. cos (q1 + q2).
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