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Light affine logic is a variant of linear logic with a polynomial cut-elimination procedure.

We study the extensional expressive power of light affine logic with respect to a general

notion of encoding of functions in the setting of the Curry–Howard correspondence. We

consider light affine logic with both fixpoints of formulae and second-order quantifiers, and

analyse the properties of polytime soundness and polytime completeness for various

fragments of this system. In particular, we show that the implicative propositional fragment

is not polytime complete if we place some reasonable conditions on the encodings.

Following previous work, we show that second order leads to polytime unsoundness. We

then introduce simple constraints on second-order quantification and fixpoints, and prove

that the fragments obtained are polytime sound and complete.

1. Introduction

Characterising the class of functions that a logic can represent helps in understanding

the computational expressive power of the logic. If the system under consideration enjoys

a Curry–Howard correspondence, the analysis can be even more valuable – the class of

representable functions becomes the class of functions that the underlying programming

language can compute. These investigations become a crucial issue in the context of light

logics, which have been defined precisely to capture relevant function classes, namely

complexity classes.

Light linear logic, LLL (Girard 1998), was proposed by Girard as a variant of linear

logic, LL (Girard 1987), characterising the class FP of deterministic polynomial time

functions. It was later simplified by Asperti into light affine logic, LAL (Asperti 1998).

The limitation to the computational power of LLL (or LAL) is obtained by considering a
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weaker modality ! for resource reuse than that used in plain linear logic. LAL has been the

subject of many investigations from syntactical, semantical and programming language

perspectives (Murawski and Ong 2004; 2000; Roversi 2000; Terui 2002). Another line of

research in this direction is Lafont’s soft linear logic, SLL (Lafont 2004), which is another

variant of LL for polynomial time.

Still, one can observe that these characterisations of FP via the Curry–Howard

correspondence (in LLL, LAL or SLL) only hold if data are encoded by bounded-

depth proofs (the notion of depth is linked to the modalities and to the notion of a box).

Recently, Mairson and Neergaard (Neergaard and Mairson 2002) proved that dropping

the bounded box-depth assumption makes LAL complete for doubly exponential time. In

their setting, data are represented by proofs having unbounded box-depth and different

conclusions. Alternative notions of encodings have also been considered in Mairson and

Terui (2003) for various subsystems of LL.

An important point is that the encodings given in Girard (1998) and Asperti and

Roversi (2002) make extensive use of second-order quantification, which allows program-

ming with polymorphism in the style of System F. This is an elegant and general approach,

but second-order quantification brings difficulties of its own, which are not related to LAL

itself. For instance, it makes the issues of provability decision problems, type-inference

and semantics far more delicate. One may wonder how much second-order power is really

needed in LAL to get polynomial time expressivity.

This question is all the more pertinent as LAL and SLL are compatible with another

feature: fixpoints. Indeed, the fixpoints of formulae were one of the original intuitions

underlying the definition of LLL (see the introduction of Girard (1998)). They are also

definable in light set theory, LST (Girard 1998; Terui 2004), in which they can be used to

write function definitions; one can then prove the termination of such functions in LST.

Alternatively, when considering LAL and SLL as type systems, fixpoints correspond to

recursive types. In particular, the expressivity of SLL with fixpoints has been examined

in Baillot and Mogbil (2004).

So, as there are several notions of encoding, and a large range of connectives and

computational features are available in LAL, we think it is important first to establish a

reasonable notion of an encoding, and then determine the expressivity of small fragments

of this logic. This will help us identify well-behaved fragments that might then be

used for various purposes, such as type inference, proof of program termination or

proof-search.

In previous work (Dal Lago 2003), we started focusing our attention on constrained

representation schemes, called uniform coding schemes. We proved, in particular, that light

affine logic is not polytime sound if the power of second-order quantification is fully

exploited.

The encodings presented in Girard (1998), Asperti and Roversi (2002) and Baillot

and Mogbil (2004) fit into the definition of uniform encodings, while some of those in

Neergaard and Mairson (2002) and Mairson and Terui (2003) do not. In the latter,

for instance, different function calls are encoded by (cut-free) proofs having different

conclusions (in the style of boolean circuits, with one circuit for each size of input). This

comes as no surprise, since the authors were interested in studying the complexity of
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cut-elimination as a computational problem. However, these encodings are not acceptable

if we want to study the expressive power of a logic as a programming language, as we do.

Our notion of uniformity is rather general. In particular, we do not impose any

constraint on the shape of formulae for inputs and outputs. This is in contrast to similar

results from the literature (Fortune et al. 1983; Leivant and Marion 1993).

In this paper, we systematically investigate the expressive power of (various fragments

of) light affine logic, but always considering uniform coding schemes. First, we prove

that if we impose some (fairly reasonable) conditions on the notion of an encoding, the

propositional implicative fragment of LAL is not complete for FP. Then we introduce

simple constraints on second-order quantification and fixpoints, and prove that the

resulting fragments are polytime sound and complete.

A preliminary version of this work was presented at the workshop on Logics for

Resources, Processes, and Programs, 2004 (Dal Lago and Baillot 2004).

2. Uniform encodings

In this short section we recall the notion of uniform encoding that was introduced in Dal

Lago (2003).

A uniform encoding E(f) of f : ({0, 1}∗)n → {0, 1}∗ into a logic consists of:

— A proof π with conclusion A1, . . . , An � B, (where A1, . . . , An, B can be different).

— For every i ∈ {1, . . . , n}, a suitable correspondence Φi between elements of {0, 1}∗ and

cut-free proofs having conclusions � Ai. These correspondences must be computable

in logarithmic space.

— A correspondence Ψ between cut-free proofs having conclusion � B and elements of

{0, 1}∗. This correspondence must be logspace computable.

Clearly, the following diagram should commute:

{0, 1}∗ × . . .× {0, 1}∗ f ��

Φn

��
Φ1

��

{0, 1}∗

A1 , . . . , An
π �� B

Ψ

��

This definition is strongly inspired by the Curry–Howard correspondence.

For example, consider second-order implicative intuitionistic logic, that is to say,

System F by the Curry–Howard correspondence. Let W stand for a type for binary

words, for instance,

W = ∀α.(α→ α)→ (α→ α)→ (α→ α).

Then a proof of the sequent W, . . . ,W � W gives a uniform encoding of a function

f : ({0, 1}∗)n → {0, 1}∗. But these are not the only uniform encodings in System F, since

we can define others by considering other representations of binary lists. In particular,

the types for the various arguments and for the result need not be the same.

We say that a logic L is polytime sound if the class of functions f : ({0, 1}∗)n → {0, 1}∗
uniformly encodable in L is included in FP and that it is polytime complete if this class

contains FP.
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Identity and cut

A � A I
Γ � A ∆, A � B

Γ,∆ � B U

Structural rules

Γ � A
Γ, B � A W

Γ, !A, !A � B
Γ, !A � B C

Implicative logical rules

Γ � A ∆, B � C
Γ,∆, A � B � C L�

Γ, A � B
Γ � A � B

R�

Exponential logical rules

A � B
!A �!B P 1

!

� A
�!A P 2

!

Γ,∆ � A
!Γ, §∆ � §A

P§

Fig. 1. Implicative intuitionistic light affine logic, ILAL�

3. Syntax

Following the existing literature, we will use the intuitionistic variant of light affine logic

LAL, called ILAL, as our reference system. Formulae are generated by the grammar

A ::= α | A � A | A⊗ A | !A | §A | ∀α.A | µα.A

where α ranges over a set L of atoms. Sequents have the form A1, . . . , An � B, where

A1, . . . , An, B are all formulae.

An ILAL proof is simply a tree whose nodes are labelled with sequents according to

ILAL rules. A proof π having conclusion Γ � A is sometimes denoted by π : Γ � A. We

will define the size of the proof, denoted by |π|, as the number of rules in the proof.

We will study various fragments of ILAL. The core will be ILAL�, which is defined in

Figure 1.

Recall that in ILAL the contraction rule is restricted, as in linear logic, to !-marked

formulae (rule C from Figure 1). The main difference compared with linear logic lies

in the way !-marked formulae are introduced, which is more constrained: with rules P 1
!

and P 2
! the ! modalities are introduced at the same time on the left- and right-hand

sides of formulae, and the sequent can have at most one formula on the left-hand side.

Alternatively, one can introduce ! modalities on the left-hand side using the P§ rule, but

the remaining formulae must be marked with the new modality §.
The modality § can be thought of as a kind of degenerate !, in the sense that it does

not allow for contraction. The rule P§ is a weak analogue of the dereliction rule of linear

logic. Recall that the following principles (called dereliction and digging, respectively) are

not provable in LAL, but are provable in linear logic:

!A � A, !A �!!A.
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Γ, A, B � C
Γ, A⊗ B � C L⊗

Γ � A ∆ � B
Γ,∆ � A⊗ B R⊗

Fig. 2. Tensor logical rules

Γ, C[A/α] � B
Γ, ∀α.C � B L∀

Γ � C α /∈ FV (Γ)

Γ � ∀α.C R∀

Fig. 3. Second-order rules

Γ, A[µα.A/α] � B
Γ, µα.A � B

Lµ
Γ � A[µα.A/α]

Γ � µα.A
Rµ

Fig. 4. Fixpoint rules

Γ, µα.A � B
Γ, A[µα.A/α] � B

L′µ
Γ � µα.A

Γ � A[µα.A/α]
R′µ

Fig. 5. Derivable unfolding rules

A[µα.A/α] � A[µα.A/α]
I

A[µα.A/α] � µα.A
Rµ

Γ, µα.A � B
Γ, A[µα.A/α] � B U

Fig. 6. A derivation for rule L′µ

As we will see in Theorem 1, these restricted rules for the modalities are the key to the

complexity bound on the cut-elimination procedure.

We can add other connectives to this core ILAL� to obtain more powerful logics.

For example, we can add tensor (⊗, see Figure 2) and second-order quantification (∀, see

Figure 3). Another interesting connective that can be added to the logic is the fixpoint

operator (µ, see Figure 4). Note that the rules L′µ and R′µ of Figure 5 can be derived from

Lµ and Rµ; a derivation of L′µ is given in Figure 6.

In this way, we can build several fragments of intuitionistic light affine logic, such as

ILAL�⊗∀ or ILAL�⊗∀µ. It is important to stress that ILAL admits cut-elimination. This

stems from two facts:

— All connectives admit cut-elimination steps. In particular, the number of rules decreases

with one step of cut-elimination on a µα.A formula.

— A particular strategy allows us to eliminate all cuts: see Girard (1998) and Asperti

and Roversi (2002).

Note that adding fixpoints to intuitionistic logic or linear logic breaks the cut-elimination

property, but this is not the case with LAL. This is because in this system, as in

elementary, light or soft linear logic (Lafont 2004; Baillot and Mogbil 2004), the cut-

elimination argument does not depend on the size of the cut formulae but on the size and
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depth of proofs (the latter will be defined soon). Actually, this was one motivation for the

definition of light linear logic that was originally stressed by Girard (Girard 1998).

ILAL can also be thought of as a type assignment system for the following term

calculus:

M,N ::= x | λx.M |MM | (M,M) | let M be (x, x) in M.

In this setting, rules for !, §, ∀ and µ do not influence the underlying term. When this

does not cause any ambiguity, we will denote an ILAL sequent calculus proof by the term

it types. If A1, . . . , An � B types term M, then the free variables appearing in M will be

named x1, . . . , xn of type A1, . . . , An, respectively. Most results for ILAL are traditionally

given using proof-nets, which are handy for studying the dynamics of proofs (see Asperti

and Roversi (2002)). However, to keep a concise presentation, we have chosen to present

ILAL as a sequent calculus. Many sequent calculus proofs differing only in the order

of application of rules could correspond to the same proof-net. Anyway, here we are

just using sequent calculus as a convenient notation, and there would be no problem in

converting the proofs into proof-nets if one wanted to examine the normalisation issues.

Definition 1. Given an ILAL proof π, the box-depth ∂(π) of π is the maximum integer n

such that there is a path in π from a leaf to the root that crosses n instances of rules P 1
! ,

P 2
! or P§.

It is easy to check that this definition of box-depth is equivalent to the one traditionally

given on ILAL proof-nets (Asperti and Roversi 2002), namely the maximal nesting level

of boxes in the proof-net.

An ILAL fragment is said to be reflective if there is a function f (from sequents to

natural numbers) such that ∂(π) � f(Γ � A) whenever π : Γ � A is a cut-free proof. This

means that given a formula, one can bound the box-depth of cut-free proofs with this

conclusion.

Now, we recall the main result of ILAL.

Theorem 1 (ILAL normalisation complexity (Asperti and Roversi 2002)). The normalisa-

tion of an ILAL proof π can be done in time O(|π|k), where the exponent k only depends

on ∂(π).

As a direct consequence, we have the following proposition.

Proposition 1. Any reflective fragment of ILAL is polytime sound.

4. The full case

We start with the fragment ILAL�⊗∀. We know from Asperti and Roversi (2002) that

this fragment is polytime complete. In spite of this, it is not reflective since the rule L∀ can

be used to build proofs with fixed conclusion but arbitrary box-depth. Indeed, ILAL�⊗∀
is polytime unsound if the full power of second-order quantification is exploited, as we

are going to show.
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Binary lists can be represented in ILAL�⊗∀ by cut-free proofs with conclusion

SOBinaryLists = ∀α.!(α � α) �!(α � α) � §(α � α).

The cut-free proof with conclusion � SOBinaryLists corresponding to string s ∈ {0, 1}∗
will be denoted by �s�.

The encodings of functions considered in Asperti and Roversi (2002) used sequents

of the form SOBinaryLists � §kSOBinaryLists , with k an integer. These are particular

uniform encodings, but in the present paper we will also consider other encodings.

Lemma 1. For every n ∈ �, there is a cut-free ILAL�⊗∀ proof

ρn : SOBinaryLists � §n+1SOBinaryLists

such that ρn is a uniform encoding of the function pn : {0, 1}∗ → {0, 1}∗, where pn(s) = 1|s|
n

for every s ∈ {0, 1}∗.

Proof. In this proof, we will use BL as an abbreviation for SOBinaryLists . Since the

case n = 0 is trivial, we can assume n � 1. For every m � 1, we can inductively define Γm
as follows. First, Γ1 = BL; moreover, Γm = Γm−1, §m−2!BL for every m > 1. Similarly, A1

denotes BL, while for every m > 1 Am = Am−1⊗ §m−2!BL. We now prove, by induction on

m, that there is a proof σm : Γm � §mBL encoding function fm : ({0, 1}∗)m → {0, 1}∗ where

fm(s1, . . . , sm) = 1|s1|···|sm| for every s1, . . . , sm ∈ {0, 1}∗. If m = 1, then σm is

ϕ :�!(BL � BL) ϕ :�!(BL � BL)

ψ : � BL BL � BL

BL � BL � BL
§(BL � BL) � §BL

BL � §BL

where:

— ϕ is the proof

ξ : BL � BL

� BL � BL
�!(BL � BL)

— ξ is a cut-free proof encoding function g : {0, 1}∗ → {0, 1}∗ with g(s) = 1s.

— ψ encodes the string ε.

If m > 1, then σm is

θ θ

ψ : � BL σm−1 : Γm−1 � §m−1BL

BL � BL, !BL, . . . , §m−3!BL � §m−1BL

§(BL � BL), §!BL, . . . , §m−2!BL � §mBL

Γm � §mBL

where:

— θ is the proof

ω : BL,BL � BL

BL � BL � BL
!BL �!(BL � BL)
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— ω encodes the function h : ({0, 1}∗)2 → {0, 1}∗ such that h(s, t) = st for every s, t ∈
{0, 1}∗.

We are now able to build ρn:

η : An � An
� An � An
�!(An � An)

η : An � An
� An � An
�!(An � An)

τ : � An
σn : Γn � §nBL

An � §nBL

An � An � §nBL

§(An � An) � §n+1BL

BL � §n+1BL

Here, η and τ are generalisations of ϕ and ψ, respectively. Notice that ρn, as we have

defined it, is cut-free and can be built in logarithmic space (on n).

We have just proved that, for every n ∈ �, ρn uniformly encodes the function pn. Now,

if all the different ρn had the same type, it would be easy to build a proof δ such that

δ(ρn) reduces to ρn(�11�), and then normalise it to a proof similar to 	m
 where m = 12n .

Actually, every ρn has a conclusion that is different from the conclusion of any other

ρm. This problem, however, can be circumvented by building another sequence of proofs

{χn}n∈�. Every such χn behaves similarly to ρn, but all the proofs in the sequence have

the same conclusion. In this way, we can find a uniform encoding inside ILAL�⊗∀ of an

intrinsically exponential function over the algebra {0, 1}∗.

Proposition 2. There is a function f : {0, 1}∗ → {0, 1}∗ that can be uniformly represented

in ILAL�⊗∀ and is not computable in polynomial time.

Proof. f : {0, 1}∗ → {0, 1}∗ is the function defined by letting

f(s) = 12|s|

whenever s ∈ {0, 1}∗. Clearly, f cannot belong to FP, because the length of the output

is exponential in the length of the input. For every n ∈ �, the proof χn is defined as

follows:

ρn : BL � §n+1BL α � α
BL, §n+1BL � α � α
BL, ∀β.(β � α) � α

� BL � (∀β.(β � α)) � α

where ρn is as in Lemma 1. For every m ∈ �, the proof τm is defined as follows:

	1m
 : � BL

� §	lgm
+1BL α � α
§	lgm
+1BL � α � α
∀β.(β � α) � α

� (∀β.(β � α)) � α
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Now let π be the proof

	11
 : � BL (∀β.(β � α)) � α � (∀β.(β � α)) � α

BL � (∀β.(β � α)) � α � (∀β.(β � α)) � α

Consider the following diagram:

{0, 1}∗ f ��

Φ

��

{0, 1}∗

BL � (∀β.(β � α)) � α
π �� (∀β.(β � α)) � α

Ψ

��

Φ is the function defined by letting Φ(s) = χ|s| for every s ∈ {0, 1}∗, and Ψ is defined by

letting Ψ(τm) = 1m and Ψ(ρ) = ε whenever ρ is not in the form τm. Both Φ and Ψ are ob-

viously logspace computable. It is easy to check that the above diagram commutes.

The question we consider now is: can we restrict ILAL�⊗∀ to reach a polytime sound

and complete system? This is the main subject of this paper. The solution pursued in Dal

Lago (2003) consisted of restricting the class of permitted encodings, by forbidding the

use of L∀ in proofs representing inputs and outputs. Here, we use a different approach:

we try to restrict the logic, without modifying the coding schemes.

5. ILAL� and polynomial time

How much can we restrict ILAL�⊗∀ while keeping polytime completeness? Let us start

by considering the smallest fragment, ILAL�. In this section, we will prove that, under

reasonable assumptions on the encodings, ILAL� is not polytime complete.

ILAL� can be seen as a type assignment system for pure lambda-calculus. If a pure

lambda-term M can be typed by an ILAL� proof, then it is simply-typable. Moreover, if

M can be typed by a cut-free ILAL� proof, then it is necessarily a β-normal form, but it

may contain η-redexes.

An encoding of f into ILAL� is said to be extensional if all the correspondences

Φ1, . . . ,Φn,Ψ map distinct elements of {0, 1}∗ to ILAL� proofs whose underlying lambda-

terms are distinct and η-normal.

Now, we can recall a theorem by Statman.

Theorem 2 (Finite completeness theorem (Statman 1982)). Let M be a closed term having

simple type A. There exists a finite model M(M) such that M(M) |= M = N if and only

if M =βη N.

The function equality : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ is defined by

equality(s, t) =

{
1 if s = t

0 otherwise.

Now we get the following proposition.

Proposition 3. equality is not extensionally encodable in ILAL�.
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Proof. Basically, we use the fact that an extensional encoding of a function f in ILAL�

induces a corresponding encoding of f into the simply typed lambda-calculus. Suppose,

to show a contradiction, that an extensional encoding E of equality into ILAL� exists.

Then, there are simply typable closed terms

M : A→ B → C

T : C

F : C

T �=βη F

where T and F encode the values 0 and 1, respectively; and for every s ∈ {0, 1}∗, there

are simply typable closed terms encoding s into types A and B, respectively:

P (s) : A

Q(s) : B

such that, for every s, t ∈ {0, 1}∗ with s �= t,

MP (s)Q(s) →∗β T

MP (t)Q(s) →∗β F.

From the extensionality hypothesis, we know that both T and F are η-normal. We use

M to denote the modelM(T ) obtained by Theorem 2 applied to the term T . It is a finite

model, so there must be s, t ∈ {0, 1}∗ with s �= t such thatM interprets both P (s) and P (t)

with the same semantical value. Obviously, MP (s)Q(s) =βη T and MP (t)Q(s) =βη F ; so,

by soundness, we have
M |= MP (s)Q(s) = T

M |= MP (t)Q(s) = F.

But M must interpret MP (s)Q(s) and MP (t)Q(s) in the same way, so it follows that

M |= T = F.

By Theorem 2, this implies T =βη F , which is a contradiction.

6. Polynomials and ILAL�⊗

Because of the previous negative result (Section 5), from now on we will consider fragments

containing ILAL�⊗. A necessary condition for polytime completeness is the ability to

represent polynomials. In this section we will show that ILAL�⊗ is sufficient for the

representation of polynomials using a Church-style encoding for numerals.

In fact, throughout this paper, we use ‘polynomial’ to mean a polynomial with positive

integer coefficients.

For every ILAL�⊗ formula A, PInt(A) will be the type !(A � A) � §(A � A). The

class of integer formulae is the smallest class satisfying the following conditions:

— For every formula A, PInt(A) is an integer formula.

— If B is an integer formula, !B and §B are integer formulae.
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In other words, integer formulae are given by the following grammar:

B ::= PInt(A) | !B | §B

where A ranges over ILAL�⊗ formulae.

Lemma 2. For every ILAL�⊗ formula A, there are proofs

π+1 : PInt(A) � PInt(A)

π+ : PInt(A),PInt(A) � PInt(A)

π× : PInt(PInt(A)), !PInt(A) � §PInt(A)

representing successor, addition and multiplication, respectively.

Proof. We just give the underlying terms for π+1, π+ and π×, which are

M+1 = λx.λy.x((x1x)y)

M+ = λx.λy.(x1x)((x2x)y)

M× = x1(λx1.M+)(λx.λy.y),

respectively (remember the convention fixed in Section 3 for the naming of free variables

in typed lambda terms).

The class of basic arithmetical functions is the smallest class satisfying the following

constraints:

— The identity id : �1 → � on natural numbers is a basic arithmetical function.

— For every n ∈ �, the constant n : �0 → � is a basic arithmetical function.

— If f : �n → � and g : �m → � are basic arithmetical functions, then f+ g : �n+m →
�, defined by

(f + g)(x1, . . . , xn, y1, . . . , ym) = f(x1, . . . , xn) + g(y1, . . . , ym)

is a basic arithmetical function.

— If f : �n → � is a basic arithmetical function, then f̃ : �n+1 → � defined by

f̃(x1, . . . , xn, x) = x · f(x1, . . . , xn)

is a basic arithmetical function.

Lemma 3. For every formula A and for every basic arithmetical function f : �n → �,

there is an ILAL�⊗ proof πf : A1, . . . , An � §kPInt(A) representing f, where A1, . . . , An all

are integer formulae.

Proof. We proceed by induction on the definition of basic arithmetical functions f.

The base cases are straightforward, so we can concentrate on the two inductive cases. If

f = g + h, where g : �n → � and h : �m → �, then, by the induction hypothesis, there

must be proofs
πg : A1, . . . , An � §kPInt(A)

πh : B1, . . . , Bm � §lPInt(A)
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representing g and h, respectively, where all the Ai and Bj are integer formulae. πf will be

πg : A1, . . . , An � §kPInt(A)

§lA1, . . . , §lAn � §l+kPInt(A) ρ

§lA1, . . . , §lAn, §kB1, . . . , §kBm � §l+kPInt(A)

where ρ is

πh : B1, . . . , Bm � §lPInt(A)

§kB1, . . . , §kBm � §k+lPInt(A)

π+ : PInt(A),PInt(A) � PInt(A)

§l+kPInt(A), §l+kPInt(A) � §l+kPInt(A)

§kB1, . . . , §kBm, §l+kPInt(A) � §l+kPInt(A)

If f = g̃, where g : �n → �, then, by the induction hypothesis, there must be a proof

πg : A1, . . . , An � §kPInt(PInt(A))

representing g where all the Ai and Bj are integer formulae. The proof πf will be

πg : A1, . . . , An � §kPInt(PInt(A))

π× : PInt(PInt(A)), !PInt(A) � §PInt(A)

§kPInt(PInt(A)), §k!PInt(A) � §k+1PInt(A)

A1, . . . , An, §k!PInt(A) � §k+1PInt(A)

This concludes the proof.

Proposition 4. For every formula A and for every polynomial f : � → �, there is an

ILAL�⊗ proof πf : PInt(B) � §kPInt(A) representing f.

Proof. Any polynomial f : �→ � with integer coefficients can be written as

f(x) =

n∑
i=1

m(i)∏
j=1

a
j
i

where aji is either an integer constant or the indeterminate x. We can arrange all the

constants in a sequence a
ca(1)
cp(1), . . . , a

ca(p)
cp(p) and all the x occurrences in another sequence

a
ia(1)
ip(1), . . . , a

ia(q)
ip(q). Let m be

∑n
i=1 m(i). The function g : �m → � defined by

g(x1
1, . . . , x

m(1)
1 , . . . , x1

n, . . . , x
m(n)
n ) =

n∑
i=1

m(i)∏
j=1

x
j
i

is a basic arithmetical function. So, by Lemma 3, there is an ILAL�⊗ proof

πg : A1
1, . . . , A

m(1)
1 , . . . , A1

n, . . . , A
m(n)
n � §kPInt(A)

encoding g. Now, the function f is obtained from g by:

(i) Substituting the constant aca(i)
cp(i) for each xca(i)

cp(i) (1 � i � p).

(ii) Identifying all xia(i)
ip(i) (1 � i � q) with the same variable x.

An idea to define from πg a proof πf representing f is thus:

— For (i), perform p cuts of πg with proofs representing the integers aca(1)
cp(1), . . . , a

ca(p)
cp(p).
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— For (ii), cut the proof with another proof ρ that, intuitively, transforms an integer k

into q copies of k.

The proof ρ can in fact be defined without using contraction, by simply applying the

iteration scheme associated with an integer formula: the term underlying ρ : PInt(Aia(1)
ip(1)⊗

. . .⊗ Aia(q)
ip(q)) � §(A

ia(1)
ip(1) ⊗ . . .⊗ A

ia(q)
ip(q)) is

x1(M+1, . . . ,M+1)(M0, . . . ,M0)

where

M+1 = λx.λy.λz.y((xy)z)

M0 = λx.λy.y.

The proof πf can then be defined as

ρ

ω(aca(p)
cp(p)) : � Aca(p)

cp(p)

ω(aca(1)
cp(1)) : � Aca(1)

cp(1) πg : A1
1, . . . , A

m(n)
n � §kPInt(A)

A
ca(p)
cp(p), A

ia(1)
ip(1), . . . , A

ia(q)
ip(q) � §kPInt(A)

A
ia(1)
ip(1), . . . , A

ia(q)
ip(q) � §kPInt(A)

§(Aia(1)
ip(1) ⊗ . . .⊗ A

ia(q)
ip(q)) � §k+1(PInt(A))

PInt(Aia(1)
ip(1) ⊗ . . .⊗ A

ia(q)
ip(q)) � §k+1PInt(A)

For every i, the term underlying ω(aca(i)
cp(i)) :� Aca(i)

cp(i) is the aca(i)
cp(i)-th Church numeral. This

concludes the proof.

7. Linear quantifiers and fixpoints

We saw that ILAL� is not polytime complete while ILAL�⊗∀µ is not polytime sound. We

thus would like to consider an intermediate system enjoying both properties. A possible

approach for this is to try to limit the power of quantifiers and fixpoints.

Note that quantification with instantiation on formulae with modality § was a crucial

component of the counter-example of Proposition 2 in Section 4. Indeed, the rules L∀, Lµ
and Rµ (see Figures 3, 4) used with formulae A containing modalities are responsible for

ILAL not being reflective because, reading the proof from the bottom up, they introduce

new occurrences of modalities that can allow new P! or P§ rules. Thus, a natural remedy

is to restrict the use of ∀ and µ.

We say an ILAL�⊗∀µ formula A is linear if it does not contain any instance of ! or §.
We use L to denote the class of ILAL linear formulae.

We want to replace rules L∀, Lµ and Rµ by rules that can be applied only when A is

a linear formula. To achieve this, we introduce two new connectives ∀ and µ, defined by

the rules in Figure 7.

We use ILAL�⊗∀µ to denote this new fragment. The following proposition can be

verified.

Proposition 5. The fragment ILAL�⊗∀µ is stable by cut-elimination.
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Γ, C[A/α] � B A ∈ L

Γ, ∀α.C � B
L∀

Γ � C α /∈ FV (Γ)

Γ � ∀α.C
R∀

Γ, A[µα.A/α] � B A ∈ L

Γ, µα.A � B
Lµ

Γ � A[µα.A/α] A ∈ L

Γ � µα.A
Rµ

Fig. 7. Linear quantifiers and fixpoints

Observe that when read bottom-up the rules L∀, Lµ, Rµ do not introduce new occurrences

of ! or §. It follows that the number of rules P 1
! , P 2

! and P§ in a cut-free ILAL�⊗∀µ proof

is bounded by the number of occurrences of ! and § in its conclusion; therefore we have

the following fact.

Fact 1. The fragment ILAL�⊗∀µ is reflective.

So, by Theorem 1, we have the following proposition.

Proposition 6. The system ILAL�⊗∀µ is polytime sound.

We will now show that this fragment is also polytime complete.

A Turing Machine M is described by:

— A finite alphabet Σ = {a1, . . . , an}, where a1 is considered to be the blank symbol.

— A set Q = {q1, . . . , qm} of states, where q1 is considered to be the starting state.

— A transition function δ : Q× Σ→ Q× Σ× {←,→, ↓}.
A configuration for M is a quadruple in Σ∗ × Σ × Σ∗ × Q. For example, if δ(qi, aj) =

(ql , ak,←), then M evolves from (sap, aj , t, qi) to (s, ap, akt, ql) (and from (ε, aj , t, qi) to

(ε, a1, akt, ql)).

Linear quantifiers and fixpoints are enough to code a transition function. First, we

define the following formulae (parameterised on k):

PStringk(α) = µβ. (β � α) � . . . � (β � α)︸ ︷︷ ︸
k times

� α � α

PChark(α) = α � . . . � α︸ ︷︷ ︸
k times

� α

PStatek(α) = α � . . . � α︸ ︷︷ ︸
k times

� α

SOStringk = ∀α.PStringk(α)

SOChark = ∀α.PChark(α)

SOStatek = ∀α.PStatek(α).

For every i ∈ {1, . . . , n}, the symbol ai will be represented by

projectionni = λx1. . . . λxn.xi,

which, viewed as a proof, has conclusion SOCharn. Analogously, state qi will be represented

by projectionmi . The counterparts of strings in Σ∗ are defined by induction:

— The empty string ε is represented by projectionn+1
n+1.
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— If t ∈ Σ∗ is represented by M, then, for every i ∈ {1, . . . , n}, the string ait is represented

by

λx1. . . . λxnλxn+1.xiM.

This encoding can be seen as a variant of lists in the Scott numeral representation

(Wadsworth 1980).

The term append ni : SOStringn � SOStringn encodes the juxtaposition of ai to the input

string:

append ni = λx.λx1. . . . λxn+1.xix.

Configurations become cut-free proofs for

SOConfigmn = SOStringn ⊗ SOCharn ⊗ SOStringn ⊗ SOStatem.

Lemma 4. For any transition function of a Turing machine there exists an ILAL�⊗∀µ
proof of � SOConfigmn � SOConfigmn representing it.

Proof. We construct such a proof stepM. The λ-term corresponding to stepM is

λx.let x be (s, a, t, q) in (q M1 . . . Mm)(s, a, t) (1)

where, for every i, term Mi has type SOStringn ⊗ SOCharn ⊗ SOStringn � SOConfigmn .

Note that in this proof the ∀ quantifier of the SOStatem type of q is instantiated with the

type of Mi, SOStringn ⊗ SOCharn ⊗ SOStringn � SOConfigmn .

Now, Mi is itself given by

λx.let x be (s, a, t) in (a N1
i . . . N

n
i )(s, t). (2)

Each Nj
i : SOStringn ⊗ SOStringn � SOConfigmn encodes the value of δ(qi, aj). Note that

in the proof for Mi the ∀ quantifier of the type SOCharn of a is instantiated with the type

of the Nj
i .

Finally, we describe how the Nj
i are defined. If, as in the example above, δ(qi, aj) =

(ql , ak,←), Nj
i will be the term

λx.let x be (s, t) in (s P 1 . . . P n R)t (3)

where, for every r, term P r : SOStringn � SOStringn � SOConfigmn is

λs.λt.(s, projectionnr , append
n
k t, projectionml )

and R : SOStringn � SOConfigmn is

λt.(projectionn+1
n+1, projectionn1, t, projectionml ).

In the proof for Nj
i the quantifier ∀ of the type SOStringn of s is instantiated with the

type of R.

We can finally prove the following result.

Theorem 3. f : {0, 1}∗ → {0, 1}∗ is computable by a polynomial time Turing Machine iff f

is uniformly encodable into ILAL�⊗∀µ. Thus ILAL�⊗∀µ is polytime sound and complete.
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Γ � A
Γ, 1 � A L1 � 1

R1

Fig. 8. Rules for constant 1

Γ, A � C Γ, B � C
Γ, A⊕ B � C L⊕

Γ � A
Γ � A⊕ B R1

⊕
Γ � A

Γ � B ⊕ A R2
⊕

Fig. 9. Rules for ⊕

Proof. Let M be a Turing machine running in time f : � → �. If f is a polynomial,

Proposition 4 gives us a proof

πf : PInt(B) � §kPInt(SOConfigmn )

encoding f. Using Lemma 4, the term underlying stepM can be typed by

§k!(SOConfigmn � SOConfigmn ).

Putting these two ingredients together, we obtain a proof

πM : PInt(B)⊗ §k+1SOConfigmn � §k+1SOConfigmn ,

which is a uniform encoding for the function computed by M.

8. Additive connective ⊕ and fixpoints

Note that we have used linear quantification in the previous section essentially to deal

with case distinction. This can, in fact, also be done using another feature of linear logic:

the additive connectives & and ⊕. In the intuitionistic setting that we are considering,

it is even enough for our purposes to consider the connective ⊕ only. We give the rules

for ⊕ in Figure 9. We will also use the constant for the connective ⊗, denoted 1: the

corresponding rules are given in Figure 8.

The term language is extended accordingly with the following new productions:

M ::= 1 | inl(M) | inr(M) | case M of inl(x) ⇒ M , inr(x) ⇒ M .

The fragment we are dealing with now is thus ILAL with �, ⊗, 1, ⊕, µ, but no

quantification. We will now show that the step function of a Turing machine can be

encoded in this fragment. Using the previous encoding of polynomials, we will then be

able to deduce that polytime Turing machines can be simulated in this fragment. We

use the connective ⊕ to define enumeration types and case distinction on those types (in

particular, a conditional test with boolean type).

We define ABool k = 1 ⊕ . . . ⊕ 1 (with k components) for k � 1. This formula

represents the k-ary boolean type and we use 1, . . . , k to denote its k normal proofs.

We use
Γ �M1 : B . . . Γ �Mk : B

Γ, x : ABool k � case x of 1⇒M1, . . . , k ⇒Mk : B
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as a shorthand term notation for the case distinction defined on ABool k using the previous

rules.

To simulate a Turing machine M, we set

AChark = ABool k

AStatek = ABool k,

AStringk = µα.(1⊕ (AChark ⊗ α))
AConfigmn = AStringn ⊗ ACharn ⊗ AStringn ⊗ AStatem.

The empty string ε is represented by inl(1). The symbol ai (1 � i � n) is represented by i

with conclusion ACharn, and the state qj (j � m) by j with conclusion AStatem.

Then we can define proofs for

cons : ACharn ⊗ AStringn � AStringn

pop : AStringn � ACharn ⊗ AStringn

by

cons = λx.let x be (a, s) in inr(a, s)

pop = λs.case s of inl(x) ⇒ (1, inl(1)) , inr(y) ⇒ y .

The proof pop applied to a non-empty string returns its head and tail; by convention it

returns (1, inl(1)) when applied to the empty string.

Given the transition function δ of M we construct a proof stepM : AConfigmn �
AConfigmn implementing a step of execution of M:

stepM = λx.let x be (s, a, t, q) in

case q of (. . . , i⇒ (case a of (. . . , j ⇒Mi,j , . . . ), . . . )

where Mi,j is defined according to the value of δ(qi, aj). For instance, if δ(qi, aj) =

(ql , ak,←),

Mi,j = let (pop s) be (b, r) in (r, b, (cons k t), l).

Then, arguing as in the previous section, we have the following proposition.

Proposition 7. The system ILAL�⊗⊕µ is polytime sound and complete.

9. Getting rid of second-order quantification

Looking at the encoding of Turing machines from Section 7, we can can see that (linear)

second order is used in a very restricted way there. In the proof stepM, there are just

three instances of the L∀ rule: acting on SOStringn, SOCharn and SOStatem, respectively.

In particular:

— SOStatem is instantiated with the formula

SOStringn ⊗ SOCharn ⊗ SOStringn � SOConfigmn

(see (1) in the proof of Lemma 4 in Section 7).
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— SOCharn is instantiated with the formula

SOStringn ⊗ SOStringn � SOConfigmn

(see (2)).

— SOStringn is instantiated with the formula

SOStringn � SOConfigmn

(see (3)).

Thus, in order to type the terms from (1), (2) and (3), it would be sufficient to replace

the use of ∀ by fixpoint constructions allowing us to do three similar instantiations. This

is what we are going to do here, obtaining in this way a suitable transition function in

ILAL�⊗µ, whose associated term is the same as the one in Lemma 4.

Two formulae A and B are said to be congruent, written A ≈ B, if B can be obtained

from A by applying (zero or more times) the rule µα.A ≈ A[µα.A/α]. In other words, ≈ is

the reflexive and transitive closure of the above (symmetric) rule.

Note that if A ≈ B, the identity term can be given type A � B, and thus A and B are

in particular isomorphic types.

We get the following proposition.

Proposition 8. For every k, h ∈ �, there are ILAL�⊗µ formulae FPStatehk , FPCharhk and

FPStringhk such that

FPStatehk ≈ PStateh(FPStringhk ⊗ FPCharhk ⊗ FPStringhk � FPConfighk)

FPCharhk ≈ PChark(FPStringhk ⊗ FPStringhk � FPConfighk)

FPStringhk ≈ PStringk(FPStringhk � FPConfighk)

where FPConfighk = FPStringhk ⊗ FPCharhk ⊗ FPStringhk ⊗ FPStatehk.

Proof. Consider the following definitions:

FPStringk(α, β) = µγ.PStringk(γ � γ ⊗ β ⊗ γ ⊗ α)
FPChark(α) = µβ.PChark(FPStringk(α, β)⊗ FPStringk(α, β) �

FPStringk(α, β)⊗ β ⊗ FPStringk(α, β)⊗ α)
FPStatehk = µα.PStateh(FPStringk(α,FPChark(α))⊗

FPChark(α)⊗ FPStringk(α,FPChark(α)) �

FPStringk(α,FPChark(α))⊗ FPChark(α)⊗
FPStringk(α,FPChark(α))⊗ α

FPCharhk = FPChark(FPStatehk)

FPStringhk = FPStringk(FPStatehk,FPChark(FPStatehk)).

The thesis then follows easily.
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Lemma 5. For any transition function of a Turing machine there exists an ILAL�⊗µ
proof of � FPConfigmn � FPConfigmn representing it.

Proof. We can type in ILAL�⊗µ the terms of (1), (2), (3) in Section 7 by taking

advantage of the congruences given in Proposition 8.

We then get, as in Section 7, the following theorem.

Theorem 4. The system ILAL�⊗µ is polytime sound and complete.

10. Discussion and perspectives

Several papers, such as Marion and Moyen (2000), Marion (2001) and Hofmann (2003),

have advocated the study of intensional aspects of implicit computational complexity

(ICC), that is to say, the study of algorithms representable in a given ICC language,

as opposed to functions. Note that this is not the main focus of the present paper, as

we have mainly studied functions representable in ICC systems and used encodings of

Turing machines. Moreover, the notion of uniform encodings that we have considered is

rather delicate from a programmer’s point of view. It allows us to consider different data

structures for different inputs and outputs, which, in a sense, gives us more flexibility.

However, as it stands, finding the correct data structure would still be part of the

programming task, which might be a bit too much to ask. In particular, this would be a

problem for modular programming.

Nevertheless, our main point here was rather to stress that in the setting of light logics

several interesting fragments or sublanguages are available. Before exploring intensional

expressivity, one needs to study extensional expressivity, which is what we have done here

for LAL and its variants. This gives us some criteria for comparing logical fragments

or languages. Once relevant languages with suitable extensional properties have been

isolated, they can be used to suggest new constants or programming primitives that are

compatible with typing and preserving complexity properties. Note, for example, that the

use of type fixpoints has enabled us to give simpler encodings of Turing machines than

the original ones for second-order LAL (Asperti and Roversi 2002). We leave for future

work a more complete study of the intensional aspects of the logical systems identified in

this paper.

11. Conclusions

In this paper we have delineated the computational power of several fragments of light

affine logic with respect to a general notion of the encoding of functions. The results are

summarised in Figure 10, which shows which fragments of ILAL are known to be polytime

sound and/or complete, or neither. In particular, we have shown, on the one hand, that

the purely implicative propositional fragment of ILAL is not polytime complete (under a

further natural assumption for the encoding), but, on the other hand, the extension with

linear fixpoints is both polytime complete and sound.
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Incomplete

ILAL

ILALSound

ILAL

ILAL

ILAL

ILAL

ILAL

ILAL

ILAL

ILAL

Complete Unsound

Fig. 10. Polytime soundness and completeness results for fragments of ILAL
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