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Simple Formulas for Constellations and
Bipartite Maps with Prescribed Degrees

Baptiste Louf

Abstract. We obtain simple quadratic recurrence formulas counting bipartite maps on surfaces with
prescribed degrees (in particular, 2k-angulations) and constellations. hese formulas are the fastest
known way of computing these numbers.

Our work is a natural extension of previous works on integrable hierarchies (2-Toda and KP),
namely, the Pandharipande recursion for Hurwitz numbers (proved by Okounkov and simpliûed by
Dubrovin–Yang–Zagier), as well as formulas for several models ofmaps (Goulden–Jackson, Carrell–
Chapuy, Kazarian–Zograf). As for those formulas, a bijective interpretation is still to be found. We
also include a formula for monotone simpleHurwitz numbers derived in the same fashion.

hese formulas also play a key role in subsequentwork of the authorwithT. Budzinski establishing
the hyperbolic local limit of random bipartitemaps of large genus.

1 Introduction

Amap is a combinatorial object describing the embedding up to homeomorphism of
amultigraph on a compact oriented surface. A bipartitemap is amap with black and
white vertices, each edge having a black end and a white end. Constellations are gen-
eralizations of bipartitemaps with more colors (see Section 2 for precise deûnitions).

Map enumeration has been an important research topic for many years now, go-
ing back to Tutte [30] with planar maps. He used analytic techniques on generat-
ing functions, and later on, Schaeòer enumerated planar maps bijectively [29], with
many generalizations (see for instance [2, 5,6, 13,22]). he enumeration ofmaps was
extended to other models; for instance, asymptotic formulas were obtained by Ben-
der and Canûeld [4] for maps of higher genus, by Gao [17] for maps with prescribed
degrees, and by Chapuy [9] for constellations. Another way to count maps is to see
them as factorizations of permutations and to use algebraic properties ofSn . In par-
ticular, maps ût in the more general context of weighted Hurwitz numbers (see e.g.,
[3]). heir generating functions satisfy integrable hierarchies of PDEs that arose from
mathematical physics, namely the KP and 2-Toda hierarchies (a good introduction
can be found in [24]).

he ûrst numbers thatwere studied from the point of view of integrable hierarchies
wereHurwitz numbers,which enumerate ramiûed coverings of the sphere. Pandhari-
pande [27] conjectured a recurrence formula for those numbers, which was proved
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by Okounkov [25] and later simpliûed by Dubrovin, Yang and Zagier [15]. Later, re-
currence formulas for maps were found, starting with Goulden and Jackson for tri-
angulations [19]. hey were followed by Carrell and Chapuy for general maps [8] and
Kazarian and Zograf for bipartite maps [21]. All these works start from the fact that
an underlying generating function is a “tau function” of an integrable hierarchy, and
then use ad-hoc techniques to obtain explicit recurrence formulas. he generality of
this second step is notwell understood. he approach developed in [8,19,21] does not
generalize to constellations, and neither to controlling face degrees (except for the
particular minimal case of triangulations [19]). On the other hand, in [15,25], formu-
las are derived only for Hurwitz numbers unramiûed at 0 and∞ (which corresponds
to maps without control over the degrees of the faces and/or vertices).

Contributions of this article

We manage to combine these two approaches in the context of maps, and we derive
recurrence formulas for bipartitemapswith prescribed degrees, allowing us in partic-
ular toderive a formula for bipartite 2k-angulations. We alsoûnd recurrence formulas
for constellations.

hese formulas are, to our knowledge, the simplest and fastest way to calculate
those numbers (in all models, it takes O(n2g3) arithmetic operations to calculate the
coeõcient for n edges and genus g; see Remark 2.6).

In addition to the computational aspect, such recurrence formulas are the only tool
we know of in the study of asymptotic properties of large genus maps. heGoulden–
Jackson formula played a key role in the recent proof [7] of the Benjamini–Curien
conjecture [14] of the convergence of random high genus triangulations towards a
random hyperbolicmap. Similarly, the results of this paper are necessary in the study
of random high genus bipartitemaps in an article in preparation by T. Budzinski and
the author.

Structure of the paper

In Section 2,wewill give precise deûnitions and state our main results. he rest of the
paper presents themain steps of the proof. he ûrst part of the proof is common to all
models;we introduce the “tau function” τ, a certain generating function for constella-
tions. his function, along with some auxilliary functions τn , classically satisûes a set
of diòerential equations called the 2-Toda hierarchy. Our ûrst contribution, inspired
by [25], is to link τ to the τn and derive an equation involving τ only (Proposition
3.3). his will be presented in Section 3. From this equation, specialized to themodel
we choose (bipartitemaps or constellations), we perform a few combinatorial opera-
tions (that are speciûc to themodel, similarly as in [8, 19,21]) to obtain our formulas.
We will present this in detail for bipartitemaps in Section 4, and we brie�y mention
the case of constellations. In Section 5, we will present additional models, especially
one-faced constellations, and in Section 6wewill derive a similar formula for (simple,
unramiûed) monotoneHurwitz numbers.
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Figure 1: Le�: a (labeled) 3-constellation (of genus 0) and the corresponding permutations,
right: the permutation ϕ, whose cycles describe the faces.

2 Definitions and Main Results

Deûnition 2.1 Amap M is the data of a connectedmultigraph (multiple edges and
loops are allowed) G (called the underlying graph) embedded in a compact oriented
surface S, such that S ∖ G is homeomorphic to a collection of disks (this implies, in
particular, that S is connected). he connected components of S ∖ G are called the
faces. he genus g ofM is the genus of S (the number of “handles” in S). M is deûned
up to orientation-preserving homeomorphism. A bipartite map is a map with two
types of vertices (black orwhite), such that each edge connects two vertices of diòerent
colors. A bipartitemap is said to be rooted if a particular edge is distinguished.
An m-constellation is a particular kind ofmap with two kinds of vertices: colored

vertices, carrying a “color” between 1 and m, and star vertices. Each edge connects
a star vertex to a colored vertex. A star vertex has degree m, and its neighbors have
color 1, 2, . . . ,m in the clockwise cyclic order. A constellation is said to be rooted if a
particular star vertex is distinguished. A constellationwith n star vertices is said to be
labeled if each star vertex carries a diòerent label between 1 and n. Since rooting kills
all possible automorphisms, there is a (n − 1)! -to-1 correspondence between labeled
and rooted constellations with n star vertices. From now on, we will only consider
rooted objects unless stated otherwise.

Some basic well-known properties ofmaps and constellations will be useful later.

Proposition 2.2 Labeled (non-necessarily connected) m-constellations with n star
vertices are in bijection with (m + 1)-uples (σ1 , σ2 , . . . , σm , ϕ) of permutations of Sn
such that σ1 ⋅ σ2 ⋅ ⋅ ⋅ ⋅ ⋅ σm = ϕ. he permutation σi represents the vertices of color i: each
vertex is a cycle of σi , and the elements of the cycle represent the neighboring star vertices,
in that cyclic order. he permutation ϕ encodes the faces; see Figure 1 for an example.
Bipartite maps are in bijection with 2-constellations, since each star vertex and its two
adjacent edges can bemerged into a single edge connecting a black and a white vertex.

Our main results are the following theorems.
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heorem 2.3 he number Bg(f) of bipartite maps of genus g with f i faces of degree
2i ( for f = ( f1 , f2 , . . . )) satisûes

(2.1) (n + 1
2

)Bg(f) = ∑
s+t=f

g1+g2+g∗=g

(1 + n1)(
v2

2g∗ + 2
)Bg1(s)Bg2(t)

+ ∑
g∗ > 0

(v + 2g∗

2g∗ + 2
)Bg−g∗(f),

where n = ∑i i f i , n1 = ∑i is i , v = 2 − 2g + n − ∑i f i , v2 = 2 − 2g2 + n2 − ∑i t i ,
and n2 = ∑i it i (the n’s count edges, the v’s count vertices, in accordance with the Euler
formula), with the convention that Bg(0) = 0.

heorem 2.4 he numbers C(m)g ,n of m-constellations of genus g with n star vertices
satisfy the following recurrence formula:

(n
2
)C(m)g ,n = ∑

n1+n2=n
n1 ,n2 > 1

g=g1+g2+g∗

n1(
(m − 1)n2 + 2 − 2g2

2g∗ + 2
)C(m)g1 ,n1C

(m)
g2 ,n2 .

heorem 2.3 has an immediate corollary, i.e., a recurrence formula for bipartite
2k-angulations:

Corollary 2.5 he number A(k)g ,n of bipartite 2k-angulations of genus g with n faces
satisûes the following recurrence formula:

(kn + 1
2

)A(k)g ,n = ∑
n1+n2=n
n1 ,n2 > 1

g1+g2+g∗=g

(kn1 + 1)((k − 1)n2 + 2 − 2g2

2g∗ + 2
)A(k)g1 ,n1A

(k)
g2 ,n2

+ ∑
g∗ > 0

((k − 1)n + 2 − 2(g − g∗)
2g∗ + 2

)A(k)g−g∗,n .

Remark 2.6 heorem 2.3 allows us to compute the number ofmapswith prescribed
degrees way faster than the usual Tutte–Lehman–Walsh approach [4, 17, 31] or the
topological recursion (see e.g., [16]), especially for large genus (because these meth-
ods require counting maps with up to g boundaries to enumerate maps of genus g).
It can also be specialized to maps with bounded face degrees (contrary to the Tutte
equation). Note that, in order to compute the coeõcients recursively, a term from
the right-hand side has to be moved to the le�-hand side, and we need the initial
condition B0((1i=n)) = Cat(n).

We observe that heorem 2.4 applies to bipartite maps (for m = 2). However, we
have no analogue ofheorem 2.3 (with prescribed face degrees) for m-constellations
with m > 3. We give a brief explanation of that fact in Remark 4.2.

Remark 2.7 he coeõcients in our recurrence formulashave a combinatorial �avor.
It is a natural question to ask for a bijective proof of these formulas. However, the
bijective interpretation of formulas derived from the KP/2-Toda hierarchies is still
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a widely open question, as bijections have only been found for certain formulas, in
the particular cases of one-faced [12] and planar maps [23]. Note that there is an
asymmmetry in the factors in the quadratic sums, contrary to the formulas in [8, 19],
but similar to [21].

3 Constellations and the Toda Hierarchy

3.1 The Semi-infinite Wedge Space

We give some deûnitions,mostly following the notation of the appendix in [26].

Deûnition 3.1 A Maya diagram is a decoration of Z + 1
2 with a particle or an an-

tiparticle at eachposition, such that for some n1 , n2 there are onlyparticles atpositions
< n1 and only antiparticles at positions > n2. he semi inûnite wedge space Λ∞/2 is
the vector space generated by theMaya diagrams. It is equippedwith an inner product
by making theMaya diagrams orthogonal to each other and of norm 1.
For any k ∈ Z + 1

2 , we deûne the fermion operators ψk and ψ∗k . For each Maya
diagram m, we set

ψkm =
⎧⎪⎪⎨⎪⎪⎩

0 ifm has a particle in position k,
(−1)nk m̃ otherwise,

ψ∗km =
⎧⎪⎪⎨⎪⎪⎩

0 ifm has an antiparticle in position k,
(−1)nkm otherwise,

where nk is the number of particles ofm is positions > k (it is ûnite by deûnition of a
Maya diagram). Also, m̃ is the same as m except there is a particle in position k, and
m is the same as m except there is an antiparticle in position k. Note that ψk and ψ∗k
are adjoint operators.

We can now deûne the boson operators: for all n ∈ Z∗, let

αn = ∑
k∈Z+ 1

2

ψk−nψ∗k .

Finally, the two vertex operators are

Γ±(p) = exp (
∞
∑
n=1

pn

n
α±n).

We will now deûne diagonal operators over Λ∞/2 and relate Maya diagrams to
partitions.

Deûnition 3.2 We deûne the normally ordered products

∶ψkψ∗k ∶=
⎧⎪⎪⎨⎪⎪⎩

ψkψ∗k if k > 0,
−ψ∗kψk if k < 0.
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Figure 2: AMaya diagram of charge 0 and its corresponding partition (above it, presented as a
rotated Young diagram). Particles are in black. In blue, a box and its content (the abscissa of
the projection of the center of the box on Z). (Colour online)

Note that, for aMaya diagram m,

∶ψkψ∗k ∶m =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

m if k > 0 andm has a particle in position k,
−m if k < 0 andm has an antiparticle in position k,
0 otherwise.

he charge operator is:
C = ∑

k∈Z+ 1
2

∶ψkψ∗k ∶ .

he eigenvectors of C are the Maya diagrams. he eigenvalue of a Maya diagram m
is the number of particles in positive position minus the number of antiparticles in
negative position. We call this number the charge ofm. We introduce the translation
operator R: for anym, Rm has a particle in position k+1 if and only ifm has a particle
in position k. Note that if the charge ofm is c, the charge of Rm is c + 1, and that the
adjoint of R is R−1.

here is a bijection betweenMaya diagrams of charge 0 and partitions, as depicted
in Figure 2 (in position k, a down-step corresponds to a particle, an up-step corre-
sponds to an antiparticle). hus, anyMaya diagramm can be encoded by its charge c
and a partition λ (that corresponds to theMaya diagram R−cm).

Wewill use the bracket notation, denoting theMaya diagram corresponding to the
empty partition by ∣∅⟩ and setting ∣∅n⟩ = Rn ∣∅⟩. We will also set ∣λ⟩ to be theMaya
diagram of charge 0 corresponding to the partition λ.
Finally, we deûne the energy operator,

H = ∑
k∈Z+ 1

2

k ∶ψkψ∗k ∶ .

In particular, H ∣λ⟩ = ∣λ∣ ∣λ⟩, where ∣λ∣ is the number of boxes in λ.
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3.2 Generating Functions as Tau Functions

Deûnition 3.3 Fix integers r, n, and g, ûx λ, µ two partitions of n. Let W λ ,µ
n

(l1 , l2 , . . . , lr) be the number of (r + 2)-uples of permutations (σ1 , σ2 , . . . , σr , σλ , σµ)
of Sn such that σ1 ⋅ σ2 ⋅ ⋅ ⋅ ⋅ ⋅ σr = σλσµ and σi has l i cycles, and σλ , σµ have respec-
tive cycle types λ and µ. he W λ ,µ

n enumerate (labeled, non-necessarily connected)
constellations, in accordance with Proposition 2.2. Let τ be the associated generating
function (that implicitly depends on r):

τ(z, p, q, (u j)) = ∑
n > 0
∣µ∣=∣λ∣=n
l i > 1 ∀i

zn

n!

r
∏
i=1

un−l i
i pλqµW

λ ,µ
n (l1 , l2 , . . . , lr).

Remark 3.4 Depending on the specialization thatwill be applied, these (r+2)-uples
will either represent r- or (r − 1)-constellations.

It is a classical result (under diòerent forms and variants, see for instance [19,25])
that the function τ can be expressed in terms of elements and operators of Λ∞/2.

Lemma 3.5 (Classical)

(3.1) τ(z, p, q, (u j)) = ⟨∅∣Γ+(p)zHΛΓ−(q)∣∅⟩
with

F(u) = ∑
k>0

k−1/2
∑
i=0

log(1 + ui)ψkψ∗k +∑
k<0

−k−1/2
∑
i=0

log(1 − ui)ψ∗kψk

and Λ =∏r
j=1 exp(F(u j)).

Proof First, we have

F(u) ∣ν⟩ = (∑
◻∈ν

log(1 + uc(◻))) ∣ν⟩ ,

where the c(◻) are the contents of the partition ν (see Figure 2). It can be shown using
the Jacobi–Trudi rule (see e.g., [26]) that

Γ−(q) ∣∅⟩ =∑
ν

sν(q) ∣ν⟩ and ⟨∅∣ Γ+(p) =∑
ν

sν(p) ⟨ν∣ ,

where the sum is over all partitions.
hus, the right-hand side of (3.1) can be rewritten as

∑
n>0
∣ν∣=n

zn
r
∏
j=1
∏
◻∈ν

(1 + u jc(◻))sν(p)sν(q).

his expression (the “content product form”) is equal to τ(z, p, q, (u j)) (see e.g.,
[19,heorem 3.1]). ∎

We introduce the auxiliary functions τn , for n ∈ Z:

τn = ⟨∅n ∣Γ+(p)zHΛΓ−(q)∣∅n⟩ .
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We have τ = τ0. he previous lemma, along with classical considerations (see, for
instance, [25, Section 2.6]), imply that the τn satisfy an inûnite set of equations, the
2-Toda hierarchy. In particular, the following equation holds:

(3.2)
∂2

∂p1∂q1
log τ0 =

τ1τ−1

τ2
0

.

So far, the content presented has been classical. Our ûrst main contribution is to
transform the previous equation into an equation implying H = log τ only.

3.3 The Master Equation

In this section, we derive the following general equation.

Proposition 3.6 he general generating function of connected constellationsH = log τ
satisûes

(3.3) DH1,1 −H1,1 = H1,1(DH(z ⋅
r
∏
j=1

(1 + u j), (
u j

1 + u j
))

+ DH(z ⋅
r
∏
j=1

(1 − u j), (
u j

1 − u j
))− 2DH)

with H1,1 = ∂2
∂p1∂q1

H and D = z ∂
∂z .

Remark 3.7 In the formula above, we omitted some of the arguments of H. For
instance,

H ∶= H(z, p, q, (u j)),

H(z ⋅
r
∏
j=1

(1 + u j), (
u j

1 + u j
)) ∶= H(z ⋅

r
∏
j=1

(1 + u j), p, q, (
u j

1 + u j
)).

his formulawill be the starting point for all the particular caseswewill consider in
the next section. For each model, we will apply a particular specialization of the vari-
ables, then interpret combinatorially the operator ∂

∂p1
∂

∂q1
(depending on themodel),

and ûnally the extraction of coeõcients will give us the relevant formulas.
We ûrst need to relate the auxilliary functions τ1 and τ−1 to the generating func-

tion τ.

Lemma 3.8

τ±1(z, p, q, (u j)) = z1/2τ(z ⋅
r
∏
j=1

(1 ± u j), p, q, (
u j

1 ± u j
)).

Proof We will describe how H, C, and F behave under the action of the shi� oper-
ator; then using the operator form (3.1) of τ, we will derive the result.

It is easily veriûed that the opertors R, C, and H commute with Γ+(p) and Γ−(q).
We also have R−nHRn = H + nC + n2

2 .
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By a careful change of indices,

RFR−1 = ∑
k>0

k−1/2
∑
i=1

log(1 + ui)ψk+1ψ∗k+1 +∑
k<0

−k−1/2
∑
i=1

log(1 − ui)ψ∗k+1ψk+1

= ∑
k>0

k−1/2
∑
i=0

log(1 − u + ui)ψkψ∗k +∑
k<0

−k−1/2
∑
i=0

log(1 − u − ui)ψ∗kψk

= F( u
1 − u

)+ (H − C/2) log(1 − u).

Since ∣∅−1⟩ = R−1 ∣∅⟩, we have
τ−1(z, p, q, (u j))

= ⟨∅−1∣Γ+(p)zHΛΓ−(q)∣∅−1⟩
= ⟨∅∣RΓ+(p)zHΛΓ−(q)R−1∣∅⟩

= ⟨∅∣Γ+(p)zRHR−1RΛR−1Γ−(q)∣∅⟩

= ⟨∅∣Γ+(p)zH−C+1/2 r
∏
j=1
exp (F(

u j

1 − u j
)+ (H − C/2) log(1 − u i))Γ−(q)∣∅⟩

= z1/2 ⟨∅∣Γ+(p)(z
r
∏
j=1

(1 − u j))
H
Λ((

u j

1 − u j
))Γ−(q)∣∅⟩

= z1/2τ(z ⋅
r
∏
j=1

(1 − u j), p, q, (
u j

1 − u j
)).

Similarly,

τ1(z, p, q, (u j)) = z1/2τ(z ⋅
r
∏
j=1

(1+u j), p, q, (
u j

1 + u j
)). ∎

Remark 3.9 he idea of expressing τ±1 in terms of τ by calculating R∓1ΛR±1 is
inspired by the calculation performed in [25, Section 2.7].

We can now prove Proposition 3.6.

Proof of Proposition 3.6 Using Lemma 3.8, we can interpret (3.2) as an equation
implying τ only.

∂2

∂p1∂q1
log τ =

z
τ(z ⋅∏r

j=1(1 + u j), p, q, ( u j

1+u j
))τ(z ⋅∏r

j=1(1 − u j), p, q, ( u j

1−u j
))

τ2 .

Substituting H = log τ in the above equation, one obtains

(3.4) H1,1 = z exp (H(z ⋅
r
∏
j=1

(1 + u j), (
u j

1 + u j
))

+H(z ⋅
r
∏
j=1

(1 − u j), (
u j

1 − u j
))− 2H).
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Figure 3: Contracting a digon.

Finally,we get (3.3) by applying the operator D−1 to both sides of (3.4) and getting
rid of the exponential part by using (3.4) another time. ∎

4 Proof of the Main Formulas

In the following subsections, we will specialize some of the variables to ût the cases
we care about. To avoid tedious notations, and as there is no risk of ambiguity, the
specialization of the function H will still be called H.

4.1 Bipartite Maps

In this section, we want to count bipartite maps while controlling the degrees of the
faces. hus, we will consider the case r = 2, and specialize H by setting u1 = u2 = u
and q i = 1i=1.

Let Bg(f) be the number of (rooted) bipartite maps of genus g with f i faces of
degree 2i, and B(z, p, u) be the ordinary generating function of connected rooted
bipartitemaps, deûned as

B =∑
g ,f

znu2n−v ∏
i > 1

p f ii Bg(f).

with n = ∑i i f i and v − n +∑i f i = 2 − 2g (Euler formula).
Equation (3.3) can be rewritten in terms of B only:

Lemma 4.1

(4.1) (D + 1)DB = (u−2 + (D + 1)B)(B(z(1 + u)2 , p,
u

1 + u
)

+ B(z(1 − u)2 , p,
u

1 − u
)− 2B).

Proof In this section,H is the (exponential) generating function of labeled bipartite
maps, and as mentioned in Deûnition 2.1, there is a (n − 1)! -to-1 correspondence
between labeled and rooted bipartitemaps. hus, B = DH.

We will now express H1,1 in terms of B. he specialization q i = 1i=1 implies that
only the terms znqn

1 form the original function survived, and thus in this case,

∂
∂q1

H = DH.

Finally, applying ∂
∂p1

corresponds to marking a digon. A marked digon can be con-
tracted into a marked edge (see Figure 3) except when the bipartite map is just one
edge, thus ∂

∂p1
H = z + u2zDH = z + u2zB (the u2z factor comes from the fact that we
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lose an edge when we contract the digon, and the z term is the case where we cannot
contract the digon). ∎

We are ûnally ready to proveheorem 2.3.

Proof of Theorem 2.3 We look at the factor

B(z(1 + u)2 , p,
u

1 + u
)+ B(z(1 − u)2 , p,

u
1 − u

)− 2B

in (4.1). he coeõcient of zn∏i > 1 p
f i
i in this factor is

∑
v>0
Bg(f)u2n−v((1 + u)v + (1 − u)v − 2) =

∑
v>0
Bg(f)u2n−v (2 ∑

0<k 6 v/2
u2k( v

2k
)).

In the sum above, we have, by Euler’s formula, g = (n −∑ f i − v + 2)/2 (with
the convention that Bg(f) = 0 if g is not an integer). Extracting the coeõcient of
znu2n−v∏i > 1 p

f i
i in (4.1), one gets the result. ∎

4.2 Constellations

In this section, we will count constellations without controlling the degrees of the
faces. For that, we will specialize H by taking r = m + 1, p i = q i = 1i=1, and u i = u for
all i. he variable u counts the number of colored vertices plus the number of faces,
or equivalently, by Euler’s formula, the genus.

Proof of Theorem 2.4 A�er the specialization, H1,1 becomes D2H by the same ar-
gument as in the proof of heorem 2.3. If we take C to be the (ordinary) generating
function of connected constellations, i.e.,

C =∑
g ,n

znu2n+2g−2C(m)g ,n ,

we have, as before, C = DH. Equation (3.3) becomes

(4.2) (D2 − D)C = DC(C(z(1 + u)m+1 ,
u

1 + u
)

+ C(z(1 − u)m+1 ,
u

1 − u
)− 2C).

To ûnish the proof, we proceed exactly as in the proof ofheorem 2.3. First calcu-
late the coeõcient of zn in

C(z(1 + u)m+1 ,
u

1 + u
)+ C(z(1 − u)m+1 ,

u
1 − u

)− 2C ,

then just extract the coeõcient of znu2n+2g−2 in (4.2) (the suitable exponent of u is
derived by the Euler formula). ∎
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Remark 4.2 his time, we cannot track the degrees of the faces, as in general the
combinatorial operation of contracting an m-gon might disconnect themap, and the
formula gets messy. However, if we restrict to only one face, we can perform this
operation to recover a nice formula (see Section 5).

5 Additional Results

5.1 One-faced Constellations

In this section,wewill derive a recurrence formula for constellationswith one face. In
the case of bipartitemaps, the formula is just a particular case of (2.1), but for m > 3,
it cannot be derived from heorem 2.4 directly. One-faced constellations were ûrst
enumerated in [28]: an exact formula given the degree distribution of each colored
vertex is provided. While the following formula does not give control over the degrees
of the vertices, it is much quicker to calculate the “global” (i.e., controlling only the
genus and the number of vertices) number of one-faced constellations for m > 3 (for
m = 2, i.e., bipartitemaps, a nice formula for one-faced bipartitemaps can be found
in [1]).

heorem 5.1 Let Um(g , n) be the number of one-faced m-constellations of genus g
with n star vertices. Also, let U(k)m (g , n) be the number of one-facedm-constellations of
genus g with n star vertices and k distinguished (pairwise distinct) colored vertices, i.e.,
U(k)m (g , n) = ((m−1)n+1−2g

k )Um(g , n). We have the following recurrence formula:

(5.1)
n(n + 1)m−1

2
Um(g , n) =

g

∑
g∗=0

U(2+2g∗)
m (g − g∗ , n).

Remark 5.2 his formula recalls the formula for one-facedmaps proven bijectively
by Chapuy in [10]. Indeed, it allows us to calculate the number of one-facedmaps of
genus g in terms of number of maps of lower genus with the same number of edges
and some distinguished vertices. he diòerence, though, is that in Chapuy’s formula
there are an odd number of distinguished vertices, whereas in (5.1) there are an even
number of distinguished vertices.

Nevertheless, there might be a connection, as those formulas arise in the same
algebraic context. Our formula is obtained via the 2-Todahierarchy,whereasChapuy’s
is an intermediate step to proving the Harer–Zagier recurrence formula (see [12]),
which is itself a special case of a formula obtained via the KP hierarchy: the Carrell–
Chapuy recurrence formula [8].

To prove (5.1), we will take r = m and apply the following specialization to (3.3):
ûx an integer n, and set q i = 1i=1, u i = u for all i, as well as z = 1. Also set p i = 0
for all i ≠ n, and extract the coeõcient of p1

n . H is now simply a polynomial in
u. It counts labeled one-faced constellations. Let U be the associated polynomial
for rooted objects; the classical correspondence between labeled and rooted objects
yields U = DH. As before, there is a “marked m-gon”, and we need to interpret this
combinatorially.
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Figure 4: Deleting n + 1, for n = 7, whether n + 1 is a ûxed point or not

Lemma 5.3 A�er the specialization, the le�-hand side of (3.3) becomes n(n+1)m−1U

Proof he only terms of H1,1 in (3.3) that survive the specialization are the coeõ-
cients of zn+1pn p1qn+1

1 . hus we have DH1,1 = (n + 1)H1,1 and H1,1 = (n + 1) ∂
∂p1

H.
he le�-hand side of (3.3) is therefore equal (a�er specialization) to n(n + 1) ∂

∂p1
H. It

remains to show that ∂
∂p1

H = (n + 1)m−2 ⋅U .
Applying ∂

∂p1
corresponds to marking an m-gon. As in the proof of heorem 2.3,

it kills all symmetries; thus, there is a (n + 1)! -to-1 correspondence between labeled
constellations and constellations with a marked m-gon. herefore, ∂

∂p1
H is the ordi-

nary generating function of connected unlabeled m-constellations with one face of
degree mn and one face of degree m.

We will work with permutations to make things easier. Connected unlabeled m-
constellations with one face of degree mn and one face of degree m are in bijection
with (m+1)-uples of permutations ϕ, σ1 , . . . , σm ofSn+1 satisfying the following con-
straints:

● ϕ =∏m
i=1 σi ;

● in cycle products, ϕ is written (1, 2, . . . , n)(n + 1);
● the image of 1 by σ1 is n + 1.
We can describe the operation of “contracting an m-gon” on the permutations.

With ϕ, σ1 , . . . , σm , we will associate a (m + 1)-uple ϕ′ , σ ′1 , . . . , σ ′m of permutations of
Sn :

● With ϕ, we associate ϕ′ = (1, 2, . . . , n).
● For 1 6 i < m, to σi we associate the permutation σ ′i where in the cycle product
we just deleted the element n + 1 (see Figure 4).

● With σm , we associate σ ′m = ϕ′(∏m−1
i=1 σ ′i )−1.

his exactly describes a rooted m-constellation with one face of degree mn. To go
back, one needs to remember, for 1 < i < m, what was the preimage of n + 1 in σi
(including possibly n + 1 itself). here are n + 1 possible choices for each i; thus, a�er
the specialization, ∂

∂p1
H = (n + 1)m−2 ⋅U . ∎

A simple calculation in the right-hand side ûnishes the proof.

Proof of Theorem 5.1 In the right-hand side,we have a product of two terms. Since
H has no constant coeõcient in the p i ’s, a�er specialization we get the coeõcient of
p0n of H1,1 (which is just um−1, corresponding to the constellation with only one star
vertex) times the coeõcient of p1

n in

DH((1 + u)m ,
u

1 + u
)+ DH((1 − u)m ,

u
1 − u

)− 2DH.
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Again, since DH = U ,we can extract the coeõcient of znumn−v (where v = (m−1)n+
1 − 2g by Euler’s formula), as in the proof ofheorem 2.3, and obtain the result. ∎

5.2 Controlling More Parameters

In each of the previous cases, we specialized a lot of variables to obtain formulas for
“global” coeõcients. Starting over from (3.3) without specializing some of the vari-
ables, one is able to obtain (slightlymore complicated) formulas formore ûne-grained
coeõcients. As an example, we can calculate the number C(m)g ,n , f of m-constellations
of genus g, with n star vertices and f faces:

(5.2) (n
2
)C(m)g ,n , f =∑ n1(

f2
k
)(2g2 − f2 + (m − 1)n2

2g∗ + 2 − k
)C(m)g1 ,n1 , f1

C(m)g2 ,n2 , f2
,

where the sum is over n1+n2 = n, n1 , n2 > 0, g∗ > 0, g1+g2+g∗ = g and f1+ f2−k = f .
he proof of formula (5.2) is essentially the same as the proof of heorem 2.4,

except that we do not specialize u i = u for all i, but only for i 6 m. In this case,
u counts colored vertices, and um+1 counts faces.

Remark 5.4 Even though the summation is complicated, (5.2) allows us to compute
all the coeõcients C(m)g ,n , f from the initial condition C(m)g ,1, f = 1 if and only if g = 0 and
f = 1, and 0 otherwise.

However, it does not restrict to a formula for one-faced constellations.

We can also ûnd formulas for other models, with other specializations. Relevant
models include bipartite maps (with prescribed face degrees), one-faced constella-
tions, or (general) constellations, with control over the number of vertices of each
color. We can also obtain a formula for triangulations (by specializing r = 1, p i = 1i=2,
q i = 1i=3), but it is more complicated (and less “combinatorial”) than the Goulden–
Jackson formula [19]. he reader is encouraged to play with (3.3) to ûnd other nice
formulas.

5.3 Univariate Generating Series

A relevant corollary of our results is that the formulas we obtain allow us to com-
pute the univariate generating series of some given models of maps (2k-angulations
counted by faces, constellations counted by star vertices, etc.). To illustrate this fact, ûx
an integer k and let Fg(z) be the generating series of genus g bipartite 2k-angulations:

Fg(z) = ∑
n>0
A(k)g ,nzn

with the coeõcients A(k)g ,n as deûned inCorollary 2.5. Our formula gives an algorithm
to compute every Fg for g > 1, given F0. Indeed, when g > 1, Corollary 2.5 can be
rewritten as

∆Fg = ϕ(z, F0 , F1 , . . . , Fg−1)
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with

∆ = (kD + 1
2

) − (((k − 1)D + 2
2

)F0)(kD + 1)

− ((kD + 1)F0)(
(k − 1)D + 2

2
) − ((k − 1)D + 2

2
),

where D = z ∂
∂z , and ϕ is a polynomial in its variables and their (ûrst and second)

derivatives. It is well known (see for instance [6]) that

F0 = t − z(2k − 1
k + 1

)tk+1 − 1

with the change of variable

t = 1 + z(2k − 1
k

)tk .

Note that we have a “−1” in the expression of F0, because we do not count the “empty
map”.
Assuming we know Fh for h < g, this gives a linear, second order ODE in Fg

(with respect to the variable t). Since all the Fgs are rational in t (see, for instance,
[11]), all the coeõcients of the equation are themselves rational, and the solutions can
be computed explicitly. he initial conditions are given by the two following facts:
[z0]Fg = 0 and [z1]Fg is the number of unicellular bipartite maps of genus g with k
edges that can, for instance, be computed using heorem 5.1.

6 Monotone Hurwitz Numbers

In this section, we derive a recurrence formula for monotone Hurwitz numbers, in a
similar fashion as in previous sections. hese numbers, which appear in the calcula-
tion of theHCIZ integral, were introduced in [18].

Deûnition 6.1 For two transpositionsofSn ,we say that (i , j) ⪯ (k, l) ifmax(i , j) 6
max(k, l). he double monotone Hurwitz number H⃗λ ,µ

g ,n is 1
n! times the number of

tuples (t1 , t2 , . . . , tr , σλ , σµ) of permutations of Sn such that:
● r = l(λ) + l(µ) + 2g − 2 where l(λ) is the number of parts of λ;
● t1 , t2 , . . . , tr is an increasing sequence of transpositions;
● σλ (resp. σµ) has cycle type λ (resp. µ);
● t1 ⋅ t2 ⋅ ⋅ ⋅ ⋅ ⋅ tr = σλσµ
● the permutations; t1 , t2 , . . . , tr , σλ act transitively on 1, 2, . . . , n.

he simplemonotoneHurwitz numbers H⃗λ
g ,n are deûned as H⃗λ

g ,n = H⃗λ ,1n
g ,n .

We will set W λ ,µ
g ,n to be the same numbers without the transitivity condition and

introduce

τ(z, p, q, u) = ∑
n > 0
∣λ∣=∣µ∣=n

r > 0

zn

n!
pλqµurW λ ,µ

g ,n
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with g such that r = l(λ) + l(µ) + 2g − 2. hen H = log τ is the generating function
of the H⃗λ ,µ

g ,n .
As before, it can be shown (see, for instance, [20]) that

τ(z, p, q, u) = ⟨∅∣Γ+(p)zHΛΓ−(q)∣∅⟩

with Λ = exp(−F(−u)), where F is the function deûned in Lemma 3.5. A general
equation similar to (3.3) can be derived:

DH1,1 −H1,1 = H1,1(DH( z
1 + u

,
u

1 + u
)+ DH( z

1 − u
,

u
1 − u

)− 2DH)

with H1,1 = ∂2
∂p1∂q1

H and D = z ∂
∂z .

Similarly as with constellations, in general we cannot even track the cycle type
of σλ , although, from the specialization p i = q i = 1i=1, for all i, we can obtain a
recurrence formula for the unramiûedmonotoneHurwitz numbers H⃗g ,n = H⃗1n

g ,n :

(6.1) n(n
2
)H⃗g ,n = ∑

n1+n2=n
g∗ > 0

g1+g2+g∗=g

n2
1 n2(

3n2 + 2g2 + 2g∗ − 1
2g∗ + 2

)H⃗g1 ,n1 H⃗g2 ,n2 .

Remark 6.2 In this paper, the number H⃗λ ,µ
g ,n is deûned with a scaling factor of 1

n!
to make the formula simpler; this is a diòerent convention from that in [18]. Formula
(6.1) allows us to compute all the H⃗g ,n only knowing that H⃗0,1 = 1.
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