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Abstract

We study the k-Galois linear complementary dual (LCD) codes over the finite chain ring R = Fq + uFq

with u2
= 0, where q = pe and p is a prime number. We give a sufficient condition on the generator matrix

for the existence of k-Galois LCD codes over R. Finally, we show that a linear code over R (for k = 0, q > 3)
is equivalent to a Euclidean LCD code, and a linear code over R (for 0 < k < e, (pe−k

+ 1) | (pe − 1) and
(pe − 1)/(pe−k

+ 1) > 1) is equivalent to a k-Galois LCD code.

2020 Mathematics subject classification: primary 94B05; secondary 94B15.

Keywords and phrases: Euclidean LCD codes, Gray map, k-Galois LCD codes, linear codes, linear
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1. Introduction

Linear complementary dual (LCD) codes over finite fields are linear codes satisfying
C ∩ C⊥ = {0}. These codes were first proposed by Massey [10] and shown to provide
an optimum linear coding solution for a two-user adder channel in the binary
case. Massey also obtained the asymptotic property for binary LCD codes. Later,
a necessary and sufficient condition for a cyclic code to be an LCD code over a
finite field was derived in [15]. The asymptotic property for LCD codes over a finite
field was generalised by Sendrier (by using hull dimension spectra) [13]. The linear
programming bound on the largest size of an LCD code of given length and minimum
distance was presented in [3]. Güneri et al. [5] characterised LCD quasi-cyclic codes
by using their concatenated structure and showed that Hermitian LCD codes were
asymptotically good. Zhu and Shi [16] showed that LCD four circulant codes satisfy a
modified Gilbert–Varshamov bound. Constructing LCD codes with good parameters
has important applications in both theory and practice. Many good LCD codes, such
as generalised Reed–Solomon codes, were constructed from classical linear codes (see
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[2, 6, 12, 14]). Mesnager et al. [11] provided a construction of algebraic geometry LCD
codes which could be resistant against side channel attack.

Recently, k-Galois dual codes were introduced in [4] for studying Galois consta-
cyclic codes (a generalisation of Euclidean constacyclic and Hermitian constacyclic
codes). The k-Galois LCD codes over finite fields have been studied in [8]. A necessary
and sufficient condition for linear codes to be k-Galois LCD was obtained and
several classes of k-Galois LCD maximum distance separable codes were exhibited.
A remarkable result for LCD codes was established by Carlet et al. [1], showing that
any linear code over Fq is equivalent to a Euclidean LCD code for q ≥ 4, and any
linear code over Fq2 is equivalent to a Hermitian LCD code for q ≥ 3. Later, these
results were generalised to k-Galois codes over finite fields by using Gröbner bases
[8]. A natural question arises as to how to characterise k-Galois LCD codes over a
finite chain ring R. Another interesting problem is to study the connection between
k-Galois LCD codes over finite fields and linear codes in the context of finite chain
rings.

In this paper we answer both questions positively for the chain ring R = Fq + uFq

with u2
= 0. Section 2 gathers together the notation and definitions needed in the rest

of the paper. In Section 3 we obtain a sufficient condition for a code C to be a k-Galois
LCD code with q even. In Section 4 we show that any linear code over R is equivalent
to a Euclidean LCD code with q > 3, and any linear code over R is equivalent to a
k-Galois LCD code with (pe−k

+ 1) | (pe − 1) and (pe − 1)/(pe−k
+ 1) > 1.

2. Preliminaries

2.1. Gray map. Throughout this paper, q = pe is a positive power of a prime p and
Fq denotes the finite field with q elements. Let Fn

q be the set of all q-ary vectors of

length n. The ring R = Fq + uFq, with u2
= 0, is a local ring and its only maximal ideal

is (u) = {au : a ∈ Fq}. The residue field R/(u) is isomorphic to Fq. The group of units,
R∗, of the ring R is R∗ = R\(u) and it is isomorphic to the product of a cyclic group of
order q − 1 by an elementary abelian group of order q.

The Gray map φ from R to F2
q is defined by φ(a + bu) = (b, a + b), for a, b ∈ Fq.

The Lee weight is defined as wL(a + bu) = wH(b) + wH(a + b), where wH denotes the
Hamming weight. It is a bijective map which can be extended into a map (denoted by
Φ) from Rn to F2n

q . The Lee distance of x, y ∈ Rn is defined by wL(x − y). The Gray

map is a linear isometry from (Rn, dL) to (F2n
q , dH), where dL and dH denote the Lee

distance and Hamming distance in Rn and F2n
q , respectively.

A code C over R is a nonempty subset of Rn. The code is linear if it is an
R-submodule of Rn. It is well known that an R-linear code C is permutation equivalent
to an R-linear code with a generator matrix of the form

G =

(

Ik1 A B1 + uB2

0 uIk2 uC

)

, (2.1)
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where Ik1 and Ik2 denote the k1 × k1 and k2 × k2 identity matrices, respectively, and A,
C, B1 and B2 are matrices over Fq. If C is a linear code over R with generator matrix G

defined in (2.1) and minimum Lee distance d, we say that C is of type (n; k1, k2, d).

2.2. k-Galois dual codes. Let k and e be integers with 0 ≤ k < e. Let F be the
Frobenius operator over R defined by F(a + ub) = ap

+ ubp. Let x = (x1, x2, . . . , xn)
and y = (y1, y2, . . . , yn) be two elements of Rn. Define the k-Galois form

〈x, y〉k = x1Fk(y1) + x2Fk(y2) + · · · + xnFk(yn).

For a linear code C over R, let C⊥k denote its k-Galois dual, that is,

C⊥k = {x ∈ Rn | 〈x, y〉k = 0 for all y ∈ C}.

In particular, if e = 0, C⊥0 (denoted C⊥ for convenience) is just the Euclidean dual
code of C; if e is even and k = e/2, C⊥k (denoted C⊥H for convenience) is just the
Hermitian dual code of C. It is easy to check that C⊥k is also a linear code over R. A
code C is called k-Galois LCD if it satisfies C ∩ C⊥k = {0}.

For an m × m matrix M = (mij)m×m, let MT denote the transposed matrix of M. If
the determinant det(M) is a unit in R, we say that M is nonsingular. In addition, we

denote M(pk)
= (mpk

ij
)m×m. Let C(pk)

= {(cpk

1 , c
pk

2 , . . . , c
pk

n ) | (c1, c2, . . . , cn) ∈ C}.

LEMMA 2.1 [7, Proposition 2.2]. Let C be a linear code over R. Then the k-Galois

dual C⊥k is equal to the Euclidean dual (C(pe−k))⊥ of C(pe−k).

The following theorem gives a partial characterisation of k-Galois LCD codes, and
it is analogous to the result over finite fields [8, Theorem 2.4].

THEOREM 2.2. Let C , {0} be a linear code over R of type (n; k1, k2, d) with the

generator matrix G. If G(G(pe−k))T is nonsingular, then C is a k-Galois LCD code

over R.

PROOF. For any codeword c ∈ C, there exists an element v ∈ Rk1+k2 such that c =

vG. Since G(G(pe−k))T is nonsingular, c(G(pe−k))(G(G(pe−k))T )−1G = vG = c. If c ∈ C⊥k ,
then c(G(pe−k)) = 0 from Lemma 2.1, which gives c = 0. The result follows from the
definition of LCD codes. �

2.3. Equivalence. Recall that a monomial matrix M over R of order n is an n × n

matrix with exactly one unit element in each row and column. In other words, a
monomial matrix M can be written in the form PD, where P is a permutation matrix
and D = diagn[w], w = (w1, w2, . . . , wn) ∈ (R∗)n and diagn[w] denotes the diagonal
matrix whose elements on the diagonal are w1, w2, . . . , wn.

We are now ready to define equivalence. Let C1 and C2 be linear codes over R of the
same length and let G1 be a generator matrix C1. The codes C1 and C2 are equivalent if
there is a monomial matrix M such that G1M is a generator matrix of C2. In particular,
if D is an identity matrix, then C1 and C2 are called permutation equivalent.
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PROPOSITION 2.3. Let C be a k-Galois LCD code over R. If C1 is permutation

equivalent to C, then C1 is also k-Galois LCD.

3. k-Galois LCD codes over R

LEMMA 3.1. Let C be a linear code over R (with p = 2) of type (n; k1, k2, d). Then

Φ(C⊥k ) = (Φ(C)(pe−k))⊥.

PROOF. Let x = a + bu ∈ C and y = c + du ∈ C⊥k , where a, b, c, d ∈ Fn
q. Thus,

〈x, y〉k = 0 implies 〈a, c〉k + u(〈b, c〉k + 〈a, d〉k) = 0. Utilising the Gray map,

〈Φ(y),Φ(x)〉e−k = 〈d, b〉e−k + 〈c, a〉e−k + 〈d, a〉e−k + 〈c, b〉e−k + 〈d, b〉e−k = 0.

Therefore, Φ(y) ∈ (Φ(C)(pe−k))⊥ and Φ(C⊥k ) ⊆ (Φ(C)(pe−k))⊥.
On the other hand, from the definition of the Gray map and the generator matrix

G⊥k , it is easy to check that the codes Φ(C⊥k ) and (Φ(C)(pe−k))⊥ have the same size. �

LEMMA 3.2. Let C be a linear code over R of type (n; k1, k2, d). Then

Φ(C ∩ C⊥k ) = Φ(C) ∩ Φ(C⊥k ).

PROOF. Let Φ(x) ∈ Φ(C ∩ C⊥k ). Since the Gray map Φ is bijective, x ∈ C ∩ C⊥k and
so Φ(C ∩ C⊥k ) ⊆ Φ(C) ∩ Φ(C⊥k ).

On the other hand, letting y ∈ Φ(C) ∩ Φ(C⊥k ), there exists a unique u ∈ C ∩ C⊥k

such that Φ(u) = y. This implies Φ(C) ∩ Φ(C⊥k ) ⊆ Φ(C ∩ C⊥k ). �

The next theorem gives a connection between k-Galois LCD codes over R and their
image codes.

THEOREM 3.3. Let C be a linear code over R (with p = 2) of type (n; k1, k2, d). Then

C is k-Galois LCD if and only if Φ(C) is q-ary k-Galois LCD with parameters

[2n, 2k1 + k2, d].

PROOF. If C is a k-Galois LCD code over R, then from Lemmas 3.1 and 3.2,

Φ(C ∩ C⊥k ) = Φ(C) ∩ Φ(C⊥k ) = Φ(C) ∩ (Φ(C)(pe−k))⊥ = {0}.

In other words, Φ(C) is k-Galois LCD by [8, Lemma 2.3]. If Φ(C) is k-Galois LCD
over Fq, a similar argument can be made to prove that C is k-Galois LCD over R. �

4. k-Galois LCD codes from the linear codes over R

For I = {i1, i2, . . . , it} ⊆ {1, 2, . . . , m} and a square matrix N, define NI to be the
submatrix of N obtained by deleting the i1th, i2th, . . . , itth rows and columns of N.
Set NI = 1 if I = {1, 2, . . . , m} and N∅ = N for convenience. The support S of a vector
x ∈ Rn is defined as the set of indices where it is nonzero.
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LEMMA 4.1. Let N be an m × m matrix over R. For every u = (u1, u2, . . . , um) ∈ Rm

with support S,

det(N + diagm[u]) = det(N) +
∑

i∈S

ui det(N{i})

+

∑

i<j

i,j∈S

(uiuj) det(N{i,j}) + · · · +
(

∏

i∈S

ui

)

det(NS).

PROOF. The proof is by induction on the size, s = |S|, of S. For the initial case s = 1,
let u be a vector in Rm with nonzero component i1. Then

det(N + diagm[u]) = det(N) + ui1 det(N{i1}),

showing that the claim holds for s = 1.
By induction, we may assume that the statement holds for s = 1, 2, . . . , t ≤ m − 1.

Firstly, denote by u a codeword with support S = {i1, i2, . . . , it+1}. Let u′ be the word
obtained from u by changing uit+1 into 0 and ū the word obtained by deleting the it+1

component of u. Let S1 = S\{it+1}. Therefore,

det(N + diagm[u]) = det(N + diagm(u′)) + uit+1 det(N{it+1} + diagm−1[ū])

= det(N) +
∑

i∈S1

ui det(N{i}) + · · · +
(

∏

i∈S1

ui

)

det(NS1 )

+ uit+1

(

det(N{it+1}) +
∑

i∈S1

ui det(N{i,it+1}) + · · ·

+

(

∏

i∈S1

ui

)

det(N{S1,it+1})
)

= det(N) +
∑

i∈S

ui det(N{i}) + · · · +
(

∏

i∈S

ui

)

det(NS),

yielding the result. �

4.1. Case I: k = 0. Let C be a linear code over R with the generator matrix G of
type (n; k1, k2, d) and let S = {i1, i2, . . . , is} ⊆ {1, 2, . . . , k1}. Consider an element a =

(a1, a2, . . . , an) ∈ Rn, where ai ∈ R\{−1 + bu, 1 + bu : b ∈ Fq} if i ∈ S, and ai ∈ {−1, 1}
otherwise. Define

Ca = {(a1c1, a2c2, . . . , ancn) | (c1, c2, . . . , cn) ∈ C}.

The generator matrix Ga of Ca is obtained from G by multiplying its jth column by aj

for j ∈ {1, 2, . . . , n}. Let N = GGT and N′ = GaGT
a . Then

N′ = GaGT
a = N + diagk1+k2

[u],

where u = (a2
1 − 1, a2

2 − 1, . . . , a2
k1
− 1, 0, . . . , 0).

THEOREM 4.2. Keep the notation as above. Let t be a nonnegative integer less

than k1 + k2. Suppose that det(NI) ∈ (u) for any I ⊆ {1, 2, . . . , k1 + k2} with 0 ≤ #I ≤ t.
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Suppose there exists a subset S of {1, 2, . . . , k1}with size t + 1 such that det(NS) ∈ R\(u).
Then Ca is a Euclidean LCD code of length n over R. In particular, if aj < (u) for

1 ≤ j ≤ n, then Ca is a Euclidean LCD code over R of type (n; k1, k2, d).

PROOF. From the discussion above and Lemma 4.1,

det(N′) = det(GaGT
a ) = det(N + diagk1+k2

[u])

= det(N) +
∑

i∈S

ui det(N{i}) + · · · +
(

∏

i∈S

ui

)

det(NS)

= Z + U,

where U = (
∏

i∈S ui) det(NS) is a unit in R and Z = det(N′) − U is a zero divisor in
R since every component of Z is a zero divisor from the assumption of the theorem.
Thus, det(N′) ∈ R∗ and Ca is a Euclidean LCD code over R from [9, Lemma 2.3] and
Theorem 2.2. In particular, if aj < (u) for j ∈ {1, 2, . . . , n}, then Ca is equivalent to the
code C by the definition. �

THEOREM 4.3. Let C be a linear code of type (n; k1, k2, d) over R with q a prime power

(q > 3). Then there exists a Euclidean LCD code C′ which is equivalent to C over R.

PROOF. It is sufficient to consider the case when the code C is not Euclidean LCD.
Let C be a linear code over R with the generator matrix G of type (n; k1, k2, d). Then
det(GGT ) is a zero divisor in R from [9, Lemma 2.3] and Theorem 2.2.

Let N = GGT . There exists a nonnegative integer t less than k1 + k2 such that
det(NI) ∈ (u) for any I ⊆ {1, 2, . . . , k1 + k2} with 0 ≤ #I ≤ t, and det(NS) ∈ R\(u) with
S ⊆ {1, 2, . . . , k1 + k2} of size t + 1. Since q > 3, the set R∗\{1 + bu,−1 + bu} , ∅

with b ∈ Fq. Let C′ = Ca, choosing aj ∈ R∗\{−1 + bu, 1 + bu} if j ∈ S and aj ∈ {−1, 1}
otherwise. The desired result follows from Theorem 4.2. �

COROLLARY 4.4. Let q be a prime power with q > 3. A Euclidean LCD code over R of

type (n; k1, k2, d) exists if there is a linear code over R of type (n; k1, k2, d). In particular,

if p = 2, then a q-ary Euclidean LCD code with parameters [2n, 2k1 + k2, d] exists if

there is a linear code over R of type (n; k1, k2, d).

4.2. Case II: 0 < k < e and (pe−k + 1) | (pe − 1). Again, let C be a linear code over
R with the generator matrix G of type (n; k1, k2, d), where q = pe is a positive power of
a prime number p. Let S = {i1, i2, . . . , is} ⊆ {1, 2, . . . , k1}. To simplify the notation we
set α = (pe − 1)/(pe−k

+ 1). Consider the element a = (a1, a2, . . . , an) ∈ Rn with ai ∈

R\{b + du : b ∈ (F∗q)α, d ∈ Fq} if i ∈ S and ai ∈ (F∗q)α otherwise. Define

Ca = {(a1c1, a2c2, . . . , ancn) | (c1, c2, . . . , cn) ∈ C}

and define the generator matrix Ga of Ca as before. Let N̂ = G(G(pe−k))T and N̂′ =

Ga(G(pe−k)
a )T . Then

N̂′ = Ga(G(pe−k)
a )T

= N̂ + diagk1+k2
[u′],
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where u′ = (ape−k
+1

1 − 1, a
pe−k
+1

2 − 1, . . . , a
pe−k
+1

k1
− 1, 0, . . . , 0).

THEOREM 4.5. Keep the notation as above. Let t be a nonnegative integer less

than k1 + k2. Suppose that det(N̂I) ∈ (u) for any I ⊆ {1, 2, . . . , k1 + k2} with 0 ≤ #I ≤ t.

Suppose there exists a subset S of {1, 2, . . . , k1}with size t + 1 such that det(N̂S) ∈ R\(u).
Then Ca is a k-Galois LCD code of length n over R. In particular, if aj < (u) for

1 ≤ j ≤ n, then Ca is a k-Galois LCD code over R of type (n; k1, k2, d).

PROOF. Again from Lemma 4.1,

det(N̂′) = det(Ga(G(pe−k)
a )T ) = det(N̂ + diagk1+k2

[u′])

= det(N̂) +
∑

i∈S

ui det(N̂{i}) + · · · +
(

∏

i∈S

ui

)

det(N̂S).

It is easy to check that det(N̂′) ∈ R∗ from the assumption of the theorem. Thus, Ca is
a k-Galois LCD code over R from [9, Lemma 2.3] and Theorem 2.2. In particular, if
aj < (u) for j ∈ {1, 2, . . . , n}, then Ca is equivalent to the code C by the definition. �

THEOREM 4.6. Let C be a linear code of type (n; k1, k2, d) over R (α > 1). Then there

exists a k-Galois LCD code C′ which is equivalent to C over R.

PROOF. It is sufficient to consider the case when the code C is not k-Galois LCD.
Let C be a linear code over R with the generator matrix G of type (n; k1, k2, d). Then
det(G(G(pe−k))T ) is a zero divisor in R from [9, Lemma 2.3] and Theorem 2.2.

Let N̂ = G(G(pe−k))T . There exists a nonnegative integer less than k1 + k2 such that
det(N̂I) ∈ (u) for any I ⊆ {1, 2, . . . , k1 + k2} with 0 ≤ #I ≤ t, and det(N̂S) ∈ R\(u) with
S ⊆ {1, 2, . . . , k1 + k2} of size t + 1. Since α > 1, the set

R∗\{b + du | b ∈ (F∗q)α, d ∈ Fq} , ∅.

Thus, let C′ = Ca by choosing ai ∈ R∗\{b + du : b ∈ (F∗q)α, d ∈ Fq} if i ∈ S and ai ∈

(F∗q)α otherwise. The desired result follows from Theorem 4.5. �

COROLLARY 4.7. Let α > 1. A k-Galois LCD code over R of type (n; k1, k2, d) exists if

there is a linear code over R of type (n; k1, k2, d). In particular, if p = 2, then a q-ary

k-Galois LCD code with parameters [2n, 2k1 + k2, d] exists if there is a linear code

over R of type (n; k1, k2, d).

REMARK 4.8. Suppose e is even and k = e/2. Then for a linear code C of type
(n; k1, k2, d) over R with pk > 2, there exists a Hermitian LCD code C′ which is
equivalent to C over R.

In other words, Theorems 4.3 and 4.6 generalise the results of [1, Corollaries 13,
18], concerning the constructions of Euclidean and Hermitian LCD codes over Fq, to
the k-Galois LCD codes over the chain ring R. Furthermore, Theorems 4.3 and 4.6
also generalise the results of [7, Theorem 4.8] introduced in [1].

It could be interesting to explore the possible connection between k-Galois LCD
codes and linear codes over different rings, such as R = Fq[u]/(uk). The hull of the
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k-Galois linear codes, an extension of k-Galois LCD codes, over R or a finite chain
ring is also a topic of interest.
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