
Weighted RAIM for APV:
The Ideal Protection Level

Carl D. Milner and Washington Y. Ochieng

(Imperial College London)
(Email : w.ochieng@imperial.ac.uk)

International standards require the use of a weighted least-squares approach to onboard
Receiver Autonomous Integrity Monitoring (RAIM). However, the protection levels de-

veloped to determine if the conditions exist to perform a measurement check (i.e. failure
detection) are not specified. Various methods for the computation of protection levels exist.
However, they are essentially approximations to the complex problem of computing
the worst-case missed detection probability under a weighted system. In this paper, a novel

approach to determine this probability at the worst-case measurement bias is presented.
The missed detection probabilities are then iteratively solved against the integrity risk re-
quirement in order to derive an optimal protection level for the operation. It is shown that

the new method improves availability by more than 30% compared to the baseline weighted
RAIM algorithm.
A version of this paper was first presented at the US Institute of Navigation (ION) GNSS

2009 Conference in Savannah, Georgia.
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1. INTRODUCTION. Air navigation performance is specified in terms of
accuracy, integrity, continuity and availability, the last one being a function of the
first three being met (ICAO, 2006). Integrity is the most critical due to its link to
safety and therefore, is the most stringent of the requirements. The integrity risk
specification for aircraft approaches cannot be met by stand-alone GPS and as such
integrity monitoring is required. Integrity monitoring may be provided at the system
level such as Satellite or Ground Based Augmentation Systems (SBAS/GBAS) or at
the sensor level known as Receiver Autonomous Integrity Monitoring (RAIM)
(RTCA, 2006). Specifications for RAIM have been developed with the view that
they may be used as a back-up to WAAS/EGNOS or other Satellite-Based Augmen-
tation Systems (SBAS). Ideally RAIM should be used for all applications as it pro-
vides the most localised determination of possible failures.

The baseline RAIM algorithm is composed of three phases, protection level com-
putation, fault detection and fault exclusion. The protection level computation
ascertains whether the conditions exist to perform fault detection with sufficient
power. It is in essence a performance safeguard. Fault detection is a safeguard of
the correct function of the system and ensures that measurements do not contain
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significant failures. It is achieved by comparing a test statistic with a threshold
derived from the continuity requirements. The required Probability of Missed
Detection (PMD) for this process, which relates to the integrity risk, is accounted for
by the protection level and not within the fault detection procedure itself when uti-
lising a threshold defined in this manner. Finally, exclusion of the failed satellite from
the solution may be possible in the event of a significant failure.

GPS with RAIM operations are currently being used for en-route and, in some
states, non-precision approach (NPA) operations. However, more stringent opera-
tions such as APV-I are unable to be met using the baseline weighted least squares
RAIM algorithm (RTCA, 2006) as high protection levels limit availability. Its use as
a supplemental system in more demanding phases of flight would bring a significant
operational benefit. This could alleviate would-be outages of the regional SBAS
available to the user. Potentially, improved RAIM could also be of great benefit to
regions without an operational SBAS in order to meet the international specifications
for APV-I and APV-II. This could enable precision approach procedures to be flown.

The rest of this paper is structured as follows. Section 2 discusses one deficiency
of RAIM algorithms and defines the research problem. The system model is then
introduced in section 3 and the weaknesses of existing methods analysed. A worst-
case search is developed in section 4, thereby enabling the specification of the iter-
ation procedure for the ideal VPL in section 5. The results are presented in section 6
highlighting the improvement over traditional techniques. Section 7 discusses the
impact of the research and future work.

2. RAIM PROTECTION LEVELS. There have been a number of recent
publications relating to novel ways of improving RAIM, particularly in providing
higher integrity and hence service availability (Hwang and Brown, 2005; Lee, 2007).
One aspect which has not captured the attention of researchers in recent years is the
computation of an optimal protection level. Protection levels are used to guarantee
the capability of the detection (or indeed exclusion) function to provide sufficient
integrity. The protection levels employed today appear, on the basis of citation
(Angus, 2007; Ober, 1998), to be primarily those of Brown and Chin (1998) and
Walter and Enge (1995). The conservative Brown and Chin bound is guaranteed
to protect against potential biases with the required integrity risk. The Walter and
Enge bound, although at a lower more realistic level, may potentially be susceptible
to biases which cause the required integrity risk to be exceeded.

Analyses performed over the service volume (Ochieng et al, 2003) have shown that
when using the conventional Brown and Chin protection level, RAIM is unable to
meet the requirements of APV-I due to low availability in most regions. This is in part
due to intrinsic limitations of the current GPS but may also be a consequence of the
conservatism of the protection level employed. This conservatism is borne of both the
failure bias ambiguity and the correlation between the test statistic and position error
domains. For each geometrical configuration there is a worst-case value for the
failure magnitude or bias on a satellite’s measurements. Determining this value is not
simple and involves the evaluation of the integrity risk at a number of biases. The
alternative approach taken in the derivation of protection levels is to use a Minimum
Detection Bias (MDB) which is sure to protect against larger biases, with the required
probability. This MDB is then projected to the position domain to find the protection
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level. In order to protect against biases smaller than the MDB, an additional buffer
term is included. Sensitivity analyses have shown that the true Worst-Case Bias
(WCB) is usually much lower than the MDB and as such its use is counter to the
optimisation of performance (Milner, 2009).

In order to determine an optimised value, referred to as the ideal protection level,
the integrity risk at the WCB may be determined for different protection levels until
the integrity requirement is matched. In the following section the system model is
introduced including the mathematical formulation of existing protection levels.

3. SYSTEM MODEL. The foundation of the weighted least-squares RAIM
formulation is the assumption of an over-determined system of linear equations re-
lating the position solution to the measurements after linearization.

z=Hx+e (1)

where:
z : n – dimensional vector of measurements
H : nr4 – dimensional geometry matrix defined in the local horizontal frame, with

the condition n>4

x : 4 – dimensional vector of unknowns (position and clock bias)
e : n – dimensional vector of measurement errors

It is assumed that the measurement errors may be modelled as the sum of the
measurement noise v and measurement biases b :

e = b + v (2)

and that the underlying measurement noise vk is normally distributed with diagonal
(independent errors) covariance matrix S as follows:

vk�N(0,S) (3)

The linear equation (1) is assumed to have been normalised by down-weighting the
measurements subject to their estimated measurement variances in (3). The resulting
measurement errors v are then uncorrelated and of equal variance.

The weighted least squares estimate has been derived as follows:

x̂xWLS = HTWH
� �x1

HTWz (4)

where the down-weighting is defined by setting W to the inverse of S, W=Sx1. The
position error, the difference between the navigation position solution x̂xWLS and the
true position xtrue may be defined from applying the WLS operator to the measure-
ment error vector.

e = x̂xWLSxxtrue = HTWH
� �x1

HTWe (5)

The test statistic is defined as the magnitude of the parity vector|p|, which is equiva-
lent to the weighted least-squares residual defined in (Walter and Enge, 1995).

p=Pz=Pe (6)

where P is the parity matrix (Sturza, 1988).
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Abias in the system is expressed simply by substituting a bias vector into equations 4
and 5 for the position (ebias) and parity (pbias) spaces.

ebias = HTWH
� �x1

HTWb (7)

pbias=Pb (8)

The research presented in this paper addresses the single satellite failure ; interested
readers of the multiple failure solution may refer to (Milner, 2009). The bias vector is
then formed of a single scalar bias on the transgressing satellite and zeroes for each
other index.

An important relation is the ratio of a measurement bias projected to both position
and parity domains. This relation holds in the absence of measurement noise and is
defined by the slope parameter as shown in Figure 1.

slopei =
ebias

pbias
=

HTWH
� �x1

HTW
h i

i, 3

P½ �i, 3
(9)

However, in the presence of noise, importantly the stochastic components of the
position error and parity vector have known variances under the model, defined as
follows:

Cov eð Þ= HTWH
� �x1

(10)

Cov pð Þ=PPT=Inx4 (11)

The operational requirements for aviation (RTCA DO-229D) are specified as
functions of the probability of missed detection, alert limit and a false alarm rate.
This false alarm rate may be used to derive the threshold (T) for the parity test
statistic used. It is well-known that for vertically guided approaches, the vertical
requirement is most critical and so is considered in this paper. The horizontal case
may be treated similarly (Milner and Ochieng, 2009).

In order to derive the most commonly used Vertical Protection Level (VPL) of
Brown and Chin, the first step is to compute the Minimal Detectable Bias (MDBp) in
the parity domain. The PMD, which is set by the RTCA at 10x3 by factoring the

Figure 1. ET Diagram.
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probability of a failed satellite 10x4 into the integrity risk requirement of 10x7,
is used as input to an inverse non-central chi-squared distribution function as
follows:

MDBp=
ffiffiffi
l

p
(12)

l=Qx1 PMD, nx4,Tð Þ (13)

such that :

PMD=Q nx4,T, lð Þ=
Z T

0
x2pdf nx4, l, tð Þ dt:

This MDBp shown in Figure 2 represents the smallest bias transformed into
the parity domain which may remain undetected with a probability equal to the
PMD. Therefore larger biases are guaranteed not to lead to a PMD greater than
the requirement. The calculation of VPL then projects this bias into the position
domain by use of the slope parameter, as clearly demonstrated in Figures 1 and 2.

MDBe = slopeirMDBb (14)

However, this position error value is not guaranteed to provide a protective limit
on the PMD because biases less than the MDBp may result in more of the probability
density lying in the critical missed detection region, as may be inferred from Figure 1.
Therefore an additional term is required which protects against the variation in
position error (Angus, 2007). This is simply the one-sided confidence interval of the
position error at the significance level of the PMD.

k+=kMDrCov(e)3, 3 (15)

This leads to the definition of the following Brown and Chin (1998) protection
levels :

VPLBC = MDBe (16)

VPLBC+=MDBe+k+ (17)

Figure 2. Existing protection levels.
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The Walter and Enge (1995) bound is defined similarly to equation 17. However,
the threshold (instead of the MDB) is projected to the position domain.

ebiasT = slopeirT (18)

VPLWE=ebiasT+k+ (19)

Of the existing VPLs stated above, only the VPLBC+ bound is guaranteed to pro-
tect the user with the required certainty under the model assumptions. As shown in
the results section, the use of this protection level results in low availability. However,
the VPLBC and VPLWE bounds may potentially under-estimate the risk associated by
not accounting for the true Worst Case Bias (WCB) which equates to the highest
integrity risk. The following section begins the proposed alternative to the approxi-
mate VPLs defined above. These protection levels are shown in Figure 2, though it
should be noted that although VPLBC+ must always be the largest, VPLWE may
exceed VPLBC.

4. WORST CASE SEARCH. It is known that in the optimally weighted sys-
tem, the parity vector and position error vector are uncorrelated (Ober, 2003;
Hwang and Brown, 2005) and as their joint distribution is multi-normal, are inde-
pendent (Johnson, 1972). Therefore, the PMD may be expressed as the product of
the probability of positioning failure PPF and the probability of no alert.

PMD=PPFrPNA

=P(jej>VAL)rP(jpj<
ffiffiffiffi
T

p
)

(20)

These two probabilities may be expressed in analytical form for a known bias vector
b, consisting of a single bias scalar B on the failed satellite index.

PPF=erfc
VALx HTWH

� �x1
HTWb

���
3

Cov(e)j3, 3

2
4

3
5 (21)

PNA=x2(T, nx4,Pb) (22)

The PMD may then be computed directly and efficiently using equations 20–22 for a
given bias B. The challenge faced in identifying the Worst Case Bias (WCB) is to
compute the PMD and thus integrity risk at a number of points whilst maintaining a
short computation time.

As stated above, biases greater than the MDB are protected against with the re-
quired certainty. An additional lower bound may also be defined, known as the
Minimal Hazardous Bias (MHB) (Ober, 2003). This parameter is the smallest bias
which has the potential to cause a positioning failure with a probability of 0.001.

MHB = VPLxkPMDCov(e)3, 3

HTWHð Þx1
HTWb

�� �� where kPMD is the k-factor associated with a probability

of 0.001.
The MHB is a function of the VPL or may be expressed for the VAL. When

performing the search for the ideal VPL in section 5, the role of an arbitrary VPL
takes form. At this stage, it is important to note that if the MHB exceeds the MDB,
the VPL used is guaranteed to protect users with the required confidence. Otherwise,
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the range of biases [MHB, MDB] forms an interval over which the integrity risk could
exceed the required level as shown in Figure 3. A search for the WCB is performed
over this range.

Sensitivity analyses have shown that evaluating at 1000 biases within the [MHB,
MDB} range is more than sufficient to find the worst case integrity risk with an error
of less than 0.1% (Milner, 2009). To achieve this resolution a three-stage search is
used with 16 evaluation points as shown in Figure 3. This results in a resolution of
1024 but requires only 48 evaluations of the integrity risk. In order to ensure the
reliability of the search process, a test for multiple discreet peaks in the integrity risk
function is performed prior to the search and a full 1024 point search undertaken if
this fails. Further details on the results of this sensitivity analysis are described in
(Milner, 2009).

5. IDEAL VPL. The previous section dealt with the computation of a worst case
integrity risk at the WCB for an arbitrary VPL. Therefore, a one-to-one mapping
exists between the VPL and the integrity risk as shown in Figure 4. The curve
shown in Figure 4 is unique to each satellite-to-user geometry. Generally the VAL
does not match the required integrity risk (e.g. 10x7). The proposed ideal VPL is
defined as the VPL which matches exactly the required integrity risk.

Once again a search procedure is executed to obtain the ideal VPL. The procedure
begins with an improbably large VPL of 2000 m and halves the search step by
checking if the corresponding integrity risk exceeds the required level. This process is
accelerated by a number of additional checks to the WCB search. Firstly, the MHB is
compared to the MDB to determine whether any biases have the potential to be non-
compliant. This is usually the case for the initial iterations when the VPL and thus
MHB are large.

To complement the use of MHB and MDB at high VPLs, two additional param-
eters (MHB’ and MDB’) are defined based on a PMD of 0.0011/2. In the event that

Figure 3. Worst-case search.
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MHB1/2 does not exceed MDB1/2, the integrity risk requirement is surpassed by the
integrity risk associated with the range [MHB1/2, MDB1/2] and as such the current
value of the VPL is too small.

If the two conditions described above are inconclusive, the WCB search is per-
formed to identify the worst case integrity risk. This process may also be cut short, if
an integrity risk evaluation exceeds the required level.

The ideal VPL iteration procedure continues until the required accuracy in the
VPL value reaches the required limit (e.g. 1 cm). The result is an optimised protection
level for the geometry provided and the optimally weighted least squares positioning
solution. The benefit of the ideal VPL is that it may be used to test the existing
protection levels outlined in section 4 but also could potentially be employed in a real

Figure 4. VPL vs. Integrity Risk.

Figure 5. Amsterdam Schipol GPS L1.
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receiver architecture. A comparison of the ideal VPL and existing approaches is given
in the following results section.

6. VPL RESULTS. To assess the performance provided by the ideal VPL and
existing techniques, each is computed over 24 hours at major international airports.
The results are generated for the GPS L1 signal and the GPS L1/L5 combination to
assess both APV-I and APV-II availability. Figures 5–7 show the results for GPS

Figure 6. JFK GPS L1.

Figure 7. Sydney GPS L1.
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L1 at Amsterdam Schipol, JFK and Sydney International. It is clear from the fig-
ures that the availability of APV-I using the VPLBC+ method is much lower than
the other traditional VPLs and the ideal VPL. Of particular interest is the apparent
greater availability provided by the VPLBC bound in comparison to the ideal VPL.
This is due to the VPLBC underestimating the true integrity risk during some peri-
ods. Therefore, there is an associated integrity risk with using this protection level
in real operations. This is also true of the VPLWE bound which was found to cause
an integrity risk in a small percentage of cases.

Figure 8. Amsterdam Schipol GPS L1/L5.

Figure 9. JFK GPS L1/L5.
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The results of dual frequency (L1/L5) tests showed similar results for APV-II
availability as displayed in Figures 8–10. One notable difference is the higher avail-
ability shown by the Walter and Enge (VPLWE). This higher availability is ac-
companied by periods of integrity risk, approximately 1.5% of the total time.

The corresponding results for the dual-frequency Galileo configuration E1/E5 are
shown in Figures 11–13. The results show greater periodicity due to the use of a
Walker constellation and as expected, RAIM availability for APV-I is found to be
100% at each airport. Similarly, high APV-II availability is achieved using the
VPLBC, VPLWE and ideal VPL bounds.

Figure 10. Sydney GPS L1/L5.

Figure 11. Amsterdam Schipol Galileo E1/E5.
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7. CONCLUSIONS AND FUTURE WORK. The performance of the
ideal VPL has been shown to exceed that of the existing protection levels. Existing
methods are either excessively conservative (VPLBC+) or open to potential integrity
risks surpassing the requirement (VPLBC and VPLWE). Therefore, under a weighted
least squares system which is optimally weighted, the ideal VPL is an optimised sol-
ution. The potential benefit of the ideal VPL is to open new precision approach
capabilities in regions of the globe unaided by an SBAS or as a back-up to SBAS in
Europe and CONUS. Enhanced performance is also to be expected for the LPV200

Figure 12. JFK Galileo E1/E5.

Figure 13. Sydney Galileo E1/E5.
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operational category. Extensive results relating to a combined constellation scen-
ario, two-failure scenario and custom failure model are presented in (Milner, 2009).
Further work is underway to investigate potential applications to NIORAIM
(Hwang and Brown, 2005) to combine the availability maximising properties of
each method.
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