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instability in a granular plane Couette flow:

analytical solution, comparison with
numerics and bifurcation

PRIYANKA SHUKLA AND MEHEBOOB ALAM†
Engineering Mechanics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research,

Jakkur PO, Bengaluru 560064, India

(Received 18 January 2010; revised 26 July 2010; accepted 30 July 2010;

first published online 16 November 2010)

A weakly nonlinear theory, in terms of the well-known Landau equation, has been
developed to describe the nonlinear saturation of the shear-banding instability
in a rapid granular plane Couette flow using the amplitude expansion method.
The nonlinear modes are found to follow certain symmetries of the base flow
and the fundamental mode, which helped to identify analytical solutions for the
base-flow distortion and the second harmonic, leading to an exact calculation of
the first Landau coefficient. The present analytical solutions are used to validate
a spectral-based numerical method for the nonlinear stability calculation. The
regimes of supercritical and subcritical bifurcations for the shear-banding instability
have been identified, leading to the prediction that the lower branch of the
neutral stability contour in the (H, φ0)-plane, where H is the scaled Couette
gap (the ratio between the Couette gap and the particle diameter) and φ0 is
the mean density or the volume fraction of particles, is subcritically unstable.
The predicted finite-amplitude solutions represent shear localization and density
segregation along the gradient direction. Our analysis suggests that there is a
sequence of transitions among three types of pitchfork bifurcations with increasing
mean density: from (i) the bifurcation from infinity in the Boltzmann limit to (ii)
subcritical bifurcation at moderate densities to (iii) supercritical bifurcation at larger
densities to (iv) subcritical bifurcation in the dense limit and finally again to (v)
supercritical bifurcation near the close packing density. It has been shown that the
appearance of subcritical bifurcation in the dense limit depends on the choice of
the contact radial distribution function and the constitutive relations. The scalings
of the first Landau coefficient, the equilibrium amplitude and the phase diagram,
in terms of mode number and inelasticity, have been demonstrated. The granular
plane Couette flow serves as a paradigm that supports all three possible types of
pitchfork bifurcations, with the mean density (φ0) being the single control parameter
that dictates the nature of the bifurcation. The predicted bifurcation scenario for the
shear-band formation is in qualitative agreement with particle dynamics simulations
and the experiment in the rapid shear regime of the granular plane Couette flow.
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1. Introduction
The lack of a unified theory for granular materials, a collection of macroscopic

‘dissipative’ particles, for different flow regimes of dilute to dense flows is largely
responsible for a poor understanding of its dynamical behaviour and the related
pattern formation scenario. Over the last 10 years, there has been a surge in
research activity to unveil the pattern formation scenario in various types of granular
flows (such as Couette flow, Poiseuille flow, vibrated bed and inclined chute flow),
especially in the rapid flow regime (Goldhirsch 2003; Aranson & Tsimring 2006). The
granular plane Couette flow is the prototype problem that supports various types
of stationary and travelling wave instabilities as predicted from the linear stability
theory (Alam & Nott 1998) – the related patterns have subsequently been verified
in particle simulations of the plane Couette flow (Conway & Glasser 2004). Another
interesting pattern that appears in a flowing granular material is the ‘shear-band’:
when a granular material is sheared in shear-cell experiments (Savage & Sayed
1984; Mueth et al. 2000; Schall & van Hecke 2010), shearing remains confined to
a narrow localized zone (i.e. a ‘shear-band’ where the shear rate is non-zero) near
the walls and the rest of the material remains almost unsheared (i.e. a ‘plug’ where
the shear rate is close to zero). Such a shear-banding phenomenon, where the shear
rate is non-uniform along the gradient direction in a plane shear set-up, seems to
be generic in wall-driven flows and occurs in a variety of sheared complex fluids:
colloidal suspensions (Hoffman 1972), worm-like micelles (Berret, Porte & Decruppe
1997), lyotropic liquid crystals (Bonn et al. 1998), suspensions of rod-like viruses
(Lettinga & Dhont 2004) and liquid–liquid biphasic systems (Caserta, Simeon &
Guido 2008). One possible origin of shear-banding is bulk instability of the complex
fluid (Greco & Ball 1997; Alam & Nott 1998), the signature of which is implicated
in the ‘non-monotonic’ variation in certain constitutive/rheological field (stress or
dynamic friction) with some hydrodynamic field (shear rate or density) – this is
reminiscent of ‘phase-transition’ in driven systems; see Olmsted (2008) for a review
on shear-banding phenomena. Such shear-banding, wherein the flow undergoes an
ordering transition into alternate layers of dense and dilute regions of low and high
shear rates, respectively, aligned along the gradient direction (i.e. the density bands
are parallel to the flow direction), has also been realized in the molecular dynamics
simulations of granular Couette flow (Tan 1995; Alam & Luding 2003; Khain 2007)
for a range of densities from dilute to dense flows (without gravity) in the rapid flow
regime. A possible theoretical description of shear-banding phenomena in terms of
order-parameter equations is the focus of this paper.

The Ginzburg–Landau-type order-parameter equations have been widely used to
study the bifurcation scenario, nonlinear waves and patterns in fluid mechanics
(Newell, Passot & Lega 1993; Manneville 1990; Cross & Hohenberg 1993). In
condensed matter physics, the complex Ginzburg–Landau equation has been used
to obtain a qualitative (and sometimes quantitative) understanding of a host
of phenomena, namely phase transitions, superconductivity, superfluidity, liquid
crystals, vortex glass and defect turbulence (Cross & Hohenberg 1993; Aranson &
Kramer 2002). Moving from traditional fluid mechanics (Newell et al. 1993) to the
‘dissipative’ granular fluid, it is appropriate to pose the question: can Ginzburg–
Landau-type order-parameter theories be used to probe the pattern formation
scenario in granular flows? In the context of granular fluid, Tsimring & Aranson
(1997) first postulated a complex Ginzburg–Landau equation which is coupled
to mass and momentum balance equations. This set of equations, called order-
parameter theory, was then shown to reproduce the complete phase diagram of

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

10
00

41
43

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112010004143
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patterns (e.g. squares, stripes, hexagons and oscillons) in a shallow vibrated bed
(Umbanhower, Mello & Swinney 1996) – this underscores the success of their
order-parameter theory. Subsequently, they have used this order-parameter theory
to probe the pattern formation scenario in a variety of flowing granular systems;
see the review by Aranson & Tsimring (2006). Despite its success, note that
the foundation of this order-parameter theory of granular fluid is empirical since
the related order-parameter equation has been postulated with fitting parameters
(that vary from one flow to another), which must be obtained from simulation/
experiment.

Against this background, a more pertinent question in this context is as follows: is it
possible to derive the relevant order-parameter equation of granular flows to describe
pattern formation from first principles? Over the last two decades, the well-studied
granular hydrodynamic models have been derived from the dense gas kinetic theory
(Lun et al. 1984; Sela & Goldhirsch 1998; Brey, Santos & Dufty 1998; Garzo & Dufty
1999; Brilliantov & Pöschel 2004). Such hydrodynamic models have been reasonably
successful in describing both the rheology and the flow dynamics of granular materials
in a variety of flow configurations in the rapid shear regime (see Goldhirsch 2003 for a
review). Starting with such continuum models, we could follow the route of nonlinear
stability theory (Stuart 1960; Watson 1960; Reynolds & Potter 1967; Busse 1978;
Newell et al. 1993) to derive the relevant order-parameter equation for describing
the bifurcation scenario and patterns in granular flows. This is precisely what we
have recently done to probe the shear-banding phenomenon in the granular plane
Couette flow via an order-parameter equation: we used the centre-manifold reduction
technique (Carr 1981) to derive the Landau equation (Shukla & Alam 2009).

In the present paper, we develop a weakly nonlinear stability theory for the
same ‘shear-banding’ phenomena using a different method: the amplitude expansion
method of Stuart (1960) and Watson (1960). This is an indirect method to arrive at
the Landau equation and complements our previous effort (Shukla & Alam 2009)
that used a direct method of centre-manifold reduction (Carr 1981). It is important
to understand the difference between the present formalism of amplitude expansion
method and the centre-manifold reduction. The Landau equation is postulated to
hold in the amplitude expansion method, and the Landau coefficients are determined
from the solvability condition of certain inhomogeneous differential equations at
higher order (cubic, quintic, etc.) in perturbation amplitudes. This is in contrast to
the direct method of centre-manifold reduction (Shukla & Alam 2009) wherein the
Landau equation is derived from the evolution equation of the slow mode via its
inner product with the adjoint linear eigenfunction, and the expressions for Landau
coefficients appear in the resultant Landau equation as the coefficients of terms
of appropriate order in perturbation amplitudes. The underlying subtle differences
between the two methods will be made clear in § 4. One of the goals of the present
paper is to show that both the direct and indirect methods of nonlinear stability lead
to the same order-parameter equation, with the same expression for the first Landau
coefficient for the present problem of granular shear flow. This, in turn, establishes
an equivalence between these two seemingly different methods of nonlinear stability
for granular shear flows (which are much more complicated than incompressible
shear flows of Newtonian fluids). Put differently, it should be mentioned that the
weakly nonlinear stability theories for compressible Newtonian fluids (e.g. air)
are very scarce and we have not found any prior work, for example, on the
compressible plane Couette flow (see Malik, Dey & Alam 2008 and references therein).
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Figure 1. Schematic diagram of the plane shear flow between parallel plates. The upper plate
moves with the velocity Uw/2 along the positive x-direction and the lower plate moves with
the same speed in the opposite direction.

The present analysis can also be adapted to probe the nonlinear stability of
compressible shear flows.

This paper is organized as follows. The continuum equations and boundary
conditions are presented in § 2. The nonlinear perturbation equations and the related
linear adjoint system are formulated in § 3. The methodology of the amplitude
expansion technique is discussed and compared with the centre-manifold reduction
technique in detail in § 4. We show that the first Landau coefficients (which determine
the type of bifurcation that the flow is supposed to undergo at the onset of pattern
formation) obtained from both these methods are identical. The symmetries of the
linear and nonlinear modes are discussed in § 5. A spectral-based numerical scheme has
been developed to solve the related nonlinear stability problems as detailed in § 6. The
symmetries of the underlying nonlinear modes have helped us to identify analytical
solutions for the second harmonic, the base-flow distortion and the distortion of the
fundamental mode, leading to an exact calculation of the first Landau coefficient
– these analytical solutions and their comparison with numerical solutions are
detailed in §§ 7.1–7.3. The comparison between numerical and analytical solutions
validates our spectral-based numerical scheme, which is another outcome of this
paper. The predictions of our analytical order-parameter theory are discussed in
§ 8.1 (linear shear-banding instability), § 8.2 (equilibrium amplitude and the nature
of bifurcation), § 8.3 (phase diagram for nonlinear stability), § 8.4 (finite amplitude
solutions) and § 8.5 (scaling of the first Landau coefficient, equilibrium amplitude and
phase diagram). The influence of different forms of the contact radial distribution
function and the constitutive relations on our predictions is discussed in §§ 9.1 and
9.2, respectively, along with a summary of all possible bifurcation scenarios for the
nonlinear shear-banding instability in the granular plane Couette flow in § 9.3. A
qualitative comparison of our predictions on the bifurcation scenario with particle
simulations and experiment is given in § 9.4. We summarize the major findings of this
paper and suggest future extensions of the present order-parameter theory in § 10.

2. Plane Couette flow: continuum equations and boundary conditions
Consider a flow of granular particles between two infinite parallel plates at

y = ±h/2, where h is the gap between the plates as shown in figure 1; both the
plates are moving in the opposite direction along the x-direction with the velocity
Uw/2. Here, the overbar denotes a dimensional quantity. The physical state of the
particles of the granular system under study is that the particles are monodisperse,
smooth, spherical and inelastic with the particle diameter d and the coefficient of
restitution e. Here � = mn= ρφ is the mass density, m is the particle mass, n is the
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number density of particles, ρ is the material density (mass density of individual
particles), and φ is the volume fraction of the particles or the solid fraction; u = (u, v)
is the bulk (coarse-grained) velocity and T is the granular temperature (i.e. fluctuation
kinetic energy of particles).

The boundary conditions are chosen to be no-slip velocity and zero heat flux:
u(y = ±h/2) = ±Uw/2, v(y = ±h/2) = 0 and dT /dy(y = ±h/2) = 0. For the purposes
of non-dimensionalization, we use the reference length, velocity and time scales as h,
Uw and h/Uw , respectively, and the material density ρ is used to non-dimensionalize
the mass density � wherever it appears; see Alam & Nott (1998) and Alam, Shukla &
Luding (2008) for related details. In the following, all ‘unbarred’ quantities are
dimensionless.

2.1. Streamwise-independent equations

The full tensorial form of balance equations and the constitutive relations for the
stress tensor, the granular heat flux and the rate of collisional dissipation can be found
in our previous paper (Alam et al. 2008). Since the focus of this paper is on the shear-
banding instability, which originates from a specific form of perturbations having
no variation along the streamwise direction (x), here we start with the simplified
form of balance equations that do not depend on the streamwise coordinate. In the
dimensionless form, the streamwise-independent (∂/∂x(·) = 0) balance equations for
mass, momentum and granular energy, respectively, are

∂φ

∂t
+ φ

∂v

∂y
+ v

∂φ

∂y
= 0, (2.1)

φ

[
∂

∂t
+ v

∂

∂y

]
u =

1

H 2

∂

∂y

(
µ

∂u

∂y

)
, (2.2)

φ

[
∂

∂t
+ v

∂

∂y

]
v =

1

H 2

[
−∂p

∂y
+

∂

∂y

(
2µ

∂v

∂y
+ λ

∂v

∂y

)]
, (2.3)

dim

2
φ

[
∂

∂t
+ v

∂

∂y

]
T =

1

H 2

∂

∂y

(
κ

∂T

∂y

)
− p

∂v

∂y

+ 2µ

[(
∂v

∂y

)2

+
1

2

(
∂u

∂y

)2

+
λ

2µ

(
∂v

∂y

)2
]

− D. (2.4)

Here, H = h/d is the ratio between the Couette gap (h) and the particle diameter (d),
called the ‘scaled Couette gap’, which can equivalently be thought of as the inverse of
the dimensionless particle diameter i.e. H = (d/h)−1; ‘dim’ refers to the dimensionality
of the problem (dim= 3 for spheres and 2 for disks). The dimensionless transport
coefficients are

p(φ, T ) = f1(φ)T (pressure),

µ(φ, T ) = f2(φ)
√

T (shear viscosity),

ζ (φ, T ) = f3(φ)
√

T (bulk viscosity),

κ(φ, T ) = f4(φ)
√

T (granular thermal conductivity),

D(φ, T ) = f5(φ, e)T 3/2 (collisional dissipation rate),

λ(φ, T ) = ζ − 2

dim
µ,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(2.5)
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where fi(.) values are dimensionless functions of the solid fraction:

f1(φ) = φ(1 + 4φχ),

f2(φ) =
5
√

π

96χ

(
1 +

8

5
φχ

)2

+
8

5
√

π
φ2χ,

f3(φ) =
8

3
√

π
φ2χ,

f4(φ) =
25

√
π

128χ

(
1 +

12

5
φχ

)2

+
4√
π

φ2χ,

f5(φ, e) =
12√

π
(1 − e2)φ2χ.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.6)

The contact radial distribution function, χ(φ), is

χ(φ) =
1

1 − (φ/φm)1/3
, (2.7)

where φm corresponds to the maximum solid fraction at a random close packing
which is taken to be 0.65 in this work. All results, up to § 8, are presented for (2.7),
but the effect of other choices of χ(φ) on our predictions is discussed in § 9.1. Also,
the effect of different forms of fi values in (2.6) that are valid for hard disks (dim= 2)
is discussed in § 9.2.

It may be noted that we have chosen a Navier–Stokes-order constitutive model
(Lun et al. 1984), which has been used by a number of authors (Alam & Nott 1998;
Forterre & Pouliquen 2002; Alam et al. 2005; Khain 2007) to probe the stability of
various types of granular shear flows. In the expression for the collisional dissipation
D (which is proportional to f5(φ, e) as in (2.6)), some authors (e.g. Garzo & Dufty
1999) have found an additional contribution proportional to ∇ · u, which appears as
a dense gas correction. We have checked that this additional term does not affect the
onset of linear shear-banding instability and it is hence omitted in the present work.
We have also neglected a ‘Dufour-like’ term (∼∇φ) in the expression for the granular
heat flux (see, for example, Lun et al. 1984; Sela & Goldhirsch 1998; Garzo & Dufty
1999) – even though this is a Navier–Stokes-order term, i.e. of the order of the
Knudsen number (Kn), it appears at O(εKn), where ε = (1 − e2) is the inelasticity.
However, it can be easily verified that the shear rate (∼Kn) and the inelasticity cannot
be separated from each other (Kn ∼

√
ε) in a uniform shear flow and, therefore, the

above ‘Dufour-like’ term is likely to be of higher order in terms of the Knudsen
number. In any case, the effect of this additional term on the stability of the uniform
shear flow, along with the effects of spin fields and tangential restitution, was checked
by Gayen & Alam (2006), who showed that this term does not introduce any new
instability in the plane shear flow.

Note that Gayen & Alam (2006) used more general expressions for f1–f4 in (2.6),
which also depend on the restitution coefficient e, having a larger range of validity
in terms of e; for example, the correct expression for f1 for inelastic particles is
f1(φ, e) = φ(1 + 2(1 + e)φχ), with similar expressions for f2–f4. Even with such an
elaborate restitution-coefficient-dependent constitutive model, they reported no new
instability in plane shear flow. Since the present nonlinear analysis is a finite-amplitude
saturation of the underling linearly unstable mode, our contention is that a more
complex restitution-coefficient-dependent constitutive model would not qualitatively
alter our predictions on ‘nonlinear’ shear-banding instability.
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The Navier–Stokes-level constitutive models are strictly valid in the quasi-elastic
limit (e ∼ 1) since certain non-Newtonian effects, such as the normal stress differences
(Sela & Goldhirsch 1998; Alam & Luding 2003, 2005; Chikkadi & Alam 2009),
become prominent at smaller values of the restitution coefficient (i.e. at larger
dissipation levels). Such effects can only be incorporated using Burnett- or super-
Burnett order constitutive models (Sela & Goldhirsch 1998), which we do not consider
here. It should, however, be noted that the nonlinear analysis presented in §§ 3 and 4
can also be easily adapted to non-Newtonian constitutive models and, therefore, our
nonlinear order-parameter theory, as described in §§ 3 and 4, is of general import.

The boundary conditions in the dimensionless form are

u = ±1

2
, v = 0,

dT

dy
= 0 at y = ±1/2, (2.8)

which correspond to zero-slip, zero-penetration and zero heat-flux, respectively. More
general forms of the boundary condition with non-zero slip velocity and/or non-
adiabatic (dT/dy �= 0) walls can be incorporated into the nonlinear stability theory,
but the resulting nonlinear analysis (especially the adjoint problem and the higher
harmonics) becomes very complicated, which we do not discuss in this paper. As
rightly pointed out by one reviewer, the walls can act as sources or sinks of granular
(fluctuation) energy, which might affect the nonlinear saturation of the shear-banding
instability, thereby modifying the structure and the spatial position of shear-bands
within the Couette cell. The effect of such slip boundary conditions with non-adiabatic
walls on the ‘linear’ shear-banding instability has been discussed by Alam & Nott
(1998), to which we refer the readers for related details. In this paper, as a first
step towards developing an order-parameter theory, we restrict ourselves to simpler
boundary conditions (2.8) that admit analytical solutions even for the nonlinear
problem and the related bifurcation scenario remains perfect (Alam 2005; Alam
et al. 2005), leaving aside the related imperfect problem with realistic boundary
conditions (Chikkadi & Alam 2009) to a future work.

2.2. Steady plane Couette flow: base state

The stability of the flow which we want to study is the steady, fully developed, two-
dimensional flow between two infinite parallel moving plates. Under these assumptions,
we can write the base state solution as

φ = φ0(y), u = (u0(y), 0), T = T 0(y). (2.9)

With no-slip and adiabatic boundary conditions (2.8), the resulting base flow equations
admit the following solution of uniform shear with constant density and granular
temperature:

u0(y) = y, v0 = 0, φ0 = constant, T 0(φ0) = constant =
f2(φ

0)

f5(φ0, e)
, (2.10)

where f2(φ
0) and f5(φ

0, e) are given by (2.6). Note that the pressure (p0) and the
shear stress [µ0(du0/dy)] are also constants for the steady plane Couette flow. In the
following discussion, we use density or solid fraction or volume fraction to refer to
the same quantity φ.

3. Nonlinear disturbance equations and linear adjoint system
The stability of the basic flow is examined by decomposing all the flow variables

and transport coefficients into a base flow part and a finite-amplitude perturbation:
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φ(y, t) = φ0(y)+φ′(y, t), where the superscript 0 denotes the base state and the prime
denotes its perturbation. The transport coefficients are analytic functions of density
and temperature, and hence can be written as a Taylor series around the base state,
i.e.

p(φ, T ) = p0 +p0
φφ

′ +p0
T T ′ +

1

2!

(
p0

φφφ
′2 +p0

φT φ′T ′ +p0
T T T ′2 +p0

T φT
′φ′)+ · · · , (3.1)

where the subscripts denote the respective partial derivatives, and the superscript 0
implies that the quantity is to be evaluated at the base flow conditions. Inserting the
Taylor series expansions of all hydrodynamic variables and transport coefficients into
(2.1)–(2.4) and subtracting the base flow equations, we obtain nonlinear perturbation
equations, correct up to cubic order, which can be put in the operator form:(

∂

∂t
− L

)
X = N2(X, X; ∂t ) + N3(X, X, X). (3.2)

Here, L is the linear operator, N2 and N3 are the quadratic and cubic nonlinear
terms, respectively, and X = (φ′, u′, v′, T ′)T denotes the disturbance vector. The
explicit forms of N2 and N3 are given in Appendix A (Appendix A is part of
the supplementary material available at journals.cambridge.org/flm); note that in
addition to standard quadratic terms involving disturbance variables and their spatial
derivatives, N2 also contains terms involving time derivatives of X, which originate
from inertial terms in momentum and energy equations as seen in (A3), (A5) and
(A7). The linear stability operator is given by

L =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 −φ0 ∂

∂y
0

µ0
φ

φ0H 2

∂

∂y

µ0

φ0H 2

∂2

∂y2
−1

µ0
T

φ0H 2

∂

∂y

−p0
φ

H 2φ0

∂

∂y
0

(2µ0 + λ0)

H 2φ0

∂2

∂y2

−p0
T

H 2φ0

∂

∂y

2
(
µ0

φ − D0
φ

)
φ0dim

4µ0

φ0dim

∂

∂y
− 2p0

φ0dim

∂

∂y

2

φ0dim

(
κ0

H 2

∂2

∂y2
+ µ0

T − D0
T

)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(3.3)

The boundary conditions can be written in the matrix form as

BX(y = ±1/2) ≡

⎛⎜⎜⎜⎜⎜⎝
0 0 0 0

0 1 0 0

0 0 1 0

0 0 0
∂

∂y

⎞⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎝

φ′

u′

v′

T ′

⎞⎟⎟⎟⎠ = 0, (3.4)

with the boundary operator B as defined above.

3.1. Linear adjoint system

Neglecting nonlinearities, the linear stability equations can be presented as

∂X

∂t
= LX, with BX = 0. (3.5)
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The adjoint equation for this linear stability operator (L) is

∂X†

∂t
= L†X†, (3.6)

where X† = [φ†, u†, v†, T †]T is the adjoint eigenfunction and L† is the adjoint
operator, which is calculated from the definition of the adjoint operator

〈X†, LX〉 = 〈L†X†, X〉. (3.7)

In the above, the standard inner product has been defined as

〈Y (y), Z(y)〉 =

∫ 1/2

−1/2

Ỹ (y)Z(y) dy =

∫ 1/2

−1/2

4∑
i=1

ỹi(y)zi(y) dy, (3.8)

for two complex-valued vector functions Y (y) = [y1, y2, y3, y4] and Z(y) = [z1, z2, z3, z4]
on the interval −1/2 � y � 1/2, with the tilde denoting a complex conjugate quantity.

With the above definitions, the form of the adjoint operator can be shown to be
related to the linear operator via

L† ≡ LT(∂/∂y → −∂/∂y, ∂2/∂y2; φ0, T 0, . . .), (3.9)

and the adjoint boundary conditions are

BX† = 0, (3.10)

with B being given by (3.4).

3.2. Analytical solutions for fundamental mode and its adjoint

Since the linear problem is invariant under arbitrary time translation t 
→ t +constant,
the normal mode solutions with complex frequency c are sought:

X(y, t) = X̂(y)ect , (3.11)

where X̂(y) = [φ̂, û, v̂, T̂ ](y) are unknown functions of y. This reduces the linearized
system of partial differential equations to a set of ordinary differential equations:

cI X̂ = LX̂, with BX̂ = 0, (3.12)

where L ≡ L(d/dy, d2/dy2, . . .) is a linear ordinary differential operator, I is an
identity operator and c = cr + i ci is a complex eigenvalue such that the flow is stable
if cr > 0, but unstable if cr < 0, and neutrally stable if cr = 0. It can be verified that
this system of equations has analytical solutions (Alam & Nott 1998):

(φ̂, T̂ ) = (φ1, T1) cos kβ(y ± 1/2),

(û, v̂) = (u1, v1) sin kβ(y ± 1/2),

}
(3.13)

where kβ = βπ, with β = 1, 2, 3, . . . being the mode numbers. Substituting the above
solution in (3.12), we get an algebraic eigenvalue problem for linear stability:

cI X1 = QX1, (3.14)

where X1 = (φ1, u1, v1, T1) represent the amplitude of the fundamental mode, and the
elements of the matrix Q are straightforward to obtain from L.

The classification of the mode number β as defined in (3.13) is given in terms
of the number of zero-crossings of the density eigenfunction within y ∈ (−1/2, 1/2)
as shown in figure 2, which displays all four eigenfunctions of the first three modes
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(a)

y

φ[1;1]
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–0.5
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0

Figure 2. Linear eigenfunction profiles across the Couette gap for the first three modes β = 1
(solid line), 2 (dashed line) and 3 (dot-dashed line) for φ0 = 0.15, H = 100 and e = 0.8. (a)
density, (b) streamwise velocity, (c) transverse velocity and (d) granular temperature.

β = 1, 2, 3 for φ = 0.15, H = 100 and e = 0.8. It is clear that the eigenfunction for mode
β = 2 can be obtained by joining the eigenfunction of mode β =1 twice along the
y-direction, and so on. Therefore, kβ =βπ in (3.13) can be considered as a ‘discrete’
wavenumber along the gradient (y) direction, with k1 = π being the wavenumber of
the lowest-order mode: the higher the mode number (β) the larger is the ‘gradient’
wavenumber (kβ).

It can be verified that the adjoint system (3.6) satisfies the analytical solution of
the linear stability problem, and hence we can write its solution in terms of sine and
cosine functions as in (3.13):

φ†(y) = φ
†
1 cos kβ(y ± 1/2), u†(y) = u

†
1 sin kβ(y ± 1/2),

v†(y) = v
†
1 sin kβ(y ± 1/2), T †(y) = T

†
1 cos kβ(y ± 1/2).

}
(3.15)

Similar to linear eigenfunctions, we found that the adjoint eigenfunctions
corresponding to the least stable shear-banding mode are real.
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4. Nonlinear stability: amplitude expansion method and Landau coefficients
We follow the amplitude expansion method of Stuart (1960) and Watson (1960),

which was later formalized by Reynolds & Potter (1967) in an elegant manner. This
is an indirect method to arrive at the Landau–Stuart amplitude equation, and the
related Landau coefficients are found by using the Fredholm integral or the solvability
condition as detailed here. The nonlinear solutions are determined in terms of the
basic wave and its distortion and harmonics of various orders.

As mentioned in the Introduction (§ 1), we have recently developed an order-
parameter theory for the same problem using the centre-manifold reduction
technique – the interested readers are directed to the supplementary information
of our paper Shukla & Alam (2009) to understand the detailed methodology of that
technique. While discussing the amplitude expansion method in §§ 4.1 and 4.2, we
will remark on how and where the present method differs from the centre-manifold
reduction technique.

In linear theory, we assume infinitesimal disturbances (basic wave) of the form

X(y, t) = X[1;1](y)ei(ωt)eat , (4.1)

where a + iω is the complex eigenvalue; eat is the amplitude of the basic wave with
a denoting its growth rate and ω is the frequency of the basic wave. (The superscript
notation on the amplitude, X[1;1], of the linear eigenfunction is clarified in § 4.2.2.)
The flow is linearly unstable or stable or neutrally stable if a is positive or negative
or zero, respectively.

In nonlinear stability, the amplitude of the disturbance, A(t), is finite and time-
dependent, which is taken to be the counterpart of the real exponential term in (4.1),
i.e. A(t) = eat ; moreover, the frequency of the basic wave, ω, is allowed to depend on
the disturbance amplitude, i.e. ω ≡ ω(A).

4.1. Transformed nonlinear equations

Let us use the following transformation (Reynolds & Potter 1967):

θ = ωt, ω = ω(A), A = A(t), (4.2)

where A(t) is the real amplitude of the disturbance such that A(t) = eat for infinitesimal
disturbances in the linear theory. The following fact is embodied in the above
transformation: the growth rate and frequency will change with the finite size of
the perturbation. Therefore, the partial time derivative can be transformed into

∂

∂t
→ dA

dt

∂

∂A
+

[
ω +

dω

dA

(
t
dA

dt

)]
∂

∂θ
. (4.3)

This transformation is equivalent to a two time-scale transformation, where the
first term in (4.3) represents a slow time scale (which implies that the perturbation
amplitude A(t) is a slowly varying function of time) and the second term represents
a fast time scale.

The above transformation (4.3) is then inserted into streamwise-independent
disturbance equations (3.2). For example, the x-momentum disturbance equation
is transformed into

φ0 dA

dt

∂u′

∂A
+ φ0

[
ω +

dω

dA

(
t
dA

dt

)]
∂u′

∂θ
+ φ0v′

=
1

H 2

[
µ0

φ

∂φ′

∂y
+ µ0

T

∂T ′

∂y
+ µ0 ∂2u′

∂y2

]
+ nonlinear terms, (4.4)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

10
00

41
43

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112010004143


Nonlinear theory of shear-banding instability in a granular Couette flow 215

and the rest of the disturbance equations are transformed accordingly. All four
equations can then be written in a compact form as[
M(∂A, ∂θ ; ω) − L(∂y, ∂

2
y ; φ0, . . .)

]
X = N2(X, X; ∂t → (∂A, ∂θ )) + N3(X, X, X). (4.5)

Here L(∂y, ∂
2
y ; φ0, . . .) is the linear stability operator and M is a diagonal operator,

M =

[
dA

dt

∂

∂A
+

(
ω +

dω

dA

(
t
dA

dt

))
∂

∂θ

]
I, (4.6)

with I being the identity operator. In (4.5) the arguments of N2(·) contain partial
derivatives ∂A and ∂θ that appear due to the replacement of the time derivative in the
quadratic nonlinear terms in (A3), (A5) and (A7) via (4.3).

4.2. Amplitude expansion method

4.2.1. Fourier expansion and transformed nonlinear equations

To solve (4.5), now we look for solutions X = X(y, A, θ) in terms of the wall-normal
distance (y), the amplitude of the perturbation (A) and the instantaneous position
of the basic wave (θ = ωt). Let us consider the following Fourier expansion for the
perturbation quantities (Watson 1960; Reynolds & Potter 1967):

X(y, A, θ) = X(k)(y, A) eikθ + X̃(k)(y, A) e−ikθ , (4.7)

where the summation is taken over all positive integers k � 0, and the tilde over any
quantity denotes its complex conjugate. This Fourier expansion (4.7) shows that, as
mentioned before, the finite size of the perturbation will change both the frequency
(∼θ as embodied in the exponential term in (4.7)) and the growth rate (∼A as
embodied in the amplitude function in (4.7)) of the perturbation.

Substituting (4.7) into the nonlinear perturbation equations (4.5) and collecting the
coefficients of eikθ , we obtain an infinite set of coupled nonlinear partial differential
equations for each Fourier coefficient X(k), k =0, 1, 2,. . . . The matrix representation
of these equations for X(k)(y, A) = (φ(k), u(k), v(k), T (k))T can be written as(

M(k) − L
)
X(k) = N2 + N3, (4.8)

M(k) ≡ M(∂A, ∂θ = ik; ω) =

[
dA

dt

∂

∂A
+

(
ω +

dω

dA

(
t
dA

dt

))
ik

]
I . (4.9)

The boundary conditions are transformed into

BX(k) = 0 at y = ±1/2. (4.10)

Because of the nonlinear interaction/coupling of different Fourier modes, the solution
to the infinite set of partial differential equations (4.8) is difficult to ascertain. Focusing
on small-amplitude (but finite) waves, a power-series solution in the amplitude A can
be sought. This procedure amounts to choosing a variable separable solution in terms
of a Taylor series in the perturbation amplitude which, in turn, helps to decouple the
coupled system of nonlinear equations (4.8).

4.2.2. Taylor expansion and superscript notation

When the nonlinearities of governing equations are taken into account, the
perturbation interacts with (i) itself, (ii) its complex conjugate and (iii) its higher-order
harmonics, leading to the generation of harmonics and the corrections/distortions
of various orders in the amplitude of perturbation. We require that the nonlinear
problem for infinitesimal amplitudes (A → 0) should reduce to the linear problem;
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here O(A) denotes the fundamental mode (linear eigenfunction), O(1) denotes the
mean flow, O(A2) consists of the second harmonic (k = 2) as well as the distortion
of the mean flow (k = 0). The fundamental mode interacting with (i) itself and (ii)
its complex conjugate leads to the generation of (i) the second harmonic and (ii) a
distortion of the mean flow, respectively, both O(A2). Similarly, the interaction of (ia)
the fundamental mode with the second harmonic and (ib) three fundamental modes
generates the third harmonic (k = 3), and (ii) the interaction of the fundamental mode
with the distortion of the mean flow leads to the generation of the distortion of the
fundamental mode (k =1), all three being O(A3). The above physical considerations
suggest the following power-series expansion for the perturbation vector:

X(k)(A, y) = AnX[k;n](y), with k � 0, n � 1, (4.11)

where X[k;n](y) = (φ[k;n], u[k;n], v[k;n], T [k;n])T represent the spatially varying amplitude
functions. We have followed Reynolds & Potter (1967) to identify the superscript
notations and their bounds as indicated below:

(n) ⇒ n � 0, [n] ⇒ n � 1, {n} ⇒ n � 2, n; m ⇒ n � m, (4.12)

[k; n] ⇒ n � k, k � 0, n � 1, (4.13)

{k; n} ⇒ n � k, k � 1, n � 2. (4.14)

Note that the negative indices are not permitted and the lower bound on any index
is greater than or equal to zero, depending on the type of the bracket/delimiter, ( )
or { } or [ ]. The last item in (4.12) asserts that a semicolon puts a limit on the first
index which is bounded by its second index.

In the dual superscript notation for X[k;n] in (4.11), the first index (k) refers to a
particular Fourier mode and the second index (n) indicates the order of a particular
term as O(An). To clarify this, let us consider the Taylor series expansion of the first
three Fourier coefficients:

X(1)(y, t) = A(t)
(
X[1;1](y) + A(t)2X[1;3](y) + · · ·

)
,

X(0)(y, t) = A(t)2
(
X[0;2](y) + A(t)2X[0;4](y) + · · ·

)
,

X(2)(y, t) = A(t)2
(
X[2;2](y) + A(t)2X[2;4](y) + · · ·

)
.

⎫⎪⎬⎪⎭ (4.15)

The leading term of the first (k =1) Fourier coefficient X(k =1) is AX[1;1], which
is O(An=1), representing the fundamental mode; the next-order term in X(k=1) is
A3X[1;3], which represents the first correction/distortion of the fundamental mode
and is O(A3), and X[1;3] is called the distortion of the fundamental mode. The zeroth
(k =0) Fourier coefficient X(k=0) is related to the base/mean flow (which in our
double index superscript notation would be X[0;0](y) ≡ (φ0, u0, v0, T 0)T, as in (2.10)).
Therefore, the leading term in X(0) is A2X[0;2], which represents the distortion of
the mean flow, and the remaining terms are its subsequent higher-order corrections.
Similarly, the leading term of the second Fourier coefficients X(k=2) is A2X[2;2], which
is the second harmonic, and the remaining terms are its subsequent higher-order
corrections. It is clear from the above arguments and (4.15) that

X[k;n] = 0, for odd (k + n) (4.16)

in the power-series expansion (4.11)
The above superscript bracket notations (Reynolds & Potter 1967) are extremely

useful in simplifying the algebra as well as in identifying a particular mode (i.e. a
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fundamental or a harmonic of a particular order) and its modal interactions of any
order.

4.2.3. Landau equation and modal equations for X[k;n]

From the requirement that A(t) be proportional to eat (a = a(0)) as A → 0, it follows
that

1

A

dA

dt
→ a(0) as A → 0. (4.17)

This is the well-known limit of infinitesimal disturbances in linear stability theory.
Since the amplitude for infinitesimal A must behave as in linear theory (i.e. grow/decay
exponentially), we can write (1/A)(dA/dt) as a power series in A:

A−1 dA

dt
= a(0) + Aa(1) + A2a(2) + · · · = Ana(n), (4.18)

where a(0) is an eigenvalue (growth rate) from the linear theory, and a(n) for odd n

turns out to be zero (see below). For the nonlinear analysis, we are interested in a(2)

or, in general, a(n) for even values of n. Similarly, we can write an expression for the
terms involving frequency ω,

ω +
dω

dA

(
t
dA

dt

)
= b(0) + Ab(1) + A2b(2) + · · · = Anb(n), (4.19)

where b(0) is an eigenvalue (frequency) from the linearized theory, b(n) for odd n turns
out to be zero and b(n) for even values of n are needed for the nonlinear analysis.
Note that b(2) would represent the leading-order nonlinear correction to the frequency
of oscillation.

It is clear that the Landau equation is postulated to hold in the present formalism
of the amplitude expansion method (Stuart 1960; Watson 1960; Reynolds & Potter
1967). This is in contrast to the centre-manifold reduction (Carr 1981) wherein the
Landau equation is derived from the evolution equation of the slow mode by taking
its inner product with the adjoint linear eigenfunction (Shukla & Alam 2009). This is
one of the main differences between the ‘direct’ method of centre-manifold reduction
and the ‘indirect’ method of the amplitude expansion technique (see the last paragraph
of § 4.5 for other major differences).

Inserting (4.11)–(4.19) into (4.8) and equating the coefficients of An, we get an
infinite set of inhomogeneous equations for X[k;n] = [φ[k;n], u[k;n], v[k;n], T [k;n]]T:

LknX
[k;n] = −c[n−1]X[1;1]δk1 + Gkn,

c[n−1] = a[n−1] + ib[n−1],

Gkn = −
(
ma[n−m] + ikb[n−m]

)
X{k;m} + Ekn/(1 + δk0) + Fkn,

Lkn =
(
na(0) + ikb(0)

)
I − L,

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (4.20)

where L ≡ L(d/dy, d2/dy2, . . .) is the linear stability operator as in (3.3), c[n−1] values
are Landau coefficients, the vector Gkn represents a sum of linear and nonlinear
(quadratic and cubic) terms, I is the identity operator and δkj is the Kronecker delta;
for superscript notations used in the above equation, see (4.11)–(4.13). In (4.20), the
factor 1/(1 + δk0) with Ekn arises from the product of two Fourier series in which the
zeroth-order terms are multiplied by a factor 2; Fkn represents cubic nonlinear terms
that arise from the product of three Fourier series. Note that the nonlinear terms Ekn
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and Fkn are vector-valued functions:

Ekn =
[
E1

kn, E
2
kn, E

3
kn, E

4
kn

]T
and Fkn =

[
F 1

kn, F
2
kn, F

3
kn, F

4
kn

]T
, (4.21)

where the superscripts 1, 2, 3 and 4 refer to terms that originate from the continuity, x-
momentum, y-momentum and granular energy equations, respectively. Furthermore,
we can decompose the quadratic nonlinear terms Ekn as

Ekn = Eθ
kn + E

y
kn ≡ Et

kn + E
y
kn, (4.22)

where Eθ
kn =Et

kn corresponds to θ-dependent terms that involve the derivatives of t ,
and E

y
kn corresponds to terms that are y-dependent and their derivatives with respect

to y. Note that the term Et
kn, corresponding to the time-dependent part of disturbance

equations, is the product of a Fourier series and a time derivative of a Fourier series
that involves Landau equation (4.18). The above system of equations (4.20) is to be
solved with the following boundary conditions:

BX[k;n] = 0 at y = ±1/2. (4.23)

Equations (4.20) with boundary conditions (4.23) embody all necessary information
for the nonlinear analysis of the granular plane Couette flow as discussed in §§ 4.3–
4.5. We have reduced our nonlinear stability problem to a sequence of linear
inhomogeneous differential equations (4.20) for X[k;n] and each of which can be
solved sequentially if we know the Landau coefficients c[n−1] along the way. The
latter can be obtained using the Fredholm alternative or the solvability condition of
inhomogeneous differential equations discussed in § 4.5.

4.3. Linear disturbance: fundamental mode

At O(A) we get back the linear problem for the fundamental mode X[1;1] by
substituting k = n= 1 into (4.20):

L11X
[1;1] = 0 ⇒ LX[1;1] = c(0) IX[1;1], (4.24)

where L is the linear stability operator. This equation is the same as (3.12) with

c = c(0) and X̂ = X[1;1].

4.4. Mean-flow distortion and the second harmonic

At O(A2), we get equations for the mean-flow distortion and the second harmonic.
Substituting k = n=2 into (4.20), we get

L22X
[2;2] ≡

[
2(a(0) + ib(0))I − L

]
X[2;2] = G22 ≡ E22 (4.25)

with the boundary conditions BX[2;2] = 0 at y = ±1/2. Here, G22 = N2(X
[1;1], X[1;1]) =

E22 is the product of two fundamental modes. Note that there is no cubic nonlinear
contribution at second order (i.e. F22 = 0).

Substituting k =0 and n= 2 into (4.20), we get, at O(A2),

L02X
[0;2] ≡

[
2a(0) I − L

]
X[0;2] = G02 ≡ E02/2, (4.26)

where G02 = G02(X̃
[1;1], X[1;1]), with boundary conditions BX[0;2] = 0 at y = ±1/2. The

explicit functional form of G02 is

G02 = 0.5
[
N2(X̃

[1;1], X[1;1]) + N2(X
[1;1], X̃[1;1])

]
. (4.27)

Note that X[0;2] is always real. To verify this, let us write the complex conjugate
equation for X[0;2],

L02X̃
[0;2] = G̃02, (4.28)
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where L02 = L̃02, and G̃02 is given by

G̃02 = 0.5
[
N2(X

[1;1], X̃[1;1]) + N2(X̃
[1;1], X[1;1])

]
≡ G02. (4.29)

This immediately implies that X[0;2] is real:

X[0;2] = X̃[0;2]. (4.30)

In § 7.1, we will further prove that X[0;2] = X[2;2], i.e. the base flow distortion and the
second harmonic are equal for the shear-banding mode.

4.5. Distortion of the fundamental mode and the first Landau coefficient

At O(A3), we get an equation for the distortion of the fundamental mode X[1;3] by
substituting k = 1 and n= 3 into (4.20):

L13X
[1;3] ≡

[
(3a(0) + ib(0))I − L

]
X[1;3] = −c(2)X[1;1] + G13. (4.31)

The expression for the inhomogeneous term G13 is

G13 = N2(X
[0,2], X[1;1]) + N2(X̃

[0,2], X[1;1]) + N2(X
[1;1], X[0,2]) + N2(X

[1;1], X̃[0,2])

+ N2(X̃
[1,1], X[2;2]) + N2(X

[2;2], X̃[1,1]) + N3(X̃
[1,1], X[1;1], X[1;1])

+ N3(X
[1;1], X̃[1,1], X[1;1]) + N3(X

[1;1], X[1;1], X̃[1,1])

= 2
[
N2(X

[0,2], X[1;1]) + N2(X
[1;1], X[0,2])

]
+ N2(X̃

[1,1], X[2;2]) + N2(X
[2;2], X̃[1,1])

+ N3(X̃
[1,1], X[1;1], X[1;1]) + N3(X

[1;1], X̃[1,1], X[1;1]) + N3(X
[1;1], X[1;1], X̃[1,1])

(4.32)

and the boundary conditions are BX[1;3] = 0 at y = ±1/2. In the above equation, the
quadratic and cubic nonlinear terms represent Ekn and Fkn, respectively, in (4.20).

In (4.31), the first Landau coefficient c(2) is unknown, which can be found by
invoking the solvability condition

c(2) = a(2) + ib(2) =

∫ 1/2

−1/2

X̃†G13 dy∫ 1/2

−1/2

X̃†X[1;1] dy

, (4.33)

where X† is the adjoint linear eigenfunction that corresponds to the solution of (3.6).
The solvability condition or the Fredholm alternative asserts that the inhomogeneous
part of differential equations (4.31) must be orthogonal to the adjoint of the associated
homogeneous problem – this guarantees the uniqueness of the solution to the
inhomogeneous differential equations (4.31).

Similar to (4.33), we can write down a general expression for Landau coefficients
of any order, c(n), in terms of an integral involving inhomogeneous terms, Gkn, of
(4.20). It is straightforward to verify from (4.16) that Gkn = 0 when (k + n) is odd,
and hence c(n) vanishes for all odd n= 1, 3, 5, . . . . The next non-zero coefficient is c(4),
which is called the second Landau coefficient. In this paper, we restrict ourselves to
calculating only the first Landau coefficient c(2) from (4.33).

Note that the expression for the first Landau coefficient obtained from the centre-
manifold reduction ((9) in Shukla & Alam 2009) is exactly the same as (4.33)

with the normalization 〈X̃†, X[1;1]〉 =1. Before proceeding further, note an important
difference between the amplitude expansion method and the centre-manifold reduction
with respect to the calculation of this first Landau coefficient. It is clear from

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

10
00

41
43

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112010004143


220 P. Shukla and M. Alam

the above discussion that in the amplitude expansion method, the first Landau
coefficient (4.33) is determined from the solvability condition of the inhomogeneous
differential equation for the distortion of the fundamental mode (X[1;3]) that appears
at cubic order as in (4.31). This may be contrasted with the calculation of the same
from the centre-manifold reduction (see Shukla & Alam 2009), where our starting
point is an evolution equation for the slow/critical mode which is obtained from a
spectral decomposition of the linear operator in terms of slow and fast modes, with
the fundamental mode being called the ‘slow’ mode (because the growth rate of
the fundamental mode is close to zero, this is the slowest decaying mode) and the
remaining eigenvalues (having large negative growth rates and hence fast decaying)
as ‘fast’ modes. The inner product of the evolution equation for the slow mode with
the adjoint of the linear eigenfunction then leads to the well-known Landau equation,
and the coefficient of the cubic term (A3) in the Landau equation is simply the
first Landau coefficient, which is expressed in terms of an inner product of certain
nonlinear terms and the adjoint linear eigenfunction. The evolution equations for
fast/slave modes are used to concurrently determine the base-flow distortion and the
second harmonic that are needed to evaluate the nonlinear terms in the expression
for the first Landau coefficient. The related mathematical details can be found in the
supplementary information of Shukla & Alam (2009) and hence we do not repeat
them here for the sake of brevity.

5. Symmetries of linear and nonlinear modes
Before embarking on the analytical/numerical solution procedure of (4.23), (4.24),

(4.25), (4.30) and (4.33), here we analyse certain symmetries of the linear (X[1;1]) and
nonlinear modes (X[2;2], X[0;2] and X[1;3]) up to the cubic order.

First, let us consider the base state solution of uniform shear with constant density
and granular temperature. The base state equations remain invariant under the
following transformation:

φ0(−y) = φ0(y), u0(−y) = −u0(y), T 0(−y) = T 0(y). (5.1)

This symmetry about the midplane y = 0 of the base state solution (2.10) implies that
the velocity is antisymmetric about y = 0 and the density and granular temperature
are symmetric about y = 0.

The linear disturbance equations for the fundamental mode and the related
boundary conditions satisfy the following two symmetry groups (Alam & Nott 1998):

φ[1;1](y) = φ[1;1](−y), u[1;1](y) = −u[1;1](−y),

v[1;1](y) = −v[1;1](−y), T [1;1](y) = T [1;1](−y),

}
(5.2)

and

φ[1;1](y) = −φ[1;1](−y), u[1;1](y) = u[1;1](−y),

v[1;1](y) = v[1;1](−y), T [1;1](y) = −T [1;1](−y),

}
(5.3)

where the former preserves the symmetry of the base state solution (5.1), and the
latter breaks (5.1).

It follows from the symmetries of the fundamental mode that the interaction of two
fundamentals would give rise to the following symmetry for the second harmonic:

φ[2;2](y) = φ[2;2](−y), u[2;2](y) = −u[2;2](−y),

v[2;2](y) = −v[2;2](−y), T [2;2](y) = T [2;2](−y).

}
(5.4)
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This, of course, preserves the symmetry (5.1) of the base state solution. The distortion
of the mean flow, X[0,2], also follows the same symmetry of the base state since X[0,2]

appears at the quadratic order O(A2).
Similarly, the distortion of the fundamental mode, X[1,3], satisfies the following

symmetries:

φ[1;3](y) = φ[1;3](−y), u[1;3](y) = −u[1;3](−y),

v[1;3](y) = −v[1;3](−y), T [1;3](y) = T [1;3](−y),

}
(5.5)

and

φ[1;3](y) = −φ[1;3](−y), u[1;3](y) = u[1;3](−y),

v[1;3](y) = v[1;3](−y), T [1;3](y) = −T [1;3](−y).

}
(5.6)

The above symmetry groups can be understood from the fact that the fundamental
mode is O(A) and the interaction of two fundamentals gives rise to the terms O(A2),
and so forth. Thus, the second harmonic X[2;2] admits a symmetry which is the product
of symmetries of the fundamental mode. Similarly, the symmetry of the distortion of
the fundamental (O(A3)) would follow the product of symmetries of the fundamental
and the second harmonic.

6. Numerical method: spectral collocation and Gauss–Chebyshev quadrature
In § 4, we have reduced the nonlinear stability problem to a sequence of systems

of inhomogeneous linear differential equations for the fundamental mode and its
distortions and higher-order harmonics. The general form of this system of equations
is

LknX
[k;n] = −c[n−1]X[k;n]δk1 + Gkn, with k � 0, n � 1, (6.1)

where Lkn is the linear operator, c[n−1] are the Landau coefficients and Gkn denotes
the nonlinear terms. We have developed a spectral-based numerical method to solve
the above problem and a brief description of this numerical method is given below.

For the linear stability problem (4.24), we need to solve the linearized perturbation
equations along with homogeneous boundary conditions. All four equations have
been discretized along the y-direction by implementing the staggered-grid spectral
collocation method that uses Chebyshev polynomials as a basis set. More specifically,
the mass balance equation is collocated at Gauss points and the momentum and
energy equations at Gauss–Lobatto points. The interpolation matrices of spectral
accuracy are then used to interpolate between the variables at Gauss (density)
and Gauss–Lobatto (velocity and granular temperature) points. For details on the
spectral collocation technique, the reader is referred to Canuto et al. (1988) and
Fornberg (1998). The discretized form of perturbation equations, along with boundary
conditions, is formulated as a generalized matrix eigenvalue problem of the form

AX[1;1] = c(0)BX[1;1], (6.2)

where c(0) is the linear eigenvalue and X[1;1] is the discrete representation of linear
eigenfunction; A and B are square matrices of order (4M + 3), where M denotes
the number of collocation points (i.e. the degree of the Chebyshev polynomial).
The eigenvalues of the generalized eigenvalue problem are determined by the QZ-
algorithm of MATLAB software. The eigenvectors X[1;1] are normalized by dividing
it by a component of the vector X[1;1] having the maximum absolute value. Another
part of the linear stability problem is to solve the associated adjoint system. Using
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the same spectral method, the adjoint system has been discretized and solved for the

adjoint eigenfunction X† and its adjoint eigenvalue c(0)†
= ˜c(0). Recall that the adjoint

eigenfunction is used in the solvability condition (4.33) to calculate the first Landau
coefficient.

For nonlinear stability, we need to solve the related inhomogeneous differential
equations, (4.25), (4.26) and (4.31), and the solvability condition (4.33). We can
subdivide these nonlinear calculations into two parts: one is to solve AX = b

type equations ((4.25), (4.26) and (4.31)), and the other is to calculate the first
Landau coefficient using the solvability condition (4.33). Similar to the linear
eigenvalue problem, the higher-order inhomogeneous system of differential equations
is discretized using the same staggered-grid spectral collocation method, where the
continuity equation is evaluated at Gauss points and other equations are at Gauss–
Lobatto points. The resulting square matrix A in AX = b turns out to be dense,
unstructured, unsymmetric and ill-conditioned; thus, the method of the Gaussian
elimination is not a good choice to solve these algebraic equations. We employed
the method of singular value decomposition (Press et al. 1992) for solving AX = b

system in each case of (4.25), (4.26) and (4.31).
The second part of nonlinear computations is related to evaluating the solvability

condition (4.33) to determine the first Landau coefficient: this is a ratio of two definite
integrals. These integrations are calculated using the Gauss–Chebyshev quadrature:
the Gaussian quadrature using the Chebyshev polynomial as an interpolating
polynomial is called the Gauss–Chebyshev quadrature. Next, we briefly discuss an
accurate quadrature formula at Gauss–Lobatto points (Hanifi, Schmid & Henningson
1996) to evaluate the above-mentioned integrals. In the spectral collocation method,
we approximate the unknown variables in terms of the Chebyshev polynomials of
degree M ,

f (ζ ) =

M∑
α=0

aαTα(ζ ), (6.3)

where Tα(ζ ) = cos(α cos−1(ζ )). The Chebyshev polynomials are then evaluated at the
extrema of the Mth-order Chebyshev polynomial, called Gauss–Lobatto points, given
by

ζj = cos

(
jπ

M

)
, (6.4)

where j = 0, . . . , M .
The general rule for Gaussian quadratures is∫ 1

−1

f (ζ ) dζ =

M∑
j=0

w(ζj )f (ζj ), (6.5)

where w(ζj ) is the weight function and ζj are called nodes. To derive the Gauss–
Chebyshev quadrature formula, we need to find weight functions on the Chebyshev
grid (i.e. on the Gauss–Lobatto grid). Now we make use of the discrete orthogonality
condition of the Chebyshev polynomials, which reads as

〈f, g〉 =

M∑
j=0

bjf (ζj )g(ζj ), (6.6)
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where b0 = bM = 1/2, bj =1 for 0 < j < M , and ζj are the Gauss–Lobatto points as
defined in (6.4). From this definition, it follows that

〈Tα(ζ ), Tγ (ζ )〉 =

⎧⎪⎨⎪⎩
0 α �= γ,

M α = γ = 0, M,

M/2 α = γ �= 0, M,

(6.7)

which can be used to obtain the expansion coefficients aα in (6.3):

aα =
cα

M

M∑
j=0

bjf (ζj )Tα(ζj ), (6.8)

where c0 = cM =1 and cα = 2 for all 0 < α < M . Therefore, the expansion formula (6.3)
simplifies to

f (ζ ) =

M∑
α=0

aαTα(ζ ) =

M∑
α=0

cαTα(ζ )

M∑
j=0

bj

M
f (ζj )Tα(ζj ), (6.9)

which, upon integration with respect to ζ , leads to∫ 1

−1

f (ζ ) dζ =
1

M

M∑
j=0

bjf (ζj )

M∑
α=0

cαTα(ζj )

∫ 1

−1

Tα(ζ ) dζ, (6.10)

where ∫ 1

−1

Tα(ζ ) dζ =

⎧⎨⎩
0 α odd,

2

1 − α2
α even.

(6.11)

This immediately yields an expression for the weight function as defined via (6.5):

w(ζj ) =
bj

M

{
2 +

M∑
α=2

cα

1 + (−1)α

1 − α2
cos

(
αjπ

M

)}
. (6.12)

If a mapping ζ = ζ (y) is used to transform the physical domain y ∈ [y1, y2] into the
Chebyshev domain ζ ∈ [−1, 1], then the expression for the weight function becomes

w(ζj ) =
bj

M

M∑
α=0

cα cos

(
αjπ

M

)∫ 1

−1

Tα(ζ )
dy

dζ
dζ. (6.13)

In the present problem the physical domain is y = [−1/2, 1/2] and hence we can
assume a mapping ζ =2y, and the Gauss–Chebyshev quadrature formula can be
rewritten as ∫ 1/2

−1/2

f (y) dy =

M∑
j=0

w(ζj )f (ζj ), (6.14)

where w(ζj ) is given by (6.13) with dy/dζ = 1/2.
To numerically evaluate the solvability condition (4.33), we first calculate each

integrand at the Gauss–Lobatto points (where the terms related to the continuity
equation are interpolated from Gauss points to Gauss–Lobatto points) and then take
the weighted summation as in (6.14). For the present problem, the above quadrature
formula has been compared with two other composite integration methods, namely
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Symbols Definition

φ0 Mean density or solid fraction (the volume fraction of particles)
H = h/d Ratio between the Couette gap and the particle diameter
e Restitution coefficient
kβ = βπ ‘Discrete’ wavenumber along the y-direction, (3.13)
β = 1, 2, 3, . . . Mode number, (3.13), (7.1)
a(0) Growth rate of the fundamental mode, (4.1), (4.16), (4.17), (8.9)
a(2) Real part of the first Landau coefficient, (4.17), (4.32), (8.9)
M Number of collocation points, (6.4), (6.13)
Hc Critical Couette gap, (8.4)
φc Critical mean density, (8.5)
A = Ae Equilibrium amplitude, (8.9)
H ∗ Hβ−1(1 − e2)1/2, (8.19)

Table 1. Control parameters for stability.

Simpson and trapezoidal quadrature rules. It has been verified that the Gauss–
Chebyshev quadrature converges with about M = 75 collocation points, while to get
the same accuracy using the Simpson quadrature we need to use M > 200 grid points.
This superior convergence of the Gauss–Chebyshev quadrature is presumably due to
the spectral accuracy of the underlying scheme (Canuto et al. 1988; Hanifi et al. 1996).
Table 1 summarizes all dimensionless parameters that we will frequently refer to while
presenting our results in §§ 7–9.

7. Analytical solution and comparison with numerical (spectral) solution
The underlying symmetries of the fundamental mode and its nonlinear corrections

as discussed in § 5, together with the analytical solution of the fundamental mode
(Alam & Nott 1998), helped us to solve the nonlinear problem analytically as discussed
in §§ 7.1–7.3. As mentioned above, this problem was tackled numerically in our recent
papers Shukla & Alam (2008, 2009), even though the order-parameter equation was
derived there using another method, namely, the centre-manifold reduction technique.
Apart from providing new analytical solutions in the present paper, the spectral-based
numerical technique, as detailed in § 6, is also validated here against our analytical
solutions for harmonics and the first Landau coefficient.

7.1. Solution for second harmonic and mean-flow distortion

It can be verified that there exists an analytical solution for the second harmonic:

φ[2;2](y) = φ2 cos k2β(y ± 1/2),

u[2;2](y) = u2 sin k2β(y ± 1/2),

v[2;2](y) = v2 sin k2β(y ± 1/2),

T [2;2](y) = T2 cos k2β(y ± 1/2) + T mean
k2β

,

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (7.1)

where k2β = 2βπ, with β = 1, 2, 3, . . . and X22 = [φ2, u2, v2, T2] is the amplitude of the
second harmonic. The mean term in the disturbance energy equation is calculated
from

T mean
k2β

=
fnl

fl

, (7.2)
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where fnl denotes nonlinear terms and fl are related to linear terms:

fnl = − 1

2φ0

(
−v1T1kβ + c(0)φ1T1

)
+

1

φ0dim

[
−kβ

(
p0

φφ1 + p0
T T1

)
v1

+ 2µ0k2
β

(
v2

1 +
1

2
u2

1

)
+

(
1

2
µ0

φφφ
2
1 +

1

2
µ0

T T T 2
1 + µ0

φT φ1T1

)
+ 2kβu1

(
µ0

φφ1 + µ0
T T1

)
+ λ0k2

βv
2
1 −

(
1

2
D0

φφφ
2
1 +

1

2
D0

T T T 2
1 + D0

φT φ1T1

)]
, (7.3)

fl = 2c(0) − 2

φ0dim

(
µ0

T − D0
T

)
. (7.4)

The modal amplitude of the second harmonic, X22 = [φ2, u2, v2, T2], satisfies the
following algebraic matrix equation:

L
β

22X22 = G
β

22, (7.5)

where L
β

22 = 2(a(0) + ib(0))I − Lβ with

Lβ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 −φ0k2β 0

−
k2βµ

0
φ

φ0H 2
−

k2
2βµ

0

φ0H 2
−1 −k2βµ

0
T

φ0H 2

k2βp
0
φ

H 2φ0
0 −

k2
2β(2µ0 + λ0)

H 2φ0

k2βp
0
T

H 2φ0

2(µ0
φ − D0

φ)

φ0dim

4k2βµ
0

φ0dim
−2k2βp

0

φ0dim

2

φ0dim

(
−k2

2β

κ0

H 2
+ µ0

T − D0
T

)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(7.6)

and the nonlinear inhomogeneous terms, G
β

22 = [G1β
22 , G

2β
22 , G

3β
22 , G

4β
22 ], are

G
1β

22 = −kβφ1v1, (7.7)

G
2β

22 =
1

2

[
− 1

φ0

(
φ0v1u1kβ + φ1v1 + c(0)φ1u1

)
+

1

φ0H 2

(
−k2

β

(
µ0

φφ1 + µ0
T T1

)
u1

− kβ

(
µ0

φφφ
2
1 + µ0

T T T 2
1 + 2µ0

φT φ1T1

)
− k2

β

(
µ0

φφ1 + µ0
T T1

)
u1

) ]
, (7.8)

G
3β

22 =
1

2

[
− 1

φ0

(
kβφ

0v2
1 + c(0)φ1v1

)
+

1

φ0H 2

(
kβ

(
p0

φφφ
2
1 + p0

T T T 2
1 + 2p0

φT φ1T1

)
− 4k2

β

(
µ0

φφ1 + µ0
T T1

)
v1 − 2k2

β

(
λ0

φφ1 + λ0
T T1

)
v1

) ]
, (7.9)

G
4β

22 =

[
− 1

2φ0

(
φ0v1T1kβ + c(0)φ1T1

)
− 2

φ0H 2dim
k2

βT1

(
κ0

φφ1 + κ0
T T1

)
+

1

φ0dim

(
−kβ

(
p0

φφ1 + p0
T T1

)
v1 + 2µ0k2

β

(
v2

1 +
1

2
u2

1

)
+

(
1

2
µ0

φφφ
2
1 +

1

2
µ0

T T T 2
1 + µ0

φT φ1T

)
+ 2kβ

(
µ0

φφ1 + µ0
T T1

)
u1

+ λ0k2
βv

2
1 −

(
1

2
D0

φφφ
2
1 +

1

2
D0

T T T 2
1 + D0

φT T 2
1

))]
. (7.10)
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Figure 3. Comparison between the analytical (solid line) and spectral/numerical (circles)
solutions for the second harmonic X[2;2] with mode β =1: (a) φ[2;2], (b) u[2;2], (c) v[2;2] and (d)
T [2;2] for φ0 = 0.15, H =100 and e = 0.8.

The matrix equation (7.5) can be easily solved to determine the complete solution for
the second harmonic from (7.1).

For the shear-banding mode, the eigenvalue is real (Alam & Nott 1998; Alam
et al. 2008), i.e. b(0) = 0. This implies that

L22 =
[
2
(
a(0) + ib(0)

)
I − L

]
=
[
2a(0) I − L

]
≡ L02, (7.11)

i.e. the linear operators for the second harmonic and the mean-flow distortion are
identical. From (4.24) and (4.25) we have G22 =N2(X

[1:1], X[1:1]) = G02, and therefore

X[0,2] = X[2,2] (7.12)

for the shear-banding mode. Therefore, the solution to the mean-flow distortion, X[0,2],
is the same as in (7.1).

Before moving to the first Landau coefficient, let us compare our analytical solutions
for the second harmonic (7.1) with those calculated numerically by discretizing the
differential equations using the spectral collocation technique and solving the resulting
algebraic equations by the singular value decomposition as detailed in § 6. Figure 3
shows a representative comparison between the analytical and numerical solutions
for the shape of the second harmonic for mode β =1 at a mean density of φ0 = 0.15
and H = 100. In each panel, the solid line refers to the analytical solution and the
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circles to the numerical solution, and we find excellent agreement between the two. It
has been verified that a similar level of agreement holds for other modes β =2, 3, . . . .

7.2. Solution for the first Landau coefficient

To determine the first Landau coefficient, we consider the equation for the distortion
of the fundamental (4.31) which appears at the cubic order. Recall that the
inhomogeneous terms G13 of this equation depend on the fundamental (X[1,1]), the
second harmonic (X[2,2]) and the mean-flow distortion (X[0,2]), along with the base
state solution; see (4.32). Inserting solutions for X[1,1], X[2,2] and X[0,2], the expressions
of G13 = (G1

13, G
2
13, G

3
13, G

4
13) are simplified as follows:(

G1
13, G

4
13

)
= 3
(
G

1β3
13 , G

4β3
13

)
cos k3β(y ± 1/2) + 3

(
G

1β1
13 , G

4β1
13

)
cos kβ(y ± 1/2), (7.13)(

G2
13, G

3
13

)
= 3
(
G

2β3
13 , G

3β3
13

)
sin k3β(y ± 1/2) + 3

(
G

2β1
13 , G

3β1
13

)
sin kβ(y ± 1/2). (7.14)

The y-independent terms G
1β3
13 , G

4β3
13 , G

1β1
13 , G

4β1
13 , G

2β3
13 , G

3β3
13 , G

2β1
13 and G

3β1
13 are

given in Appendix B (Appendix B is part of the supplementary material available
at journals.cambridge.org/flm). Inserting G13, X† and X[1;1] in the numerator and
denominator of (4.33), we obtain∫ 1/2

−1/2

X̃†G13 dy = 3
(
φ̃

†
1G

1β3
13 + T̃

†
1 G

4β3
13

)∫ 1/2

−1/2

cos kβ(y ± 1/2)cos k3β(y ± 1/2) dy

+ 3
(
ũ

†
1G

2β3
13 + ṽ

†
1G

3β3
13

)∫ 1/2

−1/2

sin kβ(y ± 1/2)sin k3β(y ± 1/2) dy

+ 3
(
φ̃

†
1G

1β1
13 + T̃

†
1 G

4β1
13

)∫ 1/2

−1/2

cos2 kβ(y ± 1/2) dy

+ 3
(
ũ

†
1G

2β1
13 + ṽ

†
1G

3β1
13

)∫ 1/2

−1/2

sin2 kβ(y ± 1/2) dy

=
3

2

(
φ̃

†
1G

1β1
13 + T̃

†
1 G

4β1
13 + ũ

†
1G

2β1
13 + ṽ

†
1G

3β1
13

)
(7.15)

and ∫ 1/2

−1/2

X̃† X[1;1] dy =
(
φ̃

†
1φ1 + T̃

†
1 T1

)∫ 1/2

−1/2

cos2 kβ(y ± 1/2) dy

+
(
ũ

†
1u1 + ṽ

†
1v1

)∫ 1/2

−1/2

sin2 kβ(y ± 1/2) dy

=
1

2

(
φ̃

†
1φ1 + T̃

†
1 T1 + ũ

†
1u1 + ṽ

†
1v1

)
. (7.16)

The final expression for the first Landau coefficient (4.33) simplifies to

c(2) ≡ a(2) + ib(2) =
3
(
φ̃

†
1G

1β1
13 + T̃

†
1 G

4β1
13 + ũ

†
1G

2β1
13 + ṽ

†
1G

3β1
13

)
φ̃

†
1φ1 + T̃

†
1 T1 + ũ

†
1u1 + ṽ

†
1v1

. (7.17)

Since for the shear-banding mode the linear eigenfunction, its adjoint and the second
harmonic are found to be real, the right-hand side of the above equation is always
real for this mode. This implies that the imaginary part of the first Landau coefficient
is identically zero for the shear-banding mode:

b(2) = 0, ⇒ c(2) ≡ a(2). (7.18)
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Figure 4. Comparison of the first Landau coefficient between the analytical (solid line) and
spectral/numerical (the stars, circles and squares correspond to M = 20, 50 and 100 collocation
points, respectively) solutions: (a) φ0 = 0.15 and (b) φ0 = 0.05, with e = 0.8. The inset in each
panel shows the variation in the growth rate of the least stable mode (mode number β =1)
with H .

To compute a(2) analytically, we need to insert the analytical solutions of the
fundamental mode (3.13) and the second harmonic (7.1) in (7.17). The solution of the
first Landau coefficient from (7.17) is shown in figures 4(a) and 4(b), shown by solid
lines, which display the variations of a(2) with the Couette gap at two values of the
mean density φ0 = 0.15 and 0.05, respectively.

To ascertain the accuracy of the Gauss–Chebyshev quadrature (as detailed in § 6),
we also calculated a(2) by using the numerical solutions for the fundamental mode and
the second harmonic and then evaluated the integrals in (4.33) by using the Gauss–
Chebyshev quadrature with a different number of collocation points (M). The stars,
circles and squares in figure 4 denote the corresponding numerical solutions for a(2)

with M = 20, 50 and 100, respectively, which agree well with our analytical solution.
The insets in figures 4(a) and 4(b) show the variation in the growth rate a(0) of the
least stable mode, again calculated both analytically and numerically with excellent
agreement between the two. Note that the least stable mode is stable (i.e. a(0) < 0)
at both mean densities in figure 4, and we will discuss the possibility of subcritical
bifurcations in such cases in § 8.3.
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The quantitative accuracy of our numerical method was further checked by
comparing the numerical values of the least stable growth rate a(0) and the first
Landau coefficient a(2) at different parameter values of (φ0, H, e). While M =10
collocation points were found to be sufficient to calculate a(0) within an error of less
than 0.001 %, we needed more than M = 75 collocation points to calculate a(2) within
1 % error.

7.3. Solution for higher-order harmonics: distortion of the fundamental mode

Recall that at cubic order O(A3) we have two harmonics: the distortion of the
fundamental mode X[1;3] and the third harmonic X[3;3]. Here we determine an
analytical solution for X[1;3]. The governing equation for the distortion of the
fundamental mode is

L13X
[1;3] = −c(2)X[1;1] + G13. (7.19)

Having determined the first Landau coefficient c(2) ≡ a(2), the right-hand side of (7.19)
is now completely known, and hence (7.19) can be solved for X[1;3].

The general solution for X[1;3] for any mode number β can be written as

φ[1;3] = φ3
13 cos k3β(y ± 1/2) + φ1

13 cos kβ(y ± 1/2),

u[1;3] = u3
13 sin k3β(y ± 1/2) + u1

13 sin kβ(y ± 1/2),

v[1;3] = v3
13 sin k3β(y ± 1/2) + v1

13 sin kβ(y ± 1/2),

T [1;3] = T 3
13 cos k3β(y ± 1/2) + T 1

13 cos kβ(y ± 1/2),

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (7.20)

where k3β = 3βπ, with the mode number β = 1, 2, . . . , and [φ3
13, u

3
13, v

3
13, T

3
13]

T and
[φ1

13, u
1
13, v

1
13, T

1
13]

T represent unknown amplitudes. Substituting this solution (7.20)
into (7.19) and equating sine and cosine terms, we obtain inhomogeneous algebraic
equations for unknown amplitudes that can be easily evaluated.

The analytical solutions (7.20) are compared with the numerical solution of (7.19)
in figure 5 at a mean density φ0 = 0.15. Similar to the second harmonic, we observe
good quantitative agreement between the analytical and numerical solutions for each
mode shape of X[1;3].

On the whole, the quantitative agreement in figures 3–5 between the analytical
and the spectral/numerical solutions for the harmonics (of various orders) of the
fundamental mode as well as for the first Landau coefficient ascertains the accuracy
of our spectral-based numerical method for nonlinear stability. One outcome of this
paper is the validation of a numerical technique (based on the spectral collocation and
the Gauss–Chebyshev quadrature) for nonlinear stability calculations: our spectral-
based numerical code can be adapted/extended for a host of granular flow problems
for which analytical solutions do not exist.

8. Bifurcation, phase diagram and finite-amplitude solution
8.1. Phase diagram and critical parameters for ‘linear’ shear-banding instability

For linear stability, the dispersion relation is a quartic in c ≡ c(0) = a(0) + ib(0) (Alam &
Nott 1998):

c4 + α3c
3 + α2c

2 + α1c + α0 = 0, (8.1)

where αi are functions of the base state density and temperature, the Couette gap
and the restitution coefficient. Previous studies on linear stability (Alam & Nott
1998; Alam et al. 2008) have found that out of four eigenvalues of (8.1), there is
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Figure 5. Comparison between the analytical (solid line) and spectral/numerical (circles)
solutions for the distortion of the fundamental X[1;3] with mode number β = 1: (a) φ[1;3], (b)
u[1;3], (c) v[1;3] and (d) T [1;3]. Parameter values are the same as in figure 3.

a complex conjugate pair, representing propagating modes, which is always stable;
one real eigenvalue corresponds to the temperature mode which remains the most
stable mode for any values of control parameters, and the remaining real eigenvalue
could be unstable depending on the base state condition. This real unstable mode has
been referred to as the ‘shear-banding’ mode (Alam 2005) since the corresponding
eigenfunctions represent shear localization and density segregation along the gradient
(y) direction.

Since the shear-banding instability corresponds to a real eigenvalue, the locus of
the neutral stability (a(0) ≡ Re(c) = 0) is given by α0 = 0, which can be simplified to

H 2 =
Ψ1

Ψ2

k2
β. (8.2)

Here kβ = βπ, with β = 1, 2, . . . being the mode number, and Ψ1 and Ψ2 are functions
of the base state density,

Ψ1 =
f 0

4

f 0
5

and Ψ2 =

(
f 0

5φ

f 0
5

+
f 0

2φ

f 0
2

)
f 0

1

f 0
1φ

− 2. (8.3)

The zero growth rate contour a(0) = 0 (i.e. the neutral stability curve) for the shear-
banding mode is shown in figure 6 by a thick solid line; the flow is unstable (a(0) > 0)
inside the neutral stability contour and stable (a(0) < 0) outside. It is seen that for a
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H

φ0

20 40 60 80 100

0.1

0.2

0.3

0.4

0.5

0.6

a(2) < 0 a(2) < 0

a(2) > 0

a(2) > 0 Subcritical

Supercritical

Figure 6. Phase diagram in the (H,φ)-plane: contours of the zero first Landau coefficient
(thin solid lines) and the zero growth rate (thick solid line) in the (H,φ0)-plane for e = 0.8 and
β = 1. The flow is unstable (a(0) > 0) on the right of the thick solid contour.

given density, there is a minimum/critical value of the Couette gap,

Hc = H (φ0, e, β; a(0) = 0) = kβ

√
Ψ1/Ψ2, (8.4)

depending on φ0, e and β , below which the shear flow is stable according to linear
theory. On the other hand, for a given H , there is a minimum/critical density,

φc = φ0(H, e, β; a(0) = 0), (8.5)

below which the shear flow is stable. While this critical density depends on H , e and
β , there is a global minimum density, defined as

φl
c = min φ0

(
a(0) = 0

)
∀ H, (8.6)

below which the uniform shear flow is always stable to the shear-banding instability,
irrespective of the values of e and β . For our Navier–Stokes-order model (2.5)–(2.7),
this global critical density is φl

c ≈ 0.154; this numerical value depends on the explicit
form of constitutive relations and the radial distribution function as discussed in §§ 9.1
and 9.2.

In the following two sections, we investigate the possibility of subcritical shear-
banding instability in dilute flows φ0 <φl

c from our nonlinear analysis. One goal
is to check the feasibility of finite-amplitude segregated solutions that have been
observed in molecular dynamics simulations of the dilute granular shear flow (Tan
1995). This constitutes a stringent test of our order-parameter theory since the same
has been predicted from the direct numerical simulation of continuum equations
for the same flow configuration (Nott et al. 1999). We will also determine finite-
amplitude solutions for moderately dense flows (φ0 > φl

c) which are linearly unstable
to shear-banding instability, signalling the possibility of supercritical bifurcations for
φ0 >φl

c.

8.2. Equilibrium amplitude and the nature of bifurcation

First we discuss the nature of bifurcation for the appearance of finite-amplitude
nonlinear solutions that would bifurcate from the uniform shear base state due to
the shear-banding instability as discussed in § 8.1. This is closely tied to the concept
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of equilibrium amplitude (i.e. the finite-amplitude equilibrium solution) and the first
Landau coefficient a(2) as shown below.

Let us rewrite the amplitude order-parameter or the Landau equation (4.18) as

S =
dA

dt
= a(0)A + a(2)A3 + a(4)A5 + · · · , (8.7)

which is an infinite series in which a(0) is the growth rate from the linear theory
and a(2), a(4), . . . , are nonlinear corrections to the linear growth rate, called Landau
coefficients. The above series (8.7) is also known as the Stuart–Landau series (Stuart
1960; Watson 1960). As mentioned above, we have restricted ourselves to the leading-
order nonlinear correction term by calculating only the first Landau coefficient a(2).

The stationary solution of (8.7), i.e. the value of A for which S =0, is called the
equilibrium amplitude A= Ae. To determine the equilibrium amplitude, we truncate
(8.7) at cubic order,

dAe

dt
= a(0)Ae + a(2)A3

e = 0, (8.8)

which has three possible solutions:

Ae = 0 and Ae = ±
√

−a(0)

a(2)
. (8.9)

The trivial zero solution, Ae = 0, corresponds to the base state of the uniform shear,
implying that the uniform shear solution is stable if the two non-zero solutions are
unfeasible. It is clear that the finite-amplitude/nonlinear solutions exist if and only if
the following condition holds:

a(0) and a(2) are of the opposite sign.

Two situations can arise:

(i) a(0) > 0 and a(2) < 0 (supercritical), (8.10)

(ii) a(0) < 0 and a(2) > 0 (subcritical). (8.11)

The former/latter condition corresponds to linearly unstable/stable flow with
positive/negative growth rates and negative/positive first Landau coefficients,
respectively, leading to supercritical/subcritical bifurcations. In other words, the
subcritical bifurcation arises when the first Landau coefficient a(2) has a positive
sign and the supercritical bifurcation occurs when a(2) is negative. In either case, there
is a new finite-amplitude solution given by (8.9).

8.3. Phase diagram for ‘nonlinear’ shear-banding instability

As described in the previous section, the sign of the first Landau coefficient a(2) decides
the type of bifurcation: supercritical (8.10) or subcritical (8.11). From our analytical
solution, the condition for the vanishing first Landau coefficient (7.17) simplifies to

φ̃
†
1G

1β1
13 + T̃

†
1 G

4β1
13 + ũ

†
1G

2β1
13 + ṽ

†
1G

3β1
13 = 0. (8.12)

The zero contour of the first Landau coefficient, c(2) = a(2) = 0, is superimposed over
the neutral stability contour (a(0) = 0) in figure 6 by a thin solid line. The restitution
coefficient is set at e = 0.8, with the mode number being β = 1. The regions of positive
and negative a(2) are shown in the figure. Note that the thick solid line in figure 6
corresponds to the zero growth rate contour (i.e. the neutral stability contour), to the
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Figure 7. Variation of the first Landau coefficient with density for subcritical flows: (a) H = 50
and (b) H = 100, with e = 0.8. The inset shows the variation in the growth rate of the least
stable mode (mode number β =1) with density. The solid line represents the analytical solution,
and the spectral/numerical solutions are denoted by stars, circles and squares, respectively,
with M = 20, 50 and 100 collocation points. The arrows in insets show the critical value of
density, φc , above which the flow is linearly unstable (i.e. a(0) > 0).

right of which the uniform shear flow is linearly unstable and is stable in the rest of
the (φ0, H )-plane.

In the following, we discuss the results of the first Landau coefficient and the related
bifurcations for linearly stable (φ0 < φl

c) and unstable (φ0 >φl
c) regimes separately in

§§ 8.3.1 and 8.3.2, respectively. We will show that the lower part of the neutral contour
(enclosed by the zero line of a(2) = 0) in figure 6 is subcritically unstable but its upper
part is supercritically unstable.

8.3.1. Linearly stable regime: φ0 <φl
c

Focusing on the stable dilute flows (φ0 < φl
c ≈ 0.154) in figure 6, we show the

variation of the first Landau coefficient with density in figures 7(a) and 7(b) for
two Couette gaps H = 50 and 100, respectively. The inset in each figure shows the
corresponding variation in the growth rate of the least stable shear-banding mode
(β = 1); the arrow in each inset shows the critical value of the density, φc, above
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Figure 8. Bifurcation diagram in the (A, φ0 − φc)-plane at three Couette gaps with e = 0.8.
Note that the bifurcation is subcritical in each case.

which the flow is linearly unstable. For both cases, we find that the growth rate, a(0),
is negative but the first Landau coefficient, a(2), is positive for a range of densities
in the linearly stable region (φ0 <φc), suggesting the existence of finite-amplitude
solutions as per (8.11). This is also evident from figures 4(a) and 4(b), which show
the variations of a(2) (main panel) and a(0) (inset) with the Couette gap at two values
of the mean density φ0 <φl

c.
The bifurcation diagrams in the (A, φ0 − φc)-plane, related to figures 7(a) and

7(b), are shown in figure 8 for three values of the Couette gap H =50, 100 and
200. For each case, the horizontal line with Ae = 0 represents the base state of the
uniform shear solution which is stable for φ0 <φl

c, but we also have new unstable
finite-amplitude solutions, representing subcritical bifurcations (also known as inverse
bifurcation). For subcritical bifurcations, the higher-order Landau coefficients (which
we have not calculated) are needed to identify the stable finite-amplitude solution.
Note that the finite-amplitude unstable branch in figure 8 provides a threshold for
nonlinear stability: the uniform shear flow is nonlinearly stable/unstable for A<Ae

or A > Ae, respectively. At a given density, this threshold amplitude Ae, to reach a
stable nonlinear state, is higher for smaller Couette gaps. Apart from its dependence
on the mean density (φ0) and the Couette gap (H ), Ae also depends on the restitution
coefficient (e), i.e. Ae ≡ Ae(φ

0, H, e). This is evident from figure 9, which shows the
bifurcation diagrams in the (A, φ0 − φc)-plane for three values of the restitution
coefficient at a Couette gap of H = 100. Clearly, the threshold amplitude Ae decreases
with increasing dissipation (i.e. with decreasing e).

The results presented in figure 8 can be replotted as a bifurcation diagram in the
(A, H )-plane as in figure 10. The mean density is set at φ0 <φl

c = 0.154 (φ0 = 0.15 and
0.10 in figures 10a and 10b, respectively) and the restitution coefficient to e = 0.8.
The finite-amplitude branch in each panel of figure 10 provides a threshold for
nonlinear stability, and the magnitude of this nonlinear threshold decreases with
increasing Couette gap. In fact, this branch bifurcates from infinity, i.e. from H = ∞,
as we explain below. Let us consider the leading-order analytical expression for the
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Figure 9. Effect of the restitution coefficient on (a) the variation of the first Landau coefficient
with φ0, and (b) the bifurcation diagram in the (A, φ0)-plane for H = 100 and β =1. The inset
shows the related variations in the linear growth rate with φ0 for different e. Note that the
bifurcation is subcritical in each case.
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Figure 10. Bifurcation from infinity (H → ∞) at (a) φ0 = 0.15 and (b) φ0 = 0.1 , with e = 0.8.

shear-banding mode (Alam & Nott 1998):

a(0) = −H −2
µ0
[
p0

φ(D0
T + µ0

T ) − p0
T (D0

φ + µ0
φ)
]
k2

β

2p0
T µ0 + φ0

[
p0

φ(D0
T − µ0

T ) − p0
T (D0

φ − µ0
φ)
] + O(H −4). (8.13)

It has been verified that a(0) is always negative for φ0 < φl
c, over which the shear flow

is linearly stable. However, it is clear from (8.13) that a(0) → 0 in the limit H → ∞,
and hence there is a critical point (a(0) = 0) at H = ∞. Therefore, the bifurcation point
for linearly stable densities (φ0 <φl

c) originates from H = ∞. This is the origin of the
nomenclature for the special type of bifurcation as shown in figure 10, bifurcation
from infinity (Rosenblat & Davis 1979; Alam 2005). In fact, this belongs to a more
general class of subcritical bifurcations.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

10
00

41
43

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112010004143


236 P. Shukla and M. Alam

−2 −1 0 1 2
0

0.1

0.2

0.3

0.4

0.5

H − Hc

φ0 = 0.16

0.17

0.173

0.2

0.174

0.18
A

SupercriticalSubcritical

Figure 11. Bifurcation diagram in the (A,H )-plane for a range of densities with e = 0.8. Note
that the bifurcation type changes from supercritical to subcritical below a critical value of the
mean density φ0 ∈ (0.173, 0.174).

From the above discussion, we conclude that the region in the (φ0, H )-plane in
figure 6, below the intersection of the zero contours of a(2) and a(0), is subcritically
unstable. More specifically, in this region (φ0 < φl

c) of linearly stable flows, there is a
bifurcation from infinity in the sense that the bifurcation point lies at H = ∞. In all
cases, there exist finite-amplitude nonlinear solutions, provided the amplitude of the
perturbation exceeds a threshold for nonlinear stability,

A > Ae(φ
0, H, e), (8.14)

which depends on various control parameters.

8.3.2. Linearly unstable regime: φ0 >φl
c

Here we consider moderately dense flows with φ0 >φl
c, for which the linear stability

theory predicts that the uniform shear is unstable to shear-banding instability if the
Couette gap is sufficiently large; more specifically, we focus on the regime in figure 6
which is enclosed by the neutral stability contour (a(0) = 0).

Figure 11 shows a series of bifurcation diagrams in the (A, H − Hc)-plane for six
values of the mean density, φ0 = 0.16, 0.17, 0.173, 0.174, 0.18 and 0.2, just above the
critical density for the onset of the linear shear-banding instability. The restitution
coefficient is set at e = 0.8, as in figure 6. It is clear that the bifurcation type is
not supercritical immediately, even though we are in the linearly unstable regime
(φ0 > φl

c). However, we have a window of mean densities,

φl
c � φ0 � φs

c, (8.15)

with φs
c ∈ (0.173, 0.174), over which the bifurcation is subcritical and is supercritical

for larger densities,

φ0 > φs
c . (8.16)

From figure 11 we find that the critical density at which this switchover between the
subcritical and supercritical bifurcations occurs is about φs

c ≈ 0.1735.
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Figure 12. Variations in the first Landau coefficient, a(2), and the growth rate of the least
stable shear-banding mode, a(0), with the Couette gap for linearly unstable mean densities
φ0 > φl

c ≈ 0.154: (a) φ0 = 0.17 and (b) 0.18. The arrow in each panel shows the critical Couette
gap Hc , above which the shear flow is linearly unstable (a(0) > 0).

To understand the origin of the above switchover between the two bifurcations,
we show the variation of the first Landau coefficient with H at φ0 = 0.17 and 0.18
in figures 12(a) and 12(b), respectively. In each figure, we have superimposed the
corresponding variation of the least stable mode, a(0), shown by the dot-dashed line,
and the critical Couette gap, Hc = H (a(0) = 0), is also shown by an arrow. In the case of
φ0 = 0.17 <φs

c , we find a range of Couette gaps (shown by vertical lines in figure 12a)
over which a(0) < 0 and a(2) > 0, which correspond to subcritical bifurcations (8.11).
On the other hand, for φ0 = 0.18 >φs

c , we have a range of Couette gaps (shown by
vertical lines in figure 12b) over which a(0) > 0 and a(2) < 0, signalling the presence of
supercritical bifurcations (8.10).

Even at larger mean densities (φ0 � φs
c ), the bifurcation remains supercritical as

seen in figure 13(a). The corresponding variations of a(2) and a(0) are shown in the
main panel and the inset of figure 13(b). At both φ0 = 0.3 and 0.5, the condition for
the supercritical bifurcation (8.10), a(0) > 0 and a(2) < 0, is satisfied. It is seen from
figure 13(a) that the magnitude of A, required to reach the nonlinear finite-amplitude
branch, increases with increasing density.

In § 9, we will discuss the possible influence of different constitutive relations and
the contact radial distribution function on the above bifurcation scenario.

8.4. Finite-amplitude solutions: density segregation and shear localization

Once we know the equilibrium amplitude, the finite-amplitude solutions for the density
and the shear rate are computed from

φ = φ0 ± Aeφ
[1:1], (8.17)

γ =
d

dy

(
u0 ± Aeu

[1:1]
)
, (8.18)

with leading-order corrections in the amplitude O(A). Typical subcritical finite
amplitude solutions for φ and γ are shown in figures 14(a) and 14(b), respectively, for
mode β = 1, with parameter values φ0 = 0.15, H = 100 and e =0.8. The analogue of
these figures for mode β =2 is shown in figures 15(a) and 15(b). For any mode number
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Figure 13. (a) Bifurcation diagrams in the (A,H )-plane and (b) the variations of first Landau
coefficients at larger mean densities, φ0 � φl

c , with e = 0.8. The inset shows the variations in
the linear growth rate with H .

0.13 0.14 0.15 0.16 0.17
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Figure 14. Finite-amplitude solutions for (a) the density, φ0 + Aφ[1;1] and (b) the shear rate,
d/dy(u0 + Au[1;1]), for mode β = 1. Parameter values are φ0 = 0.15, H = 100 and e = 0.8

β , there are two solutions that are mirror-symmetric, which is due to the underlying
symmetry of the plane Couette flow. It is clear that the density and shear rate are
non-uniform across the Couette gap (y), leading to density segregation and shear
localization – the shear rate is large/small in the dilute/dense regions, respectively.
The varying shear rate across the Couette gap (i.e. along the gradient direction)
is the hallmark of shear-banded solutions in complex fluids (Olmsted 2008). Note
that the solution profiles shown in figures 14 and 15 are ‘unstable’ since they belong to
the unstable ‘subcritical’ bifurcation branch. For subcritical bifurcations, the higher-
order Landau coefficients (which we have not calculated) are needed to identify stable
finite-amplitude solutions. The ‘stable’ finite-amplitude solutions of the density and
the shear rate, corresponding to supercritical bifurcations (for example, at φ0 = 0.3
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Figure 15. Same as figure 14, but for mode β =2.

and H > Hc, as in figure 13a), are also characterized by shear localization and density
segregation across the gradient direction, similar to those shown in figures 14 and 15.

8.5. Scaling of the first Landau coefficient, equilibrium amplitude
and bifurcation diagram

So far we have presented bifurcation diagrams and the first Landau coefficients for
mode β = 1. In this section, we will demonstrate that there exists a simple scaling
for a(0), a(2) and A in terms of mode number β with respect to the Couette gap H .
More specifically, we will show that the dependencies of a(0), a(2) and A (at a given
density φ0) on β can be absorbed by defining a new length scale: H → H ∗(H, β). In
other words, knowing the variations of a(0), a(2) and A with H for any β (at a given
density), one can determine these quantities at other values of β at the same mean
density. (However, there is no such scaling solution in terms of mean density.) We
will further demonstrate that the phase diagrams in the (H, φ0)-plane, showing zero
loci of a(2) and a(0), remain invariant under a composite scaling for the Couette gap:
H → H ∗(H, β, e), i.e. in terms of both β and the inelasticity (1 − e2).

Figure 16(a) shows the effect of mode number β on the first Landau coefficient
a(2) (main figure) and the linear mode a(0) (inset) for parameter values of φ0 = 0.3
and e = 0.8. The flow becomes unstable to higher-order modes at larger values of the
Couette gap; see the inset of figure 16(a). The corresponding supercritical bifurcation
diagrams for β =1, 2 and 3 are shown in figure 16(b) – note that the abscissa has
been normalized via H − Hc, where Hc = Hc(β) is the critical Couette gap, as denoted
by vertical arrows in the inset of figure 16(a). When the Couette gap is rescaled via
H → H/β , the results for various β do collapse on a single curve for each case of a(2)

(main panel of figure 17a), a(0) (inset of figure 17a) and A (figure 17b).
The above scaling of the equilibrium amplitude with β also holds for subcritical

values of the mean density; see figures 18(a) and 18(b) for φ0 = 0.15 and 0.1,
respectively. The inset in each figure displays the variations of A with H for three
values of β = 1, 2, 3. Such scaling of A with H/β holds at any value of the restitution
coefficient (not shown).

It has been verified (not shown for brevity) that the scaling of the Couette gap
in terms of mode number, H → H/β , holds for the zero contours of the first
Landau coefficient a(2) = 0 in the entire (H, φ0)-plane at any value of the restitution
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Figure 16. Effects of the mode number β on the (a) variation of a(2) and a(0) and (b) the
bifurcation diagram in the (A,H )-plane. Parameter values are φ0 = 0.3 and e = 0.8.
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Figure 17. Universal scaling with β of the variations of (a) a(2) and a(0) and (b) A with H .
Parameter values are φ0 = 0.3 and e = 0.8.
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Figure 18. Bifurcation from infinity: (a) φ0 = 0.15 and (b) φ0 = 0.1 at e = 0.6.
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Figure 19. Scaling for the zero contour of the first Landau coefficient, a(2) = 0, in terms of
the restitution coefficient for mode β =1.

coefficient e. Furthermore, the phase diagrams also remain invariant under a simple

transformation in terms of inelasticity: H → H
√

1 − e2, see figure 19. Three sets of
contours of a(2) = 0 in the (H, φ0)-plane for e =0.95, 0.8 and 0.6 (figure 19a) collapse
onto a single contour as seen in figure 19(b) when the horizontal axis is scaled by

H → H
√

1 − e2.
For the neutral stability contour [a(0) = 0], the above-mentioned composite length

scale, H ∗(H, e, β), directly arises from the analysis of our linear stability results. From
(8.4) we find that the locus of the neutral stability contour (a(0) = 0) is given by
H ∼ β

√
ψ1 ∼ β(1−e2)−1/2 since ψ1 ∼ 1/f 0

5 ∼ (1−e2)−1; see (8.3). Therefore, the neutral
stability contour, a(0) = 0, would remain invariant under the following scaling of the
Couette gap:

H → Hβ−1
√

(1 − e2) ≡ H ∗. (8.19)

It is still not clear why the above composite scaling (8.19) should hold for the zero
contour of the first Landau coefficient a(2) = 0. The expression for a(2) = 0 in (8.12)
can be simplified to (see (C9) in Appendix C, part of the supplementary material
available at journals/.cambridge.org/flm)

H 2 =
−
(
k4

βK1 + k3
βK2 + k2

βK3 + kβK4

)(
k3

βK5 + k2
βK6 + kβK7 + K0

) , (8.20)

where kβ = πβ and the expressions for K1, K2, K3, . . . , which depend on base state
variables (and hence on the restitution coefficient e) as well as on the modal amplitudes
of the fundamental and second harmonic, are given in Appendix C. The dependence
of Ki on β comes via the implicit dependence of modal amplitudes on β and hence
not known a priori. Nevertheless, it appears that the same composite scaling for the
Couette gap (8.19) also holds for the zero loci of the first Landau coefficient, as
demonstrated in figure 19.

Finally, figure 20 displays the scaled phase diagram in the (H ∗, φ0)-plane, where

H ∗ = Hβ−1
√

(1 − e2) is a new length scale or an instability length scale, delineating
the regions of the supercritical and subcritical bifurcations. The grey-shaded region
in figure 20 corresponds to a(2) > 0 and a(0) > 0 and, therefore, no finite-amplitude
solution is possible at cubic order, according to (8.9), in the shaded region. There
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Figure 20. Scaled phase diagrams in the (H ∗, φ0)-plane, where H ∗ = Hβ−1
√

(1 − e2), showing
the zero contours of the first Landau coefficient, a(2) = 0, and the linear growth rate a(0) = 0.
The shaded region corresponds to a(2) > 0 and a(0) > 0.

is subcritical bifurcation in the dilute limit (below the lower branch of the neutral
contour and on the right of the a(2) = 0 contour), and supercritical bifurcation at
moderate-to-large densities.

9. Discussion
9.1. Influence of radial distribution function

So far we have presented results for a specific choice of the contact radial distribution
function, χ(φ), as defined in (2.7), which was chosen following the linear stability
analysis of Alam & Nott (1998). Here, we consider a modified form of the well-
known Carnahan–Starling radial distribution function, χ(φ):

χ(φ) =
(1 − φ/2)

(1 − φ/φm)3
, (9.1)

where φm corresponds to the maximum solid fraction at a random close packing
which is taken to be 0.65 in the present work. Note that with φm = 1, (9.1) reduces to
the well-known Carnahan–Starling form with its singularity being at φm =1, which
corresponds to point particles.

With constitutive relations as in (2.5)–(2.6) and the Carnahan–Starling radial
distribution function (9.1), we show the scaled phase diagram in the (H ∗, φ0)-plane,
where H ∗ = Hβ−1

√
(1 − e2) and φ0 is the mean density, in figure 21(a) for φm =0.65.

(The overall features of the phase diagram remain similar at other values of φm.)
The thick solid line is the neutral stability contour (a(0) = 0), to the right of which
the flow is linearly unstable and is stable outside; the thin lines correspond to the
zeros of the first Landau coefficient a(2) = 0. A contrasting feature between the phase
diagram in figure 21(a) and that in figure 20 (for which we had used (2.7) as the radial
distribution function) is that the zero contour of the first Landau coefficient a(2) = 0
crosses the neutral stability curve a(0) = 0 at two additional points at large densities
in the former. Recall that a crossing of a(2) = 0 and a(0) = 0 signals a switchover from
one type of bifurcation to another. This is clearly shown in the bifurcation diagrams
in the (H ∗, A)-plane in figure 21(c,d), with parameter values as in figure 21(a). In
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Figure 21. (a) Scaled phase diagram in the (H ∗, φ0)-plane, where H ∗ = Hβ−1
√

(1 − e2),
showing the zero contours of the first Landau coefficient, a(2) = 0, and the linear growth rate
a(0) = 0. The shaded region corresponds to a(2) > 0 and a(0) > 0. Constitutive relations are the
same as in figure 20 (as in § 2.1), except that we used the Carnahan–Starling radial distribution
(9.1) with φm = 0.65. (b–d) Bifurcation diagrams in the (A,�H ∗)-plane, where �H ∗ = H ∗ −H ∗

c ,
showing a sequence of transitions from subcritical to supercritical bifurcations and vice versa;
see text for details.

figure 21(c,d), a series of finite-amplitude bifurcating solutions are shown against
�H ∗ = H ∗ − H ∗

c (i.e. a renormalized Couette gap) that measures a distance from its
respective neutral/critical point (H ∗ = H ∗

c , with Hc as defined in (8.4)). It is clear
that the nature of bifurcation changes (from subcritical to supercritical or vice versa)
with increasing mean density in each figure. We find three critical densities at which
the nature of bifurcation changes: (i) from subcritical to supercritical bifurcations
at φs

c ≈ 0.196, in figure 21(b); (ii) from supercritical to subcritical bifurcations at
φs

c ≈ 0.467, in figure 21(c); and (iii) from subcritical to supercritical bifurcations at
φs

c ≈ 0.559, in figure 21(d). While the first transition from subcritical to supercritical
bifurcation was also found for the radial distribution function (2.7), the last two
transitions in the dense limit, supercritical → subcritical → supercritical, are specific
to the choice of the Carnahan–Starling-type radial distribution function (9.1).

We conclude that both the radial distribution functions, (2.7) and (9.1),
predict a similar bifurcation scenario (bifurcation-from-infinity → subcritical →
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supercritical) at dilute-to-moderate densities; however, the Carnahan–Starling-type
radial distribution function (9.1) is responsible for the onset of subcritical bifurcations
in the dense limit. Clearly, the exact form of the radial distribution function is needed
to correctly predict the bifurcation type (sub- or supercritical) and the corresponding
critical density for the onset of the nonlinear shear-banding instability.

9.2. Influence of constitutive relations: disks versus spheres

Recall that the constitutive expressions for fi(.) values (dimensionless functions of the
solid fraction, φ) in (2.6), which were used in all calculations, are valid only for spheres.
Therefore, our results pertain to the granular plane Couette flow in two dimensions,
having a monolayer of spheres along the spanwise direction. It is interesting to
ascertain whether our predictions about the onset of the nonlinear shear-banding
instability and the corresponding bifurcation scenario in different density regimes still
hold if we use constitutive relations for hard disks.

For hard disks in two dimensions (dim= 2), the balance equations and the form of
constitutive relations remain unaltered; however, the expressions for fi(.) values as
defined in (2.6) are different for disks:

f1(φ) = φ(1 + 2φχ),

f2(φ) =

√
π

8χ
+

√
π

4
φ +

√
π

8

(
1 +

8

π

)
φ2χ,

f3(φ) =
2√
π

φ2χ,

f4(φ) =

√
π

2χ
+

3
√

π

2
φ +

√
π

(
2

π
+

9

8

)
φ2χ,

f5(φ, e) =
4√
π

(1 − e2)φ2χ.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(9.2)

In two dimensions, the contact radial distribution function, χ(φ), is chosen to be of
the form

χ(φ) =
(1 − 7φ/16)

(1 − φ/φm)2
, (9.3)

which diverges at φ = φm, which is taken to be either (i) φm = π/2
√

3 ≈ 0.906 (the
maximum packing limit in two dimensions) or (ii) φm = φr ≈ 0.82 (the random close
packing limit in two dimensions). The expression (9.3) reduces to that of Henderson
for φm =1, which corresponds to point particles.

Recall that changing the explicit forms of constitutive relations amounts to changing
only the forms of the linear and nonlinear operators, Lkn and Gkn, respectively, in
(4.20) since the governing equations (2.1)–(2.4) and the boundary conditions (2.8) are
the same for both spheres and disks. With constitutive relations (9.2) and (9.3), we
have repeated some of the nonlinear stability calculations that we briefly discuss here.
The scaled phase diagram in the (H ∗, φ0)-plane, where H ∗ = Hβ−1

√
(1 − e2) and φ0

is the mean density, is shown in figure 22(a) for φm = 0.906. A closer look at the
zero contour of the first Landau coefficient a(2) = 0 and the neutral contour a(0) = 0
near the dense limit (at much larger values of H ∗ ∼ 500) ascertains that there is no
crossover between a(2) = 0 and a(0) = 0, except that at a moderate density φ0 ∼ 0.37.
With parameter values as in figure 22(a), a series of bifurcation diagrams in the
(A, �H ∗)-plane are shown in figure 22(b) for a range of mean densities. For this
case, the nature of bifurcation changes from subcritical to supercritical at φs

c ≈ 0.373.
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Figure 22. (a) Scaled phase diagram in the (H ∗, φ0)-plane, where H ∗ = Hβ−1
√

(1 − e2), for

constitutive relations for hard disks (two dimensions) as in (9.2)–(9.3) with φm = π/2
√

3 ≈ 0.906.
(b) Bifurcation diagrams in the (A,�H ∗)-plane, where �H ∗ = H ∗ − H ∗

c , showing a transition
from subcritical to supercritical bifurcations.

Note in figure 22(a) that the flow is linearly stable in the dilute limit, and the shear-
banding occurs via a ‘bifurcation-from-infinity’ for φl

c � 0.338. A comparison between
figures 22(a) and 20 reveals that the region of ‘bifurcation-from-infinity’ is much
larger for hard disks.

With constitutive expressions for hard disks as in (9.2) and (9.3), the following
sequence of pitchfork bifurcations, leading to nonlinear shear-banded solutions, holds
as we increase the mean density from the Boltzmann limit: bifurcation-from-infinity →
subcritical → supercritical. In contrast to results for spheres, we do not find subcritical
bifurcations in the dense limit for hard disks with (9.2) and (9.3). We have verified
that the same sequence of bifurcations also holds even if we allow the shear viscosity
to diverge at a faster rate than other transport coefficients.

9.3. Granular plane Couette flow as a ‘microcosm’ of pitchfork bifurcations

Let us now summarize our results on different types of pitchfork bifurcations in the
granular plane Couette flow that result from the nonlinear saturation of the shear-
banding instability. With (2.7) as the contact radial distribution function and the
constitutive relations as in § 2.1, the sequence of pitchfork bifurcations in the present
flow configuration, with increasing mean density, reads as

bifurcation from infinity: φ0 < φl
c ≈ 0.154,

subcritical bifurcation: φl
c < φ0 < φs

c,

supercritical bifurcation: φ0 > φs
c ≈ 0.1735.

⎫⎪⎬⎪⎭ (9.4)

This prediction is the same as in our previous paper, Shukla & Alam (2009). Note
that the direct numerical simulation of continuum equations (2.1)–(2.4) for the same
problem (Nott et al. 1999) has also identified the above three types of bifurcations. By
changing the contact radial distribution function to the Carnahan–Starling type (9.1),
with φm =0.65, and the constitutive relations as in § 2.1, the sequence of pitchfork
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bifurcations reads as

bifurcation from infinity: φ0 < φl
c ≈ 0.174,

subcritical bifurcation: φl
c < φ0 < φs

c ≈ 0.196,

supercritical bifurcation: φs
c < φ0 < φs1

c ≈ 0.467,

subcritical bifurcation: φs1
c < φ0 < φs2

c ≈ 0.559,

supercritical bifurcation: φ0 > φs2
c .

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(9.5)

This bifurcation sequence remains intact even when the singularity of the Carnahan–
Starling radial distribution function (9.1) is moved to φm = 1; only the critical densities
at which each transition occurs are quantitatively different: φl

c ≈ 0.218, φs
c ≈ 0.246,

φs1
c ≈ 0.717 and φs2

c ≈ 0.842.
It is clear from the above discussion that the sequence of bifurcations (the first

three in (9.4) and (9.5)) remains the same in the regime of dilute to moderate
densities, irrespective of explicit forms of constitutive relations for different transport
coefficients; however, the nature of bifurcations at larger densities (especially the
appearance of subcritical bifurcations in the dense limit) depends crucially on
constitutive relations and the contact radial distribution function. It is recommended
to employ the exact forms of constitutive relations that are likely to be valid in the
whole range of densities (which can be obtained from particle simulations) so as
to make a fair conclusion about the bifurcation type and the corresponding critical
density for the onset of the nonlinear shear-banding instability in the granular plane
Couette flow. Such a detailed parametric study is beyond the scope of the present
paper and is left to the future.

Figure 23 summarizes all possible bifurcation scenarios for the nonlinear shear-
banding instability in a granular plane Couette flow. Note that a single control
parameter, the mean density (φ0), needs to be varied to obtain any type of pitchfork
bifurcation in this flow. Therefore, the granular plane Couette flow serves as a
microcosm of pitchfork bifurcations since all three possible types of pitchfork
bifurcations, as shown schematically in figure 23, can be realized by just varying
the mean density.

Moving to the well-researched field of Newtonian fluids, we note that a similar
type of bifurcation from infinity occurs in the plane Couette flow (Nagata 1990);
note, however, that there is no supercritical or subcritical bifurcations in this flow
since the Newtonian plane Couette flow is known to be stable according to the linear
stability theory (Romanov 1973). For Newtonian fluids, the examples of subcritical
and supercritical bifurcations can be found in the plane Poiseuille flow (Stuart 1960;
Reynolds & Potter 1967) and Rayleigh–Bénard convection (Busse 1978), respectively.
We are not aware of any flow which admits all three types of pitchfork bifurcations
and, therefore, the granular plane Couette flow is truly a paradigm for pitchfork
bifurcations.

9.4. Qualitative comparison with particle simulations and experiment

The plethora of pitchfork bifurcations in the granular plane Couette flow, as
summarized in figure 23, agrees qualitatively with previous particle simulations of
the same flow (Tan 1995; Tan & Goldhirsch 1997; Sasvari, Kertesz & Wolf 2000;
Alam & Luding 2003; Conway & Glasser 2004; Conway, Liu & Glasser 2006; Khain
& Meerson 2006; Saitoh & Hayakawa 2007; Khain 2007). For example, the earliest
simulations of Tan (1995) with inelastic hard disks in the dilute regime (at a particle
volume fraction of 0.05) identified shear-banding patterns with a dense plug around
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Figure 23. A schematic of different types of pitchfork bifurcations, showing the whole
paradigm, in the granular plane Couette flow. The dashed lines in the subcritical bifurcation
diagrams represent threshold amplitude for nonlinear stability.

the channel centreline and the corresponding density profile is similar to that in
figure 15(a), denoted by the dashed line. As discussed previously (Shukla & Alam
2009), the related bifurcation scenario corresponds to the ‘bifurcation-from-infinity’
(at φ0 < φl

c as in figure 23) – our order-parameter theory resolved a related paradox,
‘the appearance of shear-bands in a linearly stable flow’, by providing a threshold
perturbation amplitude which is likely to trigger nonlinearly stable shear-banding
patterns even in a ‘dilute’ granular plane Couette flow (which is stable according to
the linear stability theory). As for the latter point, the overall bifurcation scenario
predicted by our order-parameter theory is also in tune with previous direct numerical
simulations of the same hydrodynamic equations (Nott et al. 1999). Therefore, the
shear-banding in the granular plane Couette flow is an instability-induced-ordering
phenomenon.

The inelastic hard disk simulations of the bounded shear flow at a particle volume
fraction of 0.3 by Sasvari et al. (2000) showed that the ‘asymmetric’ shear-banding
patterns with a dense plug located near one of the walls can be sustained in a plane
Couette flow. According to our order-parameter theory, such asymmetric shear-bands
can appear due to pitchfork bifurcations from odd-modes β = 1, 3, . . . , with typical
density profiles as in figure 14(a) for mode β = 1. Alam & Luding (2003) have also
identified such asymmetric shear-bands in dense flows, as well as the recent simulations
of Khain (2007). Khain (2007) further showed that even in the dense regime of the
plane Couette flow, the shear-bands can appear via a ‘hysteretic’ transition (i.e. a
subcritical bifurcation and hence bistability) – this agrees with our predictions of
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subcritical bifurcations in the dense limit at φs1
c < φ0 <φs2

c (see figure 23). Note that
Khain (2007) compared his simulation results with the numerical solution of Navier–
Stokes-order hydrodynamic equations with a set of modified constitutive relations,
with reasonable agreement between the two. Conway & Glasser (2004) and Conway
et al. (2006) have conducted large-scale particle simulations of the granular plane
Couette flow of both monodisperse and bidisperse particles. They found the existence
of ‘stable’ symmetric and asymmetric shear-bands (with the symmetry being about
the spatial location of the shear-band around the channel centreline) for a range
of particle volume fractions spanning from the dilute to the dense regime. All these
simulation results agree qualitatively with our order-parameter theory, which predicts
both symmetric and asymmetric shear-banding modes which can be stable/unstable
depending on the Couette gap and inelasticity.

The experimental evidence of shear-bands in the ‘rapid’ shear regime has been
lacking since the plane Couette flow is hard to realize in Earth-bound experiments
where gravity dominates, leading to a collapsed state near the bottom wall. However,
the recent experiments by Conway et al. (2006) in a circular Couette geometry at
very high shear rates have uncovered the possible existence of shear-bands. Note
that only a monolayer of glass beads resting on a bottom glass plate and confined
within an annular gap of about 65 particle diameters was sheared by rotating the
inner cylinder at very high speeds, which was varied up to a maximum shear rate of
221 s−1. The novelty in these experiments was that the bottom wall of the Couette
cell had a mild inward slope (less than 5◦) to mitigate the effect of the centrifugal
force. Above a shear rate of about 44 s−1, the particles formed a single dense plug
(of about 15 particle diameters width) located around the centreline of the annular
cell away from both walls, and the resulting pattern was shown to be stable over the
experimental time scales of 30 min. The measurement of the instantaneous velocity
field using particle image velocimetry confirmed that the shear rate is large within the
particle-lean regions and small within the particle-rich (plug) regions, signalling the
onset of shear-banding-type patterns. Clearly, more such careful experiments or those
under microgravity conditions are required to quantitatively verify the theoretical and
simulation results. In summary, it is fair to conclude from the above discussion that
the order-parameter theory, the simulation and the experiment agree qualitatively
with regard to the formation of shear-bands in the rapid granular plane Couette flow.

10. Conclusions and outlook
We have analysed the nonlinear stability of the granular plane Couette flow, focusing

on the shear-banding instability (Alam & Nott 1998; Alam 2005; Alam et al. 2008)
for which the shear flow degenerates into an ordered state with shear localization and
density segregation along the gradient direction. The amplitude expansion method
of Stuart and others (Stuart 1960; Watson 1960; Reynolds & Potter 1967) has been
adapted to the present nonlinear problem of the streamwise-independent granular
plane Couette flow. Using this perturbation method, the nonlinear stability problem
has been reduced to a sequence of linear inhomogeneous differential equations for the
fundamental mode (linear eigenfunction) and its harmonics and the related distortions
of the base flow and the fundamental mode at various orders. The amplitude
expansion method constitutes an indirect method to arrive at the Landau equation,
and the related nonlinear corrections, the Landau coefficients, are determined from
the Fredholm alternative or the solvability condition at the cubic/higher order in the
perturbation amplitude.
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While the amplitude expansion method is physically appealing and easy to adapt, as
we have shown in this paper, the present method differs from several direct methods
of nonlinear stability analysis (e.g. the centre-manifold reduction, Carr 1981, Shukla &
Alam 2009; multiple scale analysis, Stewartson & Stuart 1971), wherein the Landau
equation is derived directly from the nonlinear perturbation equations, which is in
contrast to the present method where the order-parameter equation is postulated
based on physical arguments about the possible time evolution of the linear mode.
In the case of the centre-manifold reduction, the nonlinear analysis is carried out
through a spectral decomposition of the fast and slow modes (Shukla & Alam 2009);
the relevant order-parameter equation is derived by taking the inner product of the
evolution equation of the slow mode with its adjoint eigenfunction and the Landau
coefficients are subsequently picked up from the coefficients of nonlinear terms of
various orders. We have shown that both the direct and indirect methods lead to the
same expression for the first Landau coefficient, which is the first nonlinear correction
to the well-studied linear theory. Therefore, up to the first Landau coefficient, both
the amplitude expansion method and the centre-manifold reduction are equivalent
to the present problem of the granular Couette flow. The development of an order-
parameter theory for the shear-banding instability in the granular Couette flow, using
the amplitude expansion method, and establishing its equivalence with the centre-
manifold reduction constitute the first major outcome of the present paper.

For the shear-banding instability, the nonlinear modes are found to follow certain
symmetries of the fundamental mode and the base state solution, which have helped
us to discover analytical solutions for the second harmonic and the distortion of the
fundamental mode. It is shown that the second harmonic and the base state distortion
at the quadratic order are equal to each other for this instability. The present analytical
solutions for nonlinear modes have been used to evaluate the first Landau coefficient
exactly, which complements and verifies our previous numerical solution of the same
problem (Shukla & Alam 2009). These analytical solutions further helped to identify
universal scalings for the first Landau coefficient, the equilibrium amplitude, and the
phase diagram in the (H, φ0)-plane in terms of the mode number β and the inelasticity
(1 − e2)1/2, as detailed in § 8.5. Uncovering the analytical solution for the nonlinear
shear-banding instability in the granular plane Couette flow constitutes the second
major outcome of this paper.

Concurrently, we have developed a numerical method, based on the Chebyshev
spectral collocation technique, to solve the inhomogeneous differential equations at
each order in the perturbation amplitude. The quantitative agreement between our
analytical and the spectral solutions for the fundamental mode and its harmonics
(of various orders), as well as for the first Landau coefficient, ascertains the accuracy
of our spectral-based numerical method. This constitutes the third major outcome of
this paper: the validation of a numerical scheme for nonlinear stability calculations,
via its comparison with our analytical solutions, which can now be adapted to other
types of granular shear flows.

Analysing the zero contour of the first Landau coefficient in the (H, φ0)-plane, where
H = h/d is the ratio between the Couette gap (h) and the particle diameter (d) and φ0 is
the mean volume fraction of particles, we have re-established our previous prediction
(Shukla & Alam 2009) that the lower branch of the neutral stability curve (i.e. the
‘zero’ growth rate contour) in the (H, φ0)-plane is subcritically unstable. The related
threshold amplitude for the nonlinear stability has been determined, leading to the
possibility of shear-banding-type solutions in dilute flows via subcritical bifurcations.
In contrast to the predictions of the nonlinear theory, the dilute flows are known to be
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stable to gradient banding according to the linear stability theory (Alam & Nott 1998;
Alam et al. 2008). Irrespective of the nature of bifurcation, the predicted nonlinear
solutions indicate that the uniform shear flow undergoes an ordering transition into
alternate layers of dense and dilute regions of low and high shear rates, respectively,
along the gradient direction (and hence the name ‘gradient banding’).

Our order-parameter theory predicts that the nonlinear shear-banding instability
leads to different types of pitchfork bifurcations (see figure 23) as we increase the mean
density (φ0) from the Boltzmann limit: (i) bifurcation from infinity in the Boltzmann
limit (φ0 <φl

c), (ii) subcritical bifurcations over a small window of moderate densities
(φl

c < φ0 <φs
c ), (iii) supercritical bifurcations at moderate densities (φs

c <φ0 <φs1
c ), (iv)

subcritical bifurcations in the dense limit (φs1
c <φ0 < φs2

c ), and finally again to (v)
supercritical bifurcations near the close packing limit (φ0 >φs2

c ∼ φm). Note that the
‘bifurcation from infinity’ can be considered as a generalized subcritical bifurcation
wherein the bifurcation point originates from infinity (H = ∞). The critical density at
which a transition occurs from one bifurcation type to another (φl

c, φs
c , φs1

c and φs2
c )

depends on the detailed forms of constitutive relations as well as on the choice of the
contact radial distribution function. We have found that while the first three sequences
of bifurcations (i–iii) appear to be independent of the choice of constitutive relations,
the last two bifurcation sequences (iv–v), especially the appearance of subcritical
bifurcations in the dense limit, depend on the choice of the contact radial distribution
function. Since all three possible types of pitchfork bifurcations can be realized in
this flow by just varying the mean density, we conclude that the granular plane
Couette flow truly serves as a microcosm of pitchfork bifurcations. The predicted
bifurcation scenario for the shear-band formation and the structure of hydrodynamic
fields are found to be in qualitative agreement with particle dynamics simulations
and experiment in the rapid shear regime of the granular Couette flow as discussed
in § 9.4.

Although we have focused on streamwise-independent flows (i.e. one-dimensional)
in this paper, our analysis is in no way limited but can be extended to analyse patterns
in the two- and three-dimensional plane Couette flows (Shukla & Alam 2010); for
example, we could allow inhomogeneities along both the streamwise and spanwise
directions, leading to spatially extended patterns for which a similar order-parameter
theory can be developed. Our spectral-based numerical code can be adapted to
such cases to analyse the nonlinear stability in a host of granular flow problems
for which analytical solutions would be hard to come by: granular Faraday waves
(Umbanhower et al. 1996; Tsimring & Aranson 1997), granular Rayleigh–Bénard
convection (Hayakawa, Yue & Hong 1995; Eshuis et al. 2010), granular Poiseuille
flow (Raafat, Hulin & Herrmann 1996; Alam, Chikkadi & Gupta 2009) and inclined
chute flow (Forterre & Pouliquen 2002). To investigate these flows using the present
order-parameter theory, we need to incorporate realistic boundary conditions (i.e. the
slip velocity and non-adiabatic walls), which are beyond the scope of this paper.

In weakly nonlinear stability studies, one important issue is the convergence of the
Stuart–Landau series (4.18)–(4.19), which can be checked by determining its radius of
convergence provided we know higher-order (second, third, etc.) Landau coefficients.
Such studies have been carried out for incompressible shear flows of Newtonian
fluids (Herbert 1980; Newell et al. 1993) by calculating the first 10 or more Landau
coefficients, and then finding the nearest singularity from Domb–Sykes plots (Hinch
1991) to estimate the radius of convergence. For the present problem of the granular
Couette flow, we have calculated only the first Landau coefficient and, therefore, we
are unable to make any conclusion about the range of validity of our nonlinear
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solutions in the parameter space (away from the neutral contour). Moreover, we
need to calculate at least the second Landau coefficient to determine the stable
solution branches for subcritical bifurcations. In principle, the higher-order Landau
coefficients can be calculated; however, the related analysis and algebra become
messy and tedious due to the nonlinearities inherent in the transport coefficients of
granular fluids. Such an exercise would further help to establish a detailed term-by-
term equivalence between the amplitude expansion method and the centre-manifold
reduction for the granular plane Couette flow. These issues should be looked into in
future.

We acknowledge partial funding support from a project (BARC/MA/4216). We
dedicate this paper to Professor Vijay H. Arakeri on the occasion of his 65th birthday
and to the memory of late Professor Isaac Goldhirsch, who passed away on 29 April
2010 while this paper was under review.

Supplementary data are available at journals.cambridge.org/flm.

Appendix A. Nonlinear terms N2 and N3
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Appendix B. Inhomogeneous terms G13
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Appendix C. Locus of a(2) = 0

(Appendix C is available at journals.cambridge.org.flm)
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