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Abstract

Recently, there has been a lot of interest in the integration of Description Logics (DL) and

rules on the Semantic Web. We define guarded hybrid knowledge bases (or g-hybrid knowledge

bases) as knowledge bases that consist of a Description Logic knowledge base and a guarded

logic program, similar to the DL+ log knowledge bases from Rosati (In Proceedings of the

10th International Conference on Principles of Knowledge Representation and Reasoning, AAAI

Press, Menlo Park, CA, 2006, pp. 68–78.). g-Hybrid knowledge bases enable an integration of

Description Logics and Logic Programming where, unlike in other approaches, variables in

the rules of a guarded program do not need to appear in positive non-DL atoms of the body,

i.e., DL atoms can act as guards as well. Decidability of satisfiability checking of g-hybrid

knowledge bases is shown for the particular DL DLRO−{�}, which is close to OWL DL,

by a reduction to guarded programs under the open answer set semantics. Moreover, we

show 2-exptime-completeness for satisfiability checking of such g-hybrid knowledge bases.

1 A preliminary version of this paper presented at the proceedings of the ICLP’06 Workshop on
Applications of Logic Programming in the Semantic Web and Semantic Web Services (ALPSWS2006),
Seattle, WA, USA, August 16, 2006, pp. 39–54.

2 The work has funded by the European Commission under the projects ASG, DIP, enIRaF, InfraWebs,
Knowledge Web, Musing, Salero, SEKT, SEEMP, SemanticGOV, Super, SWING and TripCom;
by Science Foundation Ireland under the DERI-Lion grant no.SFI/02/CE1/I13; by the FFG

(Österreichische Forschungsfrderungsgeselleschaft mbH) under the projects Grisino, RW2, SemNetMan,
SEnSE, TSC and OnTourism. Davy Van Nieuwenborgh was supported by the Flemish Fund for
Scientific Research (FWO-Vlaanderen).
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Finally, we discuss advantages and disadvantages of our approach compared with DL+ log

knowledge bases.

KEYWORDS: g-hybrid knowledge bases, open answer set programming, guarded logic

programs, description logics

1 Introduction

The integration of Description Logics with rules has recently received a lot of

attention in the context of the Semantic Web (Eiter et al. 2004; Horrocks and

Patel-Schneider 2004b; Motik et al. 2004; Rosati 2005a, 2006; de Bruijn et al. 2007;

Motik and Rosati 2007). r-Hybrid knowledge bases (Rosati 2005a), and its extension

DL+ log (Rosati 2006), are an elegant formalism based on combined models for

Description Logic knowledge bases and nonmonotonic logic programs. We propose

a variant of r-hybrid knowledge bases, called g-hybrid knowledge bases, which do

not require standard names or a special safeness restriction on rules, but instead

require the program to be guarded. We show several computational properties by a

reduction to guarded open answer set programming (Heymans et al. 2005a, 2006c).

Open answer set programming (OASP) (Heymans et al. 2005a, 2006c) combines

the logic programming and first-order logic paradigms. From the logic programming

paradigm, it inherits a rule-based presentation and a nonmonotonic semantics by

means of negation as failure. In contrast with usual logic programming semantics,

such as the answer set semantics (Gelfond and Lifschitz 1988), OASP allows for

domains consisting of other objects than those present in the logic program at

hand. Such open domains are inspired by first-order logic-based languages such as

Description Logics (DLs) (Baader et al. 2003) and make OASP a viable candidate

for conceptual reasoning. Owing to its rule-based presentation and its support for

nonmonotonic reasoning and open domains, OASP can be used to reason with

both rule-based and conceptual knowledge on the Semantic Web, as illustrated in

Heymans et al. (2005b).

A major challenge for OASP is to control undecidability of satisfiability checking,

a challenge it shares with DL-based languages. In Heymans et al. (2005a, 2006c),

we identify a decidable class of programs, the so-called guarded programs, for which

decidability of satisfiability checking is obtained by a translation to guarded fixed

point logic (Grädel and Walukiewicz 1999). In Heymans et al. (2006a), we show

the expressiveness of such guarded programs by simulating a DL with n-ary roles

and nominals. In particular, we extend the DL DLR (Calvanese et al. 1997) with

both concept nominals {o} and role nominals {(o1, . . . , on )}, resulting in DLRO. We

denote the DL DLRO without number restrictions as DLRO−{�}. Satisfiability

checking of concept expressions w.r.t. DLRO−{�} knowledge bases can be reduced

to checking satisfiability of guarded programs (Heymans et al. 2006c).

A g-hybrid knowledge base consists of a Description Logic knowledge base and

a guarded program. The DL+ log knowledge bases from Rosati (2006) are weakly

safe, which means that the interaction between the program and the DL knowledge
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base is restricted by requiring that variables which appear in non-DL atoms, appear

in positive non-DL atoms in the body, where DL atoms are atoms involving a

concept or role symbol from the DL knowledge base. g-Hybrid knowledge bases

do not require such a restriction; instead, variables must appear in a guard of the

rule, but this guard can be a DL atom as well. In this paper, we show decidability

of g-hybrid knowledge bases for DLRO−{�} knowledge bases by a reduction to

guarded programs, and show that satisfiability checking of g-hybrid knowledge bases

is 2-exptime-complete. The DL DLRO−{�} is close to SHOIN, the Description

Logic underlying OWL DL (Horrocks and Patel-Schneider, 2004a). Compared with

SHOIN, DLRO−{�} does not include transitive roles and number restrictions,

but does include n-ary roles and complex role expressions.

To see why a combination of rules and ontologies, as proposed in g-hybrid

knowledge bases, is useful, and why the safeness conditions considered so far in

the literature are not appropriate in all scenarios, consider the Description Logic

ontology

FraternityMember � Drinker � ∃hasDrinkingBuddy ·FraternityMember

which says that fraternity members are drinkers who have drinking buddies, which

are also fraternity members. Now consider the logic program

problemDrinker(X) ← Drinker(X), not socialDrinker(X)

socialDrinker(X) ← Drinker(X ), not problemDrinker(Y ),

hasDrinkingBuddy(X,Y )

FraternityMember(John) ←

which says that drinkers are by default problem drinkers, unless it is known that they

are social drinkers; drinkers with drinking buddies who are not problem drinkers

are social drinkers; and John is a fraternity member. From the combination of

the ontology and the logic program, one would expect to derive that John is a

social drinker, and not a problem drinker. This logic program cannot be expressed

using r-hybrid knowledge bases, or DL+ log , because the rules in the program are

not weakly safe . However, the logic program is guarded, and thus part of a valid

g-hybrid knowledge base, which has the expected consequences.

The remainder of the paper starts with an introduction to open answer set

programming and Description Logics in Section 2. Section 3 defines g-hybrid

knowledge bases, translates them to guarded programs when the DL DLRO−{�} is

considered, and provides a complexity characterization for satisfiability checking of

these particular g-hybrid knowledge bases. In Section 5, we discuss the relation of

g-hybrid knowledge bases with DL+ log and other related work. We conclude and

give directions for further research in Section 6.

2 Preliminaries

In this section we introduce Open Answer Set Programming, guarded programs, and

the Description Logic DLRO−{�}.
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2.1 Decidable Open Answer Set Programming

We introduce the open answer set semantics from Heymans et al. (2005a, 2006c),

modified as in Heymans et al. (2006a) such that it does not assume uniqueness of

names by default. Constants, variables, terms, and atoms are defined as usual. A

literal is an atom p(�t) or a naf-literal not p(�t), with�t a tuple of terms.3 The positive

part of a set of literals α is α+ = {p(�t) | p(�t) ∈ α}, and the negative part of α is

α− = {p(�t) | not p(�t) ∈ α}. We assume the existence of the (in)equality predicates =

and �=, usually written in infix notation; t = s is an atom and t �= s is short

for not t = s . A regular atom is an atom without equality. For a set A of atoms,

notA = {not l | l ∈ A}.
A program is a countable set of rules α ← β, where α and β are finite sets of

literals, |α+| � 1 (but α− may be of arbitrary size), and every atom in α+ is regular,

i.e., α contains at most one positive atom, which may not contain the equality

predicate.4 The set α is the head of the rule and represents a disjunction of literals,

whereas β is the body and represents a conjunction of literals. If α = ∅, the rule is

called a constraint. Free rules are rules of the form q(�X ) ∨ not q(�X )←; they enable

a choice for the inclusion of atoms in a model. We call a predicate p free if there

is a free rule p(�X ) ∨ not p(�X ) ←. Atoms, literals, rules, and programs that do not

contain variables are ground.

For a literal, rule, or program o, let cts(o), vars(o), preds(o) be the constants,

variables, and predicates, respectively, in o. A pre-interpretation U for a program P

is a pair (D , σ), where D is a nonempty domain and σ : cts(P ) → D is a function

which maps all constants in P to elements from D .5 PU is the ground program

obtained from P by substituting every variable in P with every possible element

from D and every constant c with σ(c). For example, for a rule r : p(X )← f (X , c)

and U = ({x , y}, σ) where σ(c) = x , we have that the grounding w.r.t. U is

p(x) ← f(x, x)

p(y) ← f(y, x)·

Let BP be the set of regular atoms obtained from the language of the ground

program P . An interpretation I of a ground program P is a subset of BP . For a

ground regular atom p(�t), we write I |= p(�t) if p(�t) ∈ I ; for an equality atom t = s ,

we write I |= t = s if s and t are equal terms. We write I |= not p(�t) if I �|= p(�t), for

p(�t) an atom. For a set of ground literals A, I |= A holds if I |= l for every l ∈ A.

A ground rule r : α← β is satisfied w.r.t. I , denoted I |= r , if I |= l for some l ∈ α

whenever I |= β. A ground constraint ← β is satisfied w.r.t. I if I �|= β.

For a ground program P without not, an interpretation I of P is a model of

P if I satisfies every rule in P ; it is an answer set of P if it is a subset minimal

3 We do not allow “classical” negation ¬; however, programs with ¬ can be reduced to programs without
it, see e.g., Lifschitz et al. (2001).

4 The condition |α+| � 1 makes the GL-reduct non-disjunctive, ensuring that the immediate consequence
operator is well-defined; see Heymans et al. (2006c).

5 In Heymans et al. (2006c), we only use the domain D which is there defined as a non-empty superset
of the constants in P . This corresponds to a pre-interpretation (D , σ), where σ is the identity function
on D .
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model of P . For ground programs P containing not, the reduct (Inoue and Sakama,

1998) w.r.t. I is PI , where PI consists of α+ ← β+ for every α ← β in P such

that I |= notβ− and I |= α−. I is an answer set of P if I is an answer set of PI .

Note that allowing negation in the head of rules leads to the loss of the anti-chain

property (Inoue and Sakama, 1998) which states that no answer set can be a strict

subset of another answer set. For example, a rule a ∨ nota← has the answer sets ∅
and {a} . However, negation in the head is required to ensure first-order behavior

for certain predicates, e.g., when simulating Description Logic reasoning.

In the following, a program is assumed to be a finite set of rules; infinite

programs only appear as byproducts of grounding a finite program using an infinite

preinterpretation. An open interpretation of a program P is a pair (U ,M ), where

U is a preinterpretation for P and M is an interpretation of PU . An open answer

set of P is an open interpretation (U ,M ) of P with M an answer set of PU .

An n-ary predicate p in P is satisfiable if there is an open answer set ((D , σ),M )

of P and a �x ∈ Dn such that p(�x ) ∈ M . A program P is satisfiable iff it has

an open answer set. Note that satisfiability checking of programs can be easily

reduced to satisfiability checking of predicates: P is satisfiable iff p is satisfiable

w.r.t. P ∪ {p(�X ) ∨ not p(�X )←}, where p is a predicate symbol not used in P and �X

is a tuple of variables. In the following, when we speak of satisfiability checking, we

refer to satisfiability checking of predicates, unless specified otherwise.

Satisfiability checking w.r.t. the open answer set semantics is undecidable in

general. In Heymans et al. (2006c), we identify a syntactically restricted fragment of

programs, so-called guarded programs, for which satisfiability checking is decidable,

which is shown through a reduction to guarded fixed point logic (Grädel and

Walukiewicz 1999). The decidability of guarded programs relies on the presence of

a guard in each rule, where a guard is an atom that contains all variables of the

rule. Formally, a rule r : α ← β is guarded if there is an atom γb ∈ β+ such that

vars(r) ⊆ vars(γb); γb is the guard of r . A program P is a guarded program (GP)

if every nonfree rule in P is guarded. For example, a rule a(X ,Y ) ← not f (X ,Y )

is not guarded, but a(X ,Y )← g(X ,Y ), not f (X ,Y ) is guarded with guard g(X ,Y ).

Satisfiability checking of predicates w.r.t. guarded programs is 2-exptime-complete

(Heymans et al. 2006c) — a result that stems from the corresponding complexity in

guarded fixed point logic.

2.2 The Description Logic DLRO−{�}

DLR (Calvanese et al. 1997; Baader et al. 2003) is a DL that supports roles

of arbitrary arity, whereas most DLs only support binary roles. We introduce an

extension of DLR with nominals, called DLRO (Heymans et al. 2006a). The basic

building blocks of DLRO are concept names A and relation names P, where P

denotes an arbitrary n-ary relation for 2 � n � nmax and nmax is a given finite

nonnegative integer. Role expressions R and concept expressions C are defined as

R → 
n | P | ($i/n : C ) | ¬R | R1 � R2 | {(o1, . . . , on )}
C → 
1 | A | ¬C | C1 � C2 | ∃[$i ]R | �k [$i ]R | {o}
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where i is between 1 and n in ($i/n : C ); similarly in ∃[$i ]R and �k [$i ]R for R an

n-ary relation. Moreover, we assume that the above constructs are well typed, e.g.,

R1 � R2 is defined only for relations of the same arity. The semantics of DLRO
is given by interpretations I = (∆I, ·I), where ∆I is a nonempty set, the domain,

and ·I is an interpretation function such that CI ⊆ ∆I, RI ⊆ (∆I)n for an n-ary

relation R, and the following conditions are satisfied (P,R,R1, and R2 have arity n):


In ⊆ (∆I)n

PI ⊆ 
In
(¬R)I = 
In \RI

(R1 � R2)
I = RI1 ∩ RI2

($i/n : C )I = {(d1, . . . , dn ) ∈ 
In | di ∈ CI}

I1 = ∆I

AI ⊆ ∆I

(¬C )I = ∆I\CI

(C1 � C2)
I = CI1 ∩ CI2

(∃[$i ]R)I = {d ∈ ∆I | ∃(d1, . . . , dn ) ∈ RI · di = d}
(�k [$i ]R)I = {d ∈ ∆I | |{(d1, . . . , dn ) ∈ RI | di = d}| � k}

{o}I = {oI} ⊆ ∆I

{(o1, . . . , on )}I = {(oI1 , . . . , oIn )}

Note that in DLRO the negation of role expressions is defined w.r.t. 
In and not

w.r.t. (∆I)n . A DLRO knowledge base Σ is a set of terminological axioms and

role axioms, which denote subset relations between concept and role expressions (of

the same arity), respectively. A terminological axiom C1 � C2 is satisfied by I iff

CI1 ⊆ CI2 . A role axiom R1 � R2 is satisfied by I iff RI1 ⊆ RI2 . An interpretation

I is a model of a knowledge base Σ (i.e. Σ is satisfied by I) if all axioms in Σ are

satisfied by I; if Σ has a model, then Σ is satisfiable. A concept expression C is

satisfiable w.r.t. a knowledge base Σ if there is a model I of Σ such that CI �= ∅.
Note that for every interpretation I,

({(o1, . . . , on )})I = (($1/n : {o1}) � . . . � ($n/n : {on}))I.

Therefore, in the remainder of the paper, we will restrict ourselves to nominals of

the form {o}. We denote the fragment of DLRO without the number restriction

�k [$i ]R with DLRO−{�}.

3 g-Hybrid knowledge bases

g-Hybrid knowledge bases are combinations of Description Logic (DL) knowledge

bases and guarded logic programs (GP). They are a variant of the r-hybrid knowledge

bases introduced in Rosati (2005a).
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Definition 1

Given a Description Logic DL, a g-hybrid knowledge base is a pair (Σ,P ), where Σ

is a DL knowledge base and P is a guarded program.

Note that in the above definition there are no restrictions on the use of predicate

symbols. We call the atoms and literals in P that have underlying predicate symbols

which correspond to concept or role names in the DL knowledge base DL atoms and

DL literals, respectively. Variables in rules are not required to appear in positive

non-DL atoms, which are is the case in, e.g., the DL+ log knowledge bases in

Rosati (2006), the r-hybrid knowledge bases in Rosati (2005a), and the DL-safe

rules in Motik et al. (2004). DL- atoms can appear in the head of rules, thereby

enabling a bidirectional flow of information between the DL knowledge base and

the logic program.

Example 1

Consider the DLRO−{�} knowledge base Σ, where socialDrinker is a concept, drinks

is a ternary role such that, intuitively, (x , y , z ) is in the interpretation of drinks if a

person x drinks some drink z with a person y . Σ consists of the single axiom

socialDrinker � ∃[$1](drinks � ($3/3 : {wine}))

which indicates that social drinkers drink wine with someone. Consider a GP P that

indicates that someone has an increased risk of alcoholism if the person is a social

drinker and knows someone from the association of Alcoholics Anonymous (AA).

Furthermore, we state that john is a social drinker and knows michael from AA:

problematic(X) ← socialDrinker(X), knowsFromAA(X,Y )

knowsFromAA(john, michael) ←
socialDrinker(john) ←

Together, Σ and P form a g-hybrid knowledge base. The literals socialDrinker(X)

and socialDrinker(john) are DL atoms, where the latter appears in the head of a

rule in P . The literal knowsFromAA(X,Y) appears only in the program P (and is

thus not a DL atom).

Given a DL interpretation I = (∆I, ·I) and a ground program P , we define

Π(P ,I) as the projection of P with respect to I, which is obtained as follows: for

every rule r in P ,

• if there exists a DL literal in the head of the form

— A(�t) with�t ∈ AI, or

— notA(�t) with�t �∈ AI,

then delete r ,

• if there exists a DL literal in the body of the form

— A(�t) with�t �∈ AI, or

— notA(�t) with�t ∈ AI,

then delete r ,

• otherwise, delete all DL literals from r .

https://doi.org/10.1017/S1471068407003201 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068407003201


418 S. Heymans et al.

Intuitively, the projection “evaluates” the program with respect to I by removing

(evaluating) rules and DL literals consistently with I; conceptually, this is similar

to the reduct, which removes rules and negative literals consistently with an

interpretation of the program.

Definition 2

Let (Σ,P ) be a g-hybrid knowledge base. An interpretation of (Σ,P ) is a tuple

(U ,I,M ) such that

• U = (D , σ) is a preinterpretation for P ,

• I = (D , ·I) is an interpretation of Σ,

• M is an interpretation of Π(PU ,I), and

• bI = σ(b) for every constant symbol b appearing both in Σ and in P .

Then, (U = (D , σ),I,M ) is a model of a g-hybrid knowledge base (Σ,P ) if I is

a model of Σ and M is an answer set of Π(PU ,I).

For p a concept expression from Σ or a predicate from P , we say that p is

satisfiable w.r.t. (Σ,P ) if there is a model (U ,I,M ) such that pI �= ∅ or p(�x ) ∈ M

for some �x from D , respectively.

Example 2

Consider the g-hybrid knowledge base in Example 1. Take U = (D , σ) with D =

{john , michael , wine, x} and σ the identity function on the constant symbols in

(Σ,P ). Furthermore, define ·I as follows:

• socialDrinkerI = {john},
• drinksI = {(john, x, wine)},
• wineI = wine.

If M = {knowsfromAA(john, michael), problematic(john)}, then (U ,I,M ) is a model

of this g-hybrid knowledge base. Note that the projection Π(P ,I) does not contain

the rule socialDrinker(john)← .

4 Translation to guarded logic programs

In this section, we introduce a translation of g-hybrid knowledge bases to guarded

logic programs (GP) under the open answer set semantics, show that this translation

preserves satisfiability, and use this translation to obtain complexity results for

reasoning in g-hybrid knowledge bases. Before introducing the translation to guarded

programs formally, we introduce the translation through an example.

Consider the knowledge base in Example 1. The axiom

socialDrinker � ∃[$1](drinks � ($3/3 : {wine}))

translates to the constraint

← socialDrinker(X), not(∃[$1](drinks � ($3/3 : {wine})))(X)

Thus, the concept expressions on either side of the � symbol are associated with a

new unary predicate name. For convenience, we name the new predicates according
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to the original concept expressions. The constraint simulates the behavior of the

DLRO−{�} axiom. If the left-hand side of the axiom holds and the right-hand side

does not hold, there is a contradiction.

It remains to ensure that those newly introduced predicates behave according to

the DL semantics. First, all the concept and role names occurring in the axiom

above need to be defined as free predicates, to simulate the first-order semantics of

concept and role names in DLs. In DLs, a tuple is either true or false in a given

interpretation (cf., the law of the excluded middle); this behavior can be captured

exactly by the free predicates:

socialDrinker(X) ∨ notsocialDrinker(X) ←
drinks(X,Y , Z) ∨ notdrinks(X,Y , Z) ←

Note that concept names are translated to unary free predicates, whereas n-ary role

names are translated to n-ary free predicates.

The definition of the truth symbols 
1 and 
3, which are implicit in our

DLRO−{�} axiom (since the axiom contains a concept name and a ternary role) is

translated to free predicates as well. Note that we do not need a predicate for 
2

since the axiom does not contain binary predicates.


1(X) ∨ not
1(X) ←

3(X,Y , Z) ∨ not
3(X,Y , Z) ←

We ensure that, for the ternary DLRO−{�} role drinks, drinksI ⊆ 
I3 holds by

adding the constraint:

← drinks(X,Y , Z), not
3(X,Y , Z)

To ensure that 
I1 = ∆I, we add the constraint:

← not
1(X)

For rules containing only one variable, we can always assume that X = X is in the

body and acts as the guard of the rule, so that the latter rule is guarded; cf. the

equivalent rule ← not
1(X), X = X.

We translate the nominal {wine} to the rule

{wine}(wine) ←

Intuitively, since this rule will be the only rule with the predicate {wine} in the

head, every open answer set of the translated program will contain {wine}(x ) with

σ(wine) = x if and only if the corresponding interpretation {wine}I = {x} for

wineI = x .

The DLRO−{�} role expression ($3/3 : {wine}) indicates the ternary tuples for

which the third argument belongs to the extension of {wine}, which is translated to

the following rule:

($3/3 : {wine})(X,Y , Z) ← 
3(X,Y , Z), {wine}(Z)

Note that the above rule is guarded by the 
3 literal.
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Finally, the concept expression (drinks � ($3/3 : {wine})) can be represented by

the following rule:

(drinks � ($3/3 : {wine}))(X,Y , Z) ← drinks(X,Y , Z),

($3/3 : {wine})(X ,Y ,Z )

As we can see, the DL construct � is translated to conjunction in the body of a rule.

The DLRO−{�} role ∃[$1](drinks � ($3/3 : {wine})) can be represented using the

following rule:

(∃[$1](drinks � ($3/3 : {wine})))(X ) ← (drinks � ($3/3 : {wine}))(X ,Y ,Z )

Indeed, the elements which belong to the extension of ∃[$1](drinks � ($3/3 : {wine}))
are exactly those that are connected to the role ($3/3 : {wine}), as specified in the

rule.

This concludes the translation of the DL knowledge base in the g-hybrid

knowledge base of Example 1. The program can be considered as is, since, by

definition of g-hybrid knowledge bases, it is already a guarded program.

We now proceed with the formal translation. The closure clos(Σ) of a DLRO−{�}
knowledge base Σ is defined as the smallest set satisfying the following conditions:

• 
1 ∈ clos(Σ),

• for each C � D , an axiom in Σ (role or terminological), {C ,D} ⊆ clos(Σ),

• for every D in clos(Σ), clos(Σ) contains every subformula which is a concept

expression or a role expression,

• if clos(Σ) contains an n-ary relation name, it contains 
n .

We define Φ(Σ) as the smallest logic program satisfying the following conditions:

• For each terminological axiom C � D ∈ Σ, Φ(Σ) contains the constraint:

← C (X ), notD(X ) (1)

• For each role axiom R � S ∈ Σ where R and S are n-ary, Φ(Σ) contains:

← R(X1, . . . ,Xn ), notS(X1, . . . ,Xn ) (2)

• For each 
n ∈ clos(Σ), Φ(Σ) contains the free rule


n (X1, . . . ,Xn ) ∨ not
n (X1, . . . ,Xn )← (3)

Furthermore, for each n-ary relation name P ∈ clos(Σ), Φ(Σ) contains

← P(X1, . . . ,Xn ), not
n (X1, . . . ,Xn ) (4)

Intuitively, the latter rule ensures that PI ⊆ 
In . In addition, Φ(Σ) has to

contain the following constraint:

← not
1(X ) (5)

which ensures that, for every element x in the preinterpretation, 
1(x ) is

true in the open answer set. The latter rule ensures that 
I1 = D for the

corresponding interpretation. The rule is implicitly guarded with X = X .

• Next, we distinguish between the types of concept and role expressions that

appear in clos(Σ). For each D ∈ clos(Σ):

https://doi.org/10.1017/S1471068407003201 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068407003201


Guarded hybrid knowledge bases 421

— if D is a concept nominal {o}, Φ(Σ) contains the following fact:

D(o)← (6)

This fact ensures that {o}(x ) holds in any open answer set iff x = σ(o) = oI

for an interpretation of (Σ,P ).

— if D is a concept name, Φ(Σ) contains

D(X ) ∨ notD(X )← (7)

— if D is an n-ary relation name, Φ(Σ) contains

D(X1, . . . ,Xn ) ∨ notD(X1, . . . ,Xn )← (8)

— if D = ¬E for a concept expression E , Φ(Σ) contains the following rule:

D(X )← notE (X ) (9)

Note that we can again assume that such a rule is guarded by X = X .

— if D = ¬R for an n-ary role expression R, Φ(Σ) contains

D(X1, . . . ,Xn )← 
n (X1, . . . ,Xn ), notR(X1, . . . ,Xn ) (10)

Note that if negation would have been defined w.r.t. Dn instead of 
In , we

would not be able to write the above as a guarded rule.

— if D = E � F for concept expressions E and F , Φ(Σ) contains

D(X )← E (X ),F (X ) (11)

— if D = E � F for n-ary role expressions E and F, Φ(Σ) contains

D(X1, . . . ,Xn )← E(X1, . . . ,Xn ),F(X1, . . . ,Xn ) (12)

— if D = ($i/n : C ), Φ(Σ) contains

D(X1, . . . ,Xi , . . . ,Xn )← 
n (X1, . . . ,Xi , . . . ,Xn ),C (Xi ) (13)

— if D = ∃[$i ]R, Φ(Σ) contains

D(X )← R(X1, . . . ,Xi−1,X ,Xi+1, . . . ,Xn ) (14)

The following theorem shows that this translation preserves satisfiability.

Theorem 1

Let (Σ,P ) be a g-hybrid knowledge base with Σ a DLRO−{�} knowledge base.

Then, a predicate or concept expression p is satisfiable w.r.t. (Σ,P ) iff p is satisfiable

w.r.t. Φ(Σ) ∪ P .

Proof

(⇒) Assume p is satisfiable w.r.t. (Σ,P ), i.e., there exists a model (U ,I,M ) of (Σ,P ),

with U = (D , σ), in which p has a nonempty extension. Now, we construct the open

interpretation (V ,N ) of Φ(Σ,P ) as follows: V = (D , σ′) with σ′ : cts(Φ(Σ) ∪ P )→ D ,

and σ′(x ) = σ(x ) for every constant symbol x from P and σ′(x ) = xI for every

constant symbol x from Σ. Note that σ′ is well defined, since, for a constant symbol

x which occurs in both Σ and P , we have that σ(x ) = xI. We define the set N as

follows:

N = M ∪ {C (x ) | x ∈ CI,C ∈ clos(Σ)}
∪ {R(x1, . . . , xn ) | (x1, . . . , xn ) ∈ RI,R ∈ clos(Σ)}

with C and R concept expressions and role expressions, respectively.
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It is easy to verify that (V ,N ) is an open answer set of Φ(Σ) ∪ P and (V ,N )

satisfies p. (⇐) Assume (V ,N ) is an open answer set of Φ(Σ) ∪ P with V = (D , σ′)

such that p is satisfied. We define the interpretation (U ,I,N ) of (Σ,P ) as follows:

• U = (D , σ), where σ : cts(P )→ D with σ(x ) = σ′(x ) (note that this is possible

since cts(P ) ⊆ cts(Φ(Σ) ∪ P )). U is then a preinterpretation for P .

• I = (D , ·I) is defined such that AI = {x | A(x ) ∈ N } for concept names A,

PI = {(x1, . . . , xn ) | P(x1, . . . , xn ) ∈ N } for n-ary role names P and oI = σ′(o),

for o a constant symbol in Σ (note that σ′ is indeed defined on o). I is then

an interpretation of Σ.

• M = N \{p(�x ) | p ∈ clos(Σ)}, such that M is an interpretation of Π(PU ,I).

Moreover, for every constant symbol b that appears in both Σ and P , bI = σ(b).

As a consequence, (U ,I,M ) is an interpretation of (Σ,P ).

It is easy to verify that (U ,I,M ) is a model of (Σ,P ) which satisfies p. �

Theorem 2

Let (Σ,P ) be a g-hybrid knowledge base, where Σ is a DLRO−{�} knowledge base.

Then, Φ(Σ) ∪ P is a guarded program with a size polynomial in the size of (Σ,P ).

Proof

The rules in Φ(Σ) are obviously guarded. Since P is a guarded program, Φ(Σ) ∪ P

is a guarded program as well.

The size of clos(Σ) is of the order n log n , where n is the size of Σ. Intuitively,

given that the size of an expression is n , we have that the size of the set of its

subexpressions is at most the size of a tree with depth log n , where the size of the

subexpressions at a certain level of the tree is at most n .

The size of Φ(Σ) is clearly polynomial in the size of clos(Σ), assuming that the

arity n of an added role expression is polynomial in the size of the maximal arity

of role expressions in Σ. If we were to add a relation name R with arity 2n , where

n is the maximal arity of relation names in C and Σ, the size of Σ would increase

linearly, but the size of Φ(Σ) ∪ P would increase exponentially: one needs to add,

e.g., rules


2n (X1, . . . ,X2n ) ∨ not
2n (X1, . . . ,X2n )←

which introduce an exponential number of arguments while the size of the role R

does not depend on its arity. �

Note that in g-hybrid knowledge bases, we consider DLRO−{�}, which is DLRO
without expressions of the form �k [$i ]R, since such expressions cannot be simulated

with guarded programs. For example, consider the concept expression � 1[$1]R,

where R is a binary role. One can simulate the � by negation as failure:

� 1[$1]R(X )← not q(X )

for some new q , with q defined such that there are at least two different R-successors:

q(X )← R(X ,Y1),R(X ,Y2),Y1 �= Y2
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However, the latter rule is not guarded — there is no atom that contains X , Y1, and

Y2. So, in general, expressing number restrictions such as � k [$i ]R is out of reach

for GPs. From Theorems 1 and 2, we obtain the following corollary:

Corollary 1

Satisfiability checking w.r.t. g-hybrid knowledge bases (Σ,P ), with Σ a DLRO−{�}
knowledge base, can be polynomially reduced to satisfiability checking w.r.t. GPs.

Since satisfiability checking w.r.t. GPs is 2-exptime-complete (Heymans et al.

2006c), we obtain the same 2-exptime characterization for g-hybrid knowledge

bases. We first make explicit a corollary of Theorem 1.

Corollary 2

Let P be a guarded program. Then, a concept or role expression p is satisfiable

w.r.t. P iff p is satisfiable w.r.t. (∅,P ).

Theorem 3

Satisfiability checking w.r.t. g-hybrid knowledge bases, where the DL part is a

DLRO−{�} knowledge base, is 2-exptime-complete.

Proof

Membership in 2-exptime follows from Corollary 1. Hardness follows from 2-

exptime-hardness of satisfiability checking w.r.t. GPs and the reduction to satisfiab-

ility checking in Corollary 2. �

5 Relation with DL+ log and other related work

In Rosati (2006), so-called DL+ log knowledge bases combine a Description Logic

knowledge base with a weakly safe disjunctive logic program. Formally, for a

particular Description Logic DL, a DL+ log knowledge base is a pair (Σ,P )

where Σ is a DL knowledge base consisting of a TBox (a set of terminological

axioms) and an ABox (a set of assertional axioms), and P contains rules α← β such

that for every rule r : α← β ∈ P :

• α− = ∅,
• β− does not contain DL atoms (DL-positiveness),

• each variable in r occurs in β+ (Datalog safeness), and

• each variable in r , which occurs in a non-DL atom, occurs in a non-DL atom

in β+ (weak safeness).

The semantics for DL+ log is the same as that of g-hybrid knowledge bases6,

with the following exceptions:

6 Strictly speaking, we did not define answer sets of disjunctive programs, however, the definitions of
subsection 2.1 can serve for disjunctive programs without modification. Also, we did not consider
ABoxes in our definition of DLs in subsection 2.2. However, the extension of the semantics to DL
knowledge bases with ABoxes is straightforward.
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• We do not require the standard name assumption, which basically says that the

domain of every interpretation is essentially the same infinitely countable set

of constants. Neither do we have the implied unique name assumption, making

the semantics for g-hybrid knowledge bases more in line with current Semantic

Web standards such as OWL (Dean and Schreiber 2004), where neither the

standard names assumption nor the unique names assumption applies. Note

that Rosati also presented a version of hybrid knowledge bases which does

not adhere to the unique name assumption in an earlier work (Rosati 2005b).

However, the grounding of the program part is with the constant symbols

explicitly appearing in the program or DL part only, which yields a less tight

integration of the program and the DL part than in Rosati (2006) or in

g-hybrid knowledge bases.

• We define an interpretation as a triple (U ,I,M ) instead of a pair (U ,I′)
where I′ = I∪M ; this is, however, equivalent to DL+ log .

The key differences of the two approaches are

• The programs considered in DL+ log may have multiple positive literals in

the head, whereas we allow at most one. However, we allow negative literals

in the head, whereas this is not allowed in DL+ log . In addition, since DL

atoms are interpreted classically, we may simulate positive DL atoms in the

head through negative DL atoms in the body.

• Instead of Datalog safeness, we require guardedness. Whereas with Datalog

safeness, every variable in the rule should appear in some positive atom of

the body of the rule, guardedness requires that there is a positive atom that

contains every variable in the rule, with the exception of free rules. for example,

a(X)← b(X), c(Y ) is Datalog safe since X appears in b(X ) and Y appears in

c(Y ), but this rule is not guarded since there is no atom that contains both

X and Y . Note that we could easily extend the approach taken in this paper

to loosely guarded programs which require that every two variables in the rule

should appear together in a positive atom, However, this would still be less

expressive than Datalog safeness.

• We do not have the requirement for weak safeness, i.e., head variables do

not need to appear positively in a non-DL atom. The guardedness may be

provided by a DL atom.

Example 3

Example 1 contains the rule

problematic(X) ← socialDrinker(X), knowsFromAA(X,Y )

This allows us to deduce that X might be a problem case even if X knows

someone from the AA but is not drinking with that person. Indeed, as

illustrated by the model in Example 1, john is drinking wine with some

anonymous x and knows michael from the AA. More correct would be the

rule

problematic(X,Z) ← drinks(X,Y , Z), knowsFromAA(X,Y )
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where we explicitly say that X and Y in the drinks and knowsFromAA relations

should be the same, and we extend the problematic predicate with the kind

of drink that X has a problem with. Then, the head variable Z is guarded

by the DL atom drinks and the rule is thus not weakly safe, but is guarded

nonetheless. Thus, the resulting knowledge base is not a DL+ log knowledge

base, but is a g-hybrid knowledge base.

• We do not have the requirement for DL-positiveness, i.e., DL atoms may

appear negated in the body of rules (and also in the heads of rules). However,

one could allow this in DL+ log knowledge bases as well, since notA(�X )

in the body of the rule has the same effect as A(�X ) in the head, where the

latter is allowed in Rosati (2006). Vice versa, we can also loosen our restriction

on the occurrence of positive atoms in the head (which allows at most one

positive atom in the head), to allow for an arbitrary number of positive DL

atoms in the head (but still keep the number of positive non-DL atoms limited

to one). For example, a rule p(X) ∨ A(X) ← β, where A(X ) is a DL atom,

is not a valid rule in the programs we considered since the head contains

more than one positive atom. However, we can always rewrite such a rule to

p(X)← β, notA(X), which contains at most one positive atom in the head.

Arguably, DL atoms should not be allowed to occur negatively, because DL

predicates are interpreted classically and thus the negation in front of the

DL atom is not nonmonotonic. However, Datalog predicates, which depend

on DL predicates, are also (partially) interpreted classically, and DL atoms

occurring negatively in the body are equivalent to DL atoms occurring

positively in the head which allows us to partly overcome our limitation

of rule heads to one positive atom.

• We do not take into account ABoxes in the DL knowledge base. However, the

DL we consider includes nominals such that one can simulate the ABox using

terminological axioms. Moreover, even if the DL does not include nominals,

the ABox can be written as ground facts in a program and ground facts are

always guarded.

• Decidability for satisfiability checking7 of DL+ log knowledge bases is

guaranteed if decidability of the conjunctive query containment problem is

guaranteed for the DL at hand. In contrast, we relied on a translation of

DLs to guarded programs for establishing decidability, and, as explained in

the previous section, not all DLs (e.g., those with number restrictions) can be

translated to such a GP.

We briefly mention AL-log (Donini et al., 1998), which is a predecessor of

DL+ log . AL-log considers ALC knowledge bases for the DL part and a set of

positive Horn clauses for the program part. Every variable must appear in a positive

atom in the body, and concept names are the only DL predicates, which may be

used in the rules, and they may only be used in rule bodies.

7 Rosati (2006) considers checking satisfiability of knowledge bases rather than satisfiability of predicates.
However, the former can easily be reduced to the latter.
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Hustadt et al. (2004) and Swift (2004) simulate reasoning in DLs with an LP

formalism by using an intermediate translation to first-order clauses. In Hustadt

et al. (2004), SHIQ knowledge bases are reduced to first-order formulas, to

which the basic superposition calculus is applied. Swift (2004) translates ALCQI
concept expressions to first-order formulas, grounds them with a finite number

of constants, and transforms the result to a logic program. One can use a finite

number of constants by the finite model property of ALCQI. In the presence of

terminological axioms, this is no longer possible since the finite model property is

not guaranteed to hold.

In Levy and Rousset (1996), the DL ALCNR (R stands for role intersection)

is extended with Horn clauses q(�Y ) ← p1(�X1), . . . , pn (�Xn ), where the variables in �Y

must appear in �X1 ∪ . . .∪ �Xn ; p1, . . . , pn are either concept or role names, or ordinary

predicates not appearing in the DL part, and q is an ordinary predicate. There is

no safeness in the sense that every variable must appear in a non-DL atom. The

semantics is defined through extended interpretations that satisfy both the DL and

clauses part (as FOL formulas). Query answering is undecidable if recursive Horn

clauses are allowed, but decidability can be regained by restricting the DL part or

by enforcing that the clauses are role safe (each variable in a role atom R(X ,Y ) for

a role R must appear in a non-DL atom). Note that the latter restriction is less strict

than the DL-safeness8 of Motik et al. (2004), where also variables in concept atoms

A(X ) need to appear in non-DL atoms. On the other hand, Motik et al. (2004) allow

for the more expressive DL SHOIN(D), and the head predicates may be DL

atoms as well. Finally, SWRL (Horrocks and Patel-Schneider 2004b) can be seen as

an extension of Motik et al. (2004) without any safeness restriction, which results

in the loss of decidability of the formalism. Compared to our work, we consider

a slightly less expressive Description Logic, but we consider logic programs with

nonmonotonic negation, and require guardedness, rather than role- or DL-safeness,

to guarantee decidability.

In Eiter et al. (2004) Description Logic programs are introduced; atoms in the

program component may be dl-atoms with which one can query the knowledge in

the DL component. Such dl-atoms may specify information from the logic program

which needs to be taken into account when evaluating the query, yielding a bi-

directional flow of information. This leads to a minimal interface between the DL

knowledge base and the logic program, enabling a very loose integration, based on

an entailment relation. In contrast, we propose a much tighter integration between

the rules and the ontology, with interaction based on single models rather than

entailment. For a detailed discussion of these two kinds of interaction, we refer to

de Bruijn et al. (2006a, 2006b).

Two recent approaches (Motik and Rosati 2007; de Bruijn et al. 2007) use

an embedding in a nonmonotonic modal logic for integrating nonmonotonic logic

programs and ontologies based on classical logic (e.g., DL). Motik and Rosati (2007)

use the nonmonotonic logic of minimal knowledge and negation as failure (MKNF)

8 DL-safeness is a restriction of the earlier mentioned weak safeness.
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for the combination and show decidability of reasoning in case reasoning in the

considered description logic is decidable, and the DL safeness condition (Motik

et al. 2004) holds for the rules in the logic program. In our approach, we do not

require such a safeness condition, but require the rules to be guarded, and make

a semantic distinction between DL predicates and rule predicates. de Bruijn et al.

(2007) introduce several embeddings of nonground logic programs in first-order

autoepistemic logic (FO-AEL), and compare them under combination with classical

theories (ontologies). However, de Bruijn et al. (2007) do not address the issue of

decidability or reasoning of such combinations.

Finally, de Bruijn et al. (2006a, 2006b) use Quantified Equilibrium Logic as a

single unifying language to capture different approaches to hybrid knowledge bases,

including the approach presented in this paper. Although we have presented a

translation of g-hybrid knowledge bases to guarded logic programs, our direct

semantics is still based on two modules, relying on separate interpretations for

the DL knowledge base and the logic program, whereas de Bruijn et al. (2006a,

2006b) define equilibrium models, which serve to give a unifying semantics to the

hybrid knowledge base. The approach of de Bruijn et al. (2006a, 2006b) may be

used to define a notion of equivalence between and may lead to new algorithms for

reasoning with, g-hybrid knowledge bases.

6 Conclusions and directions for further research

We defined g-hybrid knowledge bases which combine Description Logic (DL)

knowledge bases with guarded logic programs. In particular, we combined knowledge

bases of the DL DLRO−{�}, which is close to OWL DL, with guarded programs,

and showed decidability of this framework by a reduction to guarded programs

under the open answer set semantics (Heymans et al. 2005a, 2006c). We discussed

the relation with DL+ log knowledge bases: g-hybrid knowledge bases overcome

some of the limitations of DL+ log , such as the unique names assumption, Datalog

safeness, and weak DL-safeness, but introduce the requirement of guardedness. At

present, a significant disadvantage of our approach is the lack of support for DLs

with number restrictions which is inherent to the use of guarded programs as our

decidability vehicle. A solution for this would be to consider other types of programs,

such as conceptual logic programs (Heymans et al. 2006b). This would allow for the

definition of a hybrid knowledge base (Σ,P ), where Σ is a SHIQ knowledge

base and P is a conceptual logic program since SHIQ knowledge bases can be

translated to conceptual logic programs.

Although there are known complexity bounds for several fragments of open

answer set programming (OASP), including the guarded fragment considered in this

paper, there are no known effective algorithms for OASP. In addition, at present,

there are no implemented systems for open answer set programming. These are part

of future work.
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