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The relaxation of an electron-depleted electronegative dusty plasma with two-negative
ions is investigated. When the ratio of canonical vorticities to corresponding flows
of all the plasma species is the same and all inertial and non-inertial forces are
present, the relaxed state appears as a double Beltrami magnetic field which is the
superposition of two force-free relaxed states. The numerical results show that highly
diamagnetic relaxed magnetic fields can be obtained by controlling the flow and
vorticities through a single Beltrami parameter. The study is useful to investigate
the creation of diamagnetic plasma configurations which are considered to be very
important in the context of nuclear fusion.

1. Introduction
A magnetized plasma, in spite of the complexity introduced by interaction of

magnetic field and flow, has been observed to show an ordered behaviour. The
creation of the Beltrami magnetic field B is a familiar example of this phenomenon.
The Beltrami magnetic field expressed as ∇ × B = λB, where λ is a scalar function,
represents the equilibrium state when the flow energy can be neglected (Ortolani and
Schnack 1993). The Beltrami magnetic field also shows the force-free macroscopic
state of the magnetoplasma. For a perfectly conducting plasma, the Beltrami field
characterized by a constant scale parameter λ can be derived through variational
principle by minimizing the magnetic energy under the constraint that local magnetic
helicity, a measure of structural complexity of field lines, remains constant (Woltjer
1958). The Beltrami magnetic field is also known as Taylor’s relaxed state because
Taylor derived the equilibrium state by conjecturing that magnetic energy dissipates
faster than magnetic helicity in the presence of a small amount of resistivity in real
plasmas (Taylor 1974). The non-force-free relaxed states characterized by coupling
of two Beltrami fields with a strong flow are also shown to be accessible in a
magnetized plasma by constrained minimization of magnetofluid energy using the
variational principle or invoking the Hall magnetohydrodynamics (HMHD) (Sudan
1979; Avinash and Taylor 1991; Steinhauer and Ishida 1997; Mahajan and Yoshida
1998; Shukla 2004; Shukla and Mahajan 2004a, b; Shukla 2005). It is pointed out by
Yoshida and Mahajan (2002) that a two-fluid plasma system relaxes when its canonical
enstrophy which is a measure of dissipation and turbulence minimizes while the
magnetofluid energy, magnetic and generalized helicities remain constant. The relaxed

† Email address for correspondence: muhammad.iqbal@uet.edu.pk

https://doi.org/10.1017/S0022377813000925 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377813000925


60 M. Iqbal

states governed by the superposition of two Beltrami fields could explain a variety
of physical phenomena occurring in space and laboratory plasmas. For example, the
high-confinement (H-mode) boundary layer developed in tokamak discharges could
be viewed as a self-organized double Beltrami field structure (Mahajan and Yoshida
2000). The double Beltrami equilibrium predicts the creation of high beta (ratio of
kinetic to magnetic pressures) relaxed states in different plasma devices (Yoshida et al.
2001; Iqbal 2005) and can be employed to study the eruptive events in solar corona
(Ohsaki et al. 2001).

It has also been shown that inertia of plasma species plays an important role to
create relaxed equilibrium composed of multi Beltrami fields (Bhattacharyya et al.
2003; Iqbal and Shukla 2011, 2012). In this paper, it is shown that the flow and
canonical vorticities of plasma components also affect the creation of Beltrami fields.
For this purpose, we have investigated the relaxation of two-negative ion species
dusty plasma. The dusty plasmas have been studied to investigate the dust-acoustic
solitary structures (Mamun 1999) and nonlinear ion-acoustic structures (El-Tantawy
et al. 2011). We have assumed the dusty plasma so that the electron number density
sufficiently depletes due to attachment of background electrons onto the negative dust
grains. The two-negative ion species plasmas could be found in space (Coates et al.
2007; Vuitton et al. 2009) and laboratory (Ichiki et al. 2001). It is shown that it is
possible for a two-negative ion plasma to relax to a double Beltrami field taking into
account all the inertial and non-inertial forces.

The paper is arranged as follows: The steady-state equilibrium equation is derived
in Sec. 2. Equations of motion of plasma species are given and the Beltrami condition
(alignment of fluid flow to vorticity) is employed. A single Beltrami parameter is
considered and the inertial effects are taken into account. The analytical structure
given in Sec. 3 shows that equilibrium equation can be written as a sum of two
Beltrami fields. The radial profiles of relaxed magnetic fields as a function of scale
parameters are displayed in Sec. 4 and it is shown that by varying a single scale
parameter, one could obtain paramagnetic as well as diamagnetic field structures. The
results are summarized in Sec. 5.

2. Model
A multicomponent electronegative dusty plasma comprising of positive ions and

two-negative ions in addition to charged dust grains is investigated to look for the
self-organization towards double Beltrami fields. The dust grains are immobile and
only contribute to preserve charge neutrality. The density of electrons (ne) is assumed
negligibly small as compared to the density of dust particles (nd) in the background
i.e. zdnd � ne, where zd represents the number of electrons residing on the surface
of dust particles. In this scenario, the electrons are highly depleted because of their
attachments to extremely massive dust grains (Mamun et al. 1996; Tribeche et al.
2008). The equation of motion for s-species of ions is given by

∂

∂t

(
Vs +

zsesA

msc

)
= Vs ×

(
∇ × Vs +

zses

msc
B

)
− ∇

(
esφ

ms

+
V2

s

2
+ hs

)
, (1)

where Vs, ms, zs and es represent the velocity, mass, charge number and charge of
s ions (s = i, 1, and 2 for positive ions, first- and second-negative ion, respectively).
B, A and φ, respectively, represent magnetic field, vector and scalar potentials. c

is the speed of light in vacuum, ∇hs = (∇ps)/ρs, hs is the enthalpy, ρs = nsms is
the constant mass density of s-species, ps = nsTs is the pressure and ns and Ts are
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the number densities and temperature of the ion species, respectively. The identity
(Vs · ∇)Vs = 1

2
∇V2

s − Vs × (∇ × Vs), is used and E in favour of scalar potential φ

and vector potential A by relation E = − ∇φ − c−1∂A/∂t , is eliminated to obtain (1).
It is convenient to normalize the variables with B to some arbitrary B0, length to

skin depth of positive ions λi = (c
√

mi)/
√

4πniz
2
i e

2, time to gyroperiod of positive
ions mic/zieB0, velocities to Alfvén speed VA = B0/(4πnimi)

1/2, pressure to B2
0/4π

and the potentials φ and A to B2
0/4πnie and VAmic/zie, respectively. The normalized

macroscopic evolution equations are

∂

∂t̂
(V̂i + Â) = V̂i × (∇̂ × V̂i + B̂) − ∇̂

(
φ̂ +

V̂
2

i

2
+ p̂i

)
, (2)

∂

∂t̂
(V̂1 − Z1M1Â) = V̂1 × (∇̂ × V̂1 − Z1M1B̂) − ∇̂

(
−M1φ̂ +

V̂
2

1

2
+ D1p̂1

)
, (3)

and

∂

∂t̂
(V̂2 − Z2M2Â) = V̂2 × (∇̂ × V̂2 − Z2M2B̂) − ∇̂

(
−M2φ̂ +

V̂
2

2

2
+ D2p̂2

)
, (4)

where Zj = zj/zi, Mj = mi/mj , and Dj = ρi/ρj (the subscript i stands for ions and
j = 1, 2 represent the two-negative ions). In what follows, for convenience, we will
not use the normalization sign above the variables. Taking curl of above equations,
we obtain

∂

∂t
(∇ × Vi + B) = ∇ × [Vi × (∇ × Vi + B)], (5)

∂

∂t

(
∇ × Vj − Zj MjB

)
= ∇ ×

[
Vj ×

(
∇ × Vj − Zj MjB

)]
, (6)

where B = ∇×A. The simplest steady-state solution of above equations is given by the
Beltrami condition which demands the alignment of vorticities to the corresponding
flow. The Beltrami conditions for positive and negative ions, respectively, read as

∇ × Vi + B = aVi , (7)

∇ × V1 − Z1M1B = aV1, (8)

∇ × V2 − Z2M2B = aV2, (9)

where a is a constant and called the Beltrami parameter. The above equations show
that canonical (generalized) vorticities become parallel to the corresponding velocities
to achieve the relaxation.

The quasi neutrality condition is zini = zdnd +
∑

j=1,2zjnj , where nd is the number
density of dust grains. Using Ampere’s Law and the definition of current density
(J = zieniVi −

∑
j=1,2zjenjVj ), the normalized velocity of positive ions is given by

∇ × B = Vi −
∑
j=1,2

ZjNjVj , (10)
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where Nj = nj/ni . Multiplying (8) and (9) by Z1N1 and Z2N2, respectively and
adding, we obtain

∇ ×
∑
j=1,2

ZjNjVj −
2∑

j=1,2

Z2
jNj MjB = a

∑
j=1,2

ZjNjVj . (11)

Eliminating
∑

j=1,2ZjNjVj from (10) and (11), we have

∇ × Vi − aVi = ∇ × ∇ × B − a∇ × B +
∑
j=1,2

Z2
jNj MjB. (12)

Using (7) into above equation, we obtain

∇ × ∇ × B − a∇ × B + kB = 0, (13)

where k = 1+
∑

j=1,2Z2
jNj Mj . This is double curl Beltrami equation and can be cast

as a linear sum of two different Beltrami fields.

3. Analytical structure
The Beltrami magnetic field Bj (where j = 1, 2) is defined as follows:{

∇ × Bj = λjBj (in Ω),
n · Bj = 0 (on ∂Ω),

(14)

where n is the unit normal vector and λj are scalar constants. The magnetic field B
in (13), therefore, can be written as

B = C1B1 + C2B2, (15)

where Cj (j = 1, 2) are arbitrary constants. In cylindrical coordinates, the
eigenfunctions of the curl operator Bj may be represented by Chandrasekhar–Kendall
functions (Chandrasekhar and Kendall 1957). If we take

λ1 + λ2 = a, (16)

λ1λ2 = k, (17)

then (13) can be expressed as

(∇ × −λ1)(∇ × −λ2)B = 0. (18)

The eigenvalues of the curl operator (λj ) may be arbitrary real (and even complex)
number, if the domain is multiply connected (Yoshida and Giga 1990) and represents
the solutions of the quadratic equation

λ2 − aλ + k = 0. (19)

The eigenvalues, therefore, can be expressed as

λ1,2 =
a ±

√
a2 − 4k

2
. (20)

For a2 > 4k, the roots will be real and if a2 < 4k, roots are complex. The roots will
be purely imaginary for a = 0, and for a2 = 4k, the roots are degenerate. It is worth
noting that k strongly depends on mass and density of plasma species.
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Figure 1. Plot of magnetic fields for a = 2.53. The scale parameters are λ1 = 1.3386 and
λ2 = 1.1914.

4. Diamagnetic field structures
The magnetic fields given in (18) depend on two characteristic length scales (λ−1

1,2). In
order to show the role of two scales, we consider the explicit solution of (18) in one-
dimensional cylindrical system. Taking the boundary conditions Bz(r = 0) = B0 ≡ 1,

and Jz = (∇ × B)z(r = 0) = h, the solution of (18) reads as

Bz = C1J0(λ1r) + C2J0(λ2r), (21)

Bθ = C1J1(λ1r) + C2J1(λ2r), (22)

where C1 = (λ2 − h)/(λ2 − λ1) and C2 = (λ1 − h)/(λ1 − λ2). To evaluate the value
of k, we consider Ar+-F −-SF −

6 plasma system (El-Tantawy and Moslem 2012). As
Mj = mi/mj , therefore M1 = mi/m1 = 40/19 and M2 = mi/m2 = 40/146, where
mi , m1, and m2 are the masses of positive-ion Ar+, first-negative ion F −, and second-
negative ion SF −

6 , respectively. The ratio of densities of first- and second-negative ions
to positive ions Nj = nj/ni is taken to be 0.25. The value of k depends on charge, mass
and densities of plasma components. For this particular system, k = 1.5948 remains
constant. A constant boundary value of h = 0.5 is taken to show the magnetic
field structures by varying only the values of a - ratio of canonical vorticities to
flows. Figure 1 shows the radial profiles of magnetic fields for Beltrami parameters
a = 2.53. The eigenvalues of the curl operator are real and read as λ1 = 1.3386
and λ2 = 1.1914. It is observed that Bz decreases towards the edge whereas Bθ

increases towards edge of plasma. In this case, canonical vorticities of all the plasma
components are greater than the respective flows. Figure 2 shows the magnetic field
profiles for a complex conjugate pair of eigenvalues (λ1,2 = 0.25 ± 1.2579i) and a
Beltrami parameter a = 0.5. The flows are greater than the canonical vorticities and
magnetic fields show the diamagnetic character. For a = 0, the canonical vorticities
become zero and flow vorticities become parallel to magnetic field. The eigenvalues
are purely imaginary and given by λ1,2 = ±1.2629i. The plasma behaves as a perfectly
diamagnetic medium as shown in Fig. 3. The plots of magnetic fields illustrate the
possibility of creating highly diamagnetic relaxed states by varying a single Beltrami
parameter a. It is also evident that the eigenvalues (λ1,2) defining the length scales of
relaxed structures explicitly depend on charge, mass and density of flowing plasmas.
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Figure 2. Plot of magnetic fields for a = 0.5. The scale parameters are λ1,2 = 0.25 ± 1.2579i.

Figure 3. Plot of magnetic fields for a = 0. The scale parameters are λ1,2 = ±1.2629i.

5. Summary
The role of inertia, canonical vorticities and flows in relaxation of multifluid plasma

is described. It is shown that in contrast to HMHD plasma relaxation, an electron-
depleted two-negative ion dusty plasma relaxes to a double Beltrami field even if the
inertia of all the plasma species is taken into account provided the ratio of canonical
vorticities to flows of different species is same. The relaxed state involves two scale
parameters and it is possible to get two relaxed vortices of different scale lengths.
One relaxed structure characterized by small-scale parameter represents the
macroscale (of the order of system size) while the other one corresponding to large
eigenvalue could be of the order of ion skin depth. The diamagnetic as well as the
paramagnetic plasma configurations can also be obtained by changing the canonical
vorticities and flows. This work is important to study relaxation and creation of
different structures in electron-depleted dusty plasmas having two negative ions in
addition to a positive ion. The present results could be applied to understand the
magnetic field structures formed in planetary rings and Titan’s upper atmosphere,
where positive ions, multifarious negative ions are the major constituents of plasmas
with dust impurities of negative charge. In the present analysis, we have considered
only a single Beltrami parameter a. If we take different Beltrami parameters for
different plasma components, the relaxed state will be changed and appear as
a superposition of more than two Beltrami fields. The effect of multi Beltrami
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parameters on formation of relaxed structures will be investigated and discussed
somewhere else.
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