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We analyze the importance of the frequency of decision making for macroeconomic
dynamics, in the context of a simple, well-known business cycle model with balanced
budget rules. We explain how the frequency of decision making (period length) and the
measurement unit of time (calibration frequency) differ and examine how local stability is
affected by changes in the period length. We find that as the period grows longer,
indeterminacy occurs less often. This may have significant quantitative implications: for
the model at hand, there is a wide range of economically relevant labor tax rates (from
30% to 38%) for which the continuous-time model gives indeterminacy, whereas the
discrete-time model has determinate dynamics.

Keywords: Calibration, Period Length, Local Indeterminacy, Discounting, Depreciation

1. INTRODUCTION

Modern macroeconomic theory relies on the construction, parameterization, and
solution of dynamic optimization problems. The interest in dynamic optimization
problems is due to their close relation to dynamic general equilibrium models. In
economies where the fundamental welfare theorems hold, one can find the equi-
librium of an economy by focusing on the corresponding planner’s optimization
problem; but even when the welfare theorems fail to apply, the various agents
in the model may have to solve dynamic optimization problems. As a result, the
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equilibrium conditions of the model are typically described by a set of differential
or difference equations. To construct, parameterize, solve, and intuitively interpret
the results of such settings, one needs to make an assumption on the frequency with
which economic activities take place or decisions are made, i.e., the period length.
In this paper we explore and analyze some issues arising from this assumption in
the context of the business cycle model with a balanced budget rule of Schmitt-
Grohé and Uribe (1997).

The contributions of our work are the following. First, we write up a general
discrete-time version of the model, where the period length is explicitly modeled
as a free parameter h. By letting h vary, we are able to disentangle two related
but different concepts, namely the period length (determined by the frequency
of decision making) and the calibration frequency (determined by convention via
the measurement unit of time, e.g., a year). These two can easily be confused in
discrete time, because they coincide in commonly used models, yet in continuous
time the difference is clear: the period length is zero (economic agents make
decisions continuously), whereas the calibration frequency can be whatever the
modeler deems suitable (for example, years or quarters) and is of no true economic
significance.

Second, the model we use provides a good platform for understanding the
importance of the period length for real local indeterminacy, i.e., multiplicity of
equilibria in dynamic macroeconomic models. Indeterminacy has been shown to
be present in many popular models and is usually associated with the possibility
of belief-driven sunspot fluctuations; it is therefore imperative (from a policy
design perspective) to have a good understanding of the role of indeterminacy
in business cycle fluctuations and economic growth.1 With this context in mind,
we show that standard discrete and continuous versions of the “same” model can
lead to different conclusions regarding local stability properties. Our framework
allows us to consider a whole range of intermediate cases and pinpoint the exact
period length at which the switch from determinacy to indeterminacy occurs.
We find an interesting regularity: the smaller the period length is (i.e., the more
frequently decisions are made), the larger the ranges of indeterminacy are. This
pattern follows from a simple intuitive explanation: indeterminacy arises when
expectations about the future affect current investment decisions in such a way as
to render the expectations self-fulfilling. Specifically, indeterminacy arises if the
effect on current decisions is strong enough. The closer the future is (i.e., the shorter
the period length and the sooner agents are allowed to make decisions again), the
stronger the effect on today and therefore the easier it is for expectations to be self-
fulfilling.2 For the framework of Schmitt-Grohé and Uribe (1997), the implication
of this result is quantitatively significant: there is a wide range of economically
relevant labor tax rates (from 30% to 38%) for which the continuous-time model
gives indeterminacy, whereas the discrete-time model has determinate dynamics.
This reinforces the importance of carefully separating and determining the period
length and the parameter values in such models, particularly when these are used
for macroeconomic policy analysis.
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Third, we find that the sensitivity of the indeterminacy region to the period length
depends crucially on the rate of time preference and the capital depreciation rate.
We find that as the rate of time preference increases (i.e., as agents become less
patient), the ranges of indeterminacy decrease (i.e., indeterminacy occurs less
often). This is because as agents become less patient, they value the future less;
therefore expectations about the future have a smaller impact on today’s decisions
and are thus less likely to be self-fulfilling.3

There is a significant literature studying the relationship between discrete-
and continuous-time versions of a model. Telser and Graves (1968) and Leung
(1995) discuss how uncertainty can give rise to subtle differences between the
two setups. Li (2003) and Carlstrom and Fuerst (2005) point out a reversal of
the monetary policy prescription in the model of Dupor (2001) when one moves
from a continuous- to a discrete-time specification. Mino et al. (2008) point out a
similar change in the predictions of a two-sector endogenous growth model. Foley
(1975), Turnovsky and Burmeister (1977), and Karni (1979) look into different
specifications of asset market equilibrium and how those can be translated from
a discrete- to a continuous-time setting. We differ from this literature in that
we analyze the importance of period length as opposed to two extreme cases
of discrete versus continuous time. This allows us to further refine some of the
statements made in the discrete- versus continuous-time literature. Mercenier and
Michel (1994) and Bosi and Ragot (2009) take a different approach: They start
by assuming that continuous-time models provide a good description of the world
and are interested in obtaining optimal approximations of such models in discrete
time. Our approach is more agnostic: we simply recognize that discrete- and
continuous-time versions of the same type of economies are essentially different
models, and our aim is to clarify the importance of period length in such models.4

More recently, the idea of disentangling the frequency of decision making
from the calibration frequency has also been explored by Oberfield and Trachter
(2011). They consider the question in a search model of money and find that
higher frequency reduces the multiplicity of equilibria.5 The key difference is
that, as the period length shrinks, the probability of being matched with a trading
partner is reduced and, as a result, the current trading strategy exerts smaller
effects on the future. In our framework, each individual decides and acts for sure
within each period. The probability effect is thus absent and smaller period length
implies larger intertemporal interactions. Finally, Medio (2011) considers a class
of optimal growth models, explicitly models period length so that it determines
the frequency of decision making, and examines its importance for bifurcation
analysis and complex dynamics. He finds that high discount rates are more likely
to generate cycles and chaotic dynamics, but such rates may only be relevant for
unreasonably large calibrations of the measurement unit of time.

Closest to our work is the paper of Hintermaier (2005). He demonstrates that
the stability properties of the model of increasing returns of Benhabib and Farmer
(1994) depend on the period length. We show the same is also true in the (related)
model of Schmitt-Grohé and Uribe (1997), which has the additional attractive
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feature of exhibiting local indeterminacy for empirically plausible parameter val-
ues. We also differ in that we explicitly model the period length as a free parameter
and are able to distinguish between calibration frequency and decision-making fre-
quency. This allows us to provide an intuitive economic interpretation for what he
calls the sunspot paradox; i.e., we give an explanation for why some frequencies
of decision making imply aggregate stability whereas others imply the existence
of sunspot equilibria.

The rest of the paper is organized as follows. Section 2 briefly describes
the model of Schmitt-Grohé and Uribe (1997) for a general period length.
Section 3 addresses the differences between period length and calibration fre-
quency and shows the implications of these differences for the local stability
properties of the model. Section 4 concludes.

2. A MODEL WITH BALANCED BUDGET RULES

We present the model of Schmitt-Grohé and Uribe (1997) with the added feature
that the period length is a free parameter denoted by h.6 We maintain the assump-
tion that time evolves continuously. A discrete-time model can be thought of as
a continuous-time model where the time line [0,∞) has been partitioned into
intervals of length h: [0, h), [h, 2h), etc. These intervals are called periods and
can be indexed by t

h
∈ {0, 1, 2, . . .}, where t is the time instant at the beginning

of each period, so that t ∈ I = {0, h, 2h, . . .}.7 This continuous-time interpreta-
tion of discrete-time models also requires the following assumption: stock (state)
variables can only be adjusted at the beginning of a period (at t ∈ I ). We maintain
this assumption throughout the rest of the paper.

The economic environment consists of households, firms, and a government.
Households decide on capital and labor supply as well as demand for the single
good produced. Firms decide on capital and labor demand and use these inputs
to produce the single good and supply it in the goods market. Thus, there are
three markets in this economy, namely the goods, capital, and labor markets. All
markets are perfectly competitive. The government uses proportional labor taxes
to finance exogenous spending.

To be more precise, households own the capital stock kt and rent it to the firms
at an instantaneous real rate rt . The capital stock, being the state variable in this
model, can only be adjusted at the beginning of a period. This is intended to
capture the essence of a standard discrete-time model. We find it helpful to think
of this as an assumption on the market structure: capital markets are closed most
of the time and only open at discrete points in time t ∈ I . We also assume that
the arrangement is one that stipulates a constant instantaneous rate of return rt
within the period [t, t+h).8 At any instant t+ s, s ∈ [0, h), households rent labor
nt (s) to the firms and are compensated at a ratewt(s). The government taxes labor
income at a rate τt (s). Thus the instantaneous flow of income for a household at
any given instant t+s is given by rtkt +(1−τt (s))wt (s)nt (s). This income can be
used for consumption ct (s) or savings Skt (s). The budget constraint at any instant
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t + s reads
ct (s)+ Skt (s) = rtkt + (1 − τt (s)) wt (s)nt (s). (1)

Within a period, savings are accumulated. At the end of the period, households
receive the depreciated capital stock back from firms and can add their accumulated
savings to this capital stock before renting it out again for the following period.
The capital accumulation equation is thus

kt+h = (1 − δh) kt +
∫ h

0
Skt (s) ds. (2)

Here we have assumed that the instantaneous rate of depreciation is constant and
equal to δ, so that the fraction of capital depreciating within a period is equal to δh.
As is common in the literature, we have also assumed that depreciation affects the
capital stock being used in production, whereas savings not yet put into production
do not depreciate.

Households decide on optimal consumption and savings rates, taking prices as
given, in order to maximize their utility, given by

∞∑
t=0

(
1

1 + ρh

) t
h
∫ h

0
u (ct (s) , nt (s)) ds, (3)

where u(ct (s), nt (s)) is the instantaneous flow of utility and
∫ h

0 u(ct (s), nt (s))ds

is the total flow of utility within a period.9 Similarly to the depreciation rate, the
time preference rate ρ is an instantaneous rate; the corresponding rate over a period
of length h is ρh. It should therefore be clear that δ and ρ are independent of the
period length. They do depend, however, on the calibration frequency. In other
words, we distinguish between the period length and the calibration frequency,
two concepts that coincide in a standard discrete model. We return to this subtle
distinction at the beginning of the next section.

Firms use the rented inputs kt and nt (s) in a constant–returns to scale production
function F(kt , nt (s)) to maximize the sum of discounted profits

∑
t∈I

(
1

1 + ρh

) t
h
∫ h

0

uc,t (s)

uc,0(0)
[F(kt , nt (s))− rtkt − wt(s)nt (s)] ds. (4)

Households are assumed to be identical, which allows us to focus on the represen-
tative household and ensures that the firm’s objective is well defined. In particular,
the firm is owned by the representative household, which has a unique valuation
of instantaneous profits at any point in time t + s. From the point of view of time
0, the value of one unit of profits at time t + s is simply the price of a contingent
claim in terms of time-0 consumption, given by

(
1

1 + ρh

) t
h uc,t (s)

uc,0(0)
. (5)
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Finally, the government uses the labor tax to finance a constant instantaneous
flow rate of spending G and, crucially for indeterminacy, is required to maintain
a balanced budget

G = τt (s)wt (s)nt (s). (6)

The model is closed by assuming that all markets clear. A precise definition of
equilibrium is given in the Appendix.10

The first-order conditions of the household for consumption and labor are given
by

λt (s) = uc,t (s), (7)

un,t (s) = −λt (s) (1 − τt (s)) wt (s) (8)

for all s ∈ [0, h), t ∈ I , where λt (s) is the multiplier on the budget constraint.
Condition (7) is the standard first-order condition for consumption, ensuring that,
at an optimum, the marginal value of income equals the marginal utility of con-
sumption. Condition (8) is the standard first-order condition for labor supply,
ensuring that the marginal utility of leisure is equalized to the marginal value of
income times the after-tax wage rate. The first-order condition with respect to
Skt (s) gives

λt (s) = μt (9)

for all s ∈ [0, h), t ∈ I , where μt is the multiplier on the capital accumulation
constraint. Optimality of the savings decision necessitates equating the marginal
cost and benefit of savings. The marginal cost of savings at instant t + s, λt (s),
arises from reduced resources available for consumption. This cost depends on
the specific instant t + s because consumption at different points in time could,
in principle, be valued differently. The marginal benefit comes from the fact that
these savings will eventually become investment and be added to the capital stock,
kt+h. This will only happen the next time the capital market opens, so the specific
instant within period t at which saving occurs is irrelevant. The implication is that
the shadow value of income must be constant within a period, because savings can
be costlessly reshuffled across the period leaving the overall accumulated savings∫ h

0 S
k
t (s)ds unaffected. Finally, the capital Euler equation is given by

μt =
(

1

1 + ρh

)[
μt+h (1 − δh)+

∫ h

0
λt+h(s)rt+hds

]
(10)

⇒ μt = μt+h
1 + ρh

[1 + (rt+h − δ) h] (11)

for all t ∈ I , where we have used (9) to substitute for λt+h(s). Note that capital
accumulation depends on the overall return hrt+h earned over a period h. In
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addition, a transversality condition must hold:

lim
T→∞

(
1

1 + ρh

) T
h

uc,T (0)kT+h = 0. (12)

On the firm’s side, optimality requires that the wage rate be equal to the marginal
product of labor at every instant t + s:

wt(s) = Fn (kt , nt (s)) , for all s ∈ [0, h) and t ∈ I . (13)

Optimal capital supply given rt must satisfy
∫ h

0
uc,t (s)rtds =

∫ h

0
uc,t (s)Fk (kt , nt (s)) ds, for all t ∈ I . (14)

Given (6)–(9) and (13) it is straightforward to show that ct (s), nt (s), and uc,t (s) are
all constant within a period, so that the preceding condition can be more concisely
written as

rt = Fk (kt , nt ) for all t ∈ I . (15)

This is the standard capital demand equation stating that the rental rate of capital
must equal the marginal product of capital. Conditions (6)–(15), together with the
goods market–clearing condition

ct (s)+ Skt (s)+G = F (kt , nt (s)) for all s ∈ [0, h) and all t ∈ I , (16)

characterize the equilibrium in this model.
It is straightforward to establish that all flows are constant within a period. This

is a direct outcome of the assumption of no within-period discounting and makes
this model equivalent to a discrete-time model with period length h.

Our general model nests the discrete- and continuous-time versions of the
model as special cases. The important condition is the Euler equation, which can
be rearranged as

μt+h − μt

h
= ρ − rt+h + δ

1 + rt+hh− δh
μt . (17)

When h = 1, this is the standard discrete-time Euler equation

μt+1 − μt = ρ − rt+1 + δ

1 + rt+1 − δ
μt . (18)

As h → 0, this converges to the standard continuous-time Euler equation

μ̇t = (ρ − rt + δ) μt . (19)

For general h, capital kt is rented out once at the beginning of the period;
whatever is saved throughout the period remains inoperative in the possession of
consumers. At the end of the period, the rented (depreciated) capital returns to
the possession of the households and is added to the newly accumulated capital.
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This new capital stock kt+h remains in the possession of the households until
the beginning of the next period, when it is rented out again. This model has an
inherent delay (just like any discrete-time model), because at any point in time
within the period there exists capital that is not used for production. This type
of delay is not the same as what is commonly known as time-to-build delay. The
classic example of time-to-build delay is given in Kydland and Prescott (1982).
In that model, an h-period delay implies that investment at t will only produce
capital at t + h, where h is an integer. This still allows new investment to take
place at t +1, which will yield capital at t +h+1 and so on. The continuous-time
counterpart of this, studied in Licandro and Puch (2006), is one where investment
can take place continuously but productive capital is only created after an interval
h, where now h is a real number. In our model, savings take place continuously
within a period at every instant t + s, s ∈ [0, h) but the accumulated savings are
suddenly invested and produce capital at t + h, regardless of whether they were
saved at the beginning of the period or right before the end. Put differently, in
our case the delay in putting capital into production varies and depends on the
instant within the period at which the capital is put aside. Here we have illustrated
that this different arrangement is an implicit assumption of any standard discrete
model, even in the absence of a time-to-build delay. We have also provided a
market (equilibrium) interpretation of this assumption.

One could also think of this model in relation to the work of Turnovsky (1977).
Turnovsky interprets a discrete-time model as a setting where time is continuous,
but because of adjustment costs, firms can alter their capital only in a discrete man-
ner. He then shows that the standard limiting continuous-time relation between cap-
ital and investment, i = k̇, is true only under the restrictive assumption of no adjust-
ment costs. In a continuous-time model with adjustment costs, it would not be true
in general: the demand for investment i cannot be matched with a change in capital,
because capital is not perfectly malleable. Thus, in our setting we can interpret the
fact that the capital market is closed within a period as an infinite adjustment cost.

3. INDETERMINACY AND PERIOD LENGTH

In this section we investigate the effect of period length h on the incidence of in-
determinacy in this model. We begin with a discussion that clarifies the distinction
between period length and calibration frequency. Subsequently, we calibrate the
model in a way that ensures that our calibration remains consistent, in the sense
of Hintermaier (2005), as we change the period length h. Finally, we show that
different, commonly used values for h can lead to economically large and relevant
differences in the indeterminacy regions and provide an intuitive interpretation of
this finding.

3.1. Period Length and Calibration Frequency

In any dynamic model, there are two important concepts that have to do with
modeling time: the unit of measurement of time and the frequency with which
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activities take place or decisions are made. Here we explain how the first relates
to the calibration frequency and the second relates to the period length.

Given a continuous timeline, the unit of measurement of time gives meaning to
the quantity

∫ 1
0 yt (s)ds, where yt (s) is an instantaneous flow rate. For example, if

the measurement unit is a year, this quantity measures the total flow of y in one
year, starting at t . The choice of units dictates the values for parameters such as
the discount rate and the depreciation rate. When the unit is a year, the parameter
δ will denote the fraction of capital that depreciates over a year. Therefore, once
the unit of measurement is determined, we have a calibration frequency for the
model.

On the other hand, the frequency with which decisions on stock variables
are made or economic activities take place determines the period length h. For
example, consider a model with calibration frequency equal to a year. If decisions
are to be updated four times a year then the period length is h = 1/4 and the
corresponding parameters ρh = ρ/4 and δh = δ/4 now give values for discount
and depreciation rates over a quarter. If, in the same model, decisions are made
only once a year, then h = 1 and the corresponding parameters ρh = ρ and
δh = δ now denote yearly rates. As the frequency of decision making increases
and h → 0, we retrieve the standard continuous-time model in the limit, without
losing the correct interpretation of δ and ρ.

In short, the measurement unit of time and the period length are not necessarily
the same, but in order to obtain the standard discrete-time model we have to set
h = 1. This is because in the standard discrete-time framework, the calibration
frequency and the frequency of decision making necessarily coincide. Using our
general setup as described in Section 2, we are able to disentangle the two concepts
in a transparent way.

In our experiments, we fix the unit of measurement of time to a year. As a
result, the parameters (e.g., ρ) will remain fixed as we change h. In this way we
can obtain a consistent comparison of a model with a one-year period length, a
model with a one-quarter period length, and a model with a zero period length
(continuous time), all of them calibrated at yearly frequencies.

3.2. Calibration and Steady State

We follow Schmitt-Grohé and Uribe (1997) in choosing a Cobb–Douglas produc-
tion function

F (kt , nt (s)) = k
sk
t nt (s)

sn , (20)

with sk + sn = 1 and sk, sn > 0 and utility that is separable in consumption and
labor and linear in labor as in Hansen (1985),

u(ct (s), nt (s)) = log ct (s)− Ant(s). (21)
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Using these specifications, we can derive the steady state output-to-capital ratio
from the capital Euler equation

1 = 1

1 + ρh

[
1 +

(
sk
ȳ

k̄
− δ

)
h

]
⇒ ȳ

k̄
= ρ + δ

sk
, (22)

where k̄ is the steady state capital stock and ȳ = k̄sk n̄sn is the instantaneous flow
rate of output at steady state and n̄ is the steady state flow of labor supply. For a
model with period length h, the flow of output over the entire period is ȳh and thus
the corresponding output-to-capital ratio is equal to ρ+δ

sk
h. By construction of the

model, the principle for consistent calibration used by Hintermaier (2005), who
builds upon the ideas in Aadland and Huang (2004), is satisfied by our calibration
strategy. We fix parameters using the yearly calibration of Schmitt-Grohé and
Uribe, i.e., sk = 0.3, sn = 0.7, δ = 0.1, and ρ = 0.04.

3.3. Dynamic Adjustment and Indeterminacy

Since Schmitt-Grohé and Uribe’s (1997) work, it has been well known that the
balanced budget requirement introduces the potential for indeterminacy into the
real–business cycle framework. The reason is as follows. An increase in current
taxes shifts labor supply downward (see equation (8)) and leads to a reduction
in equilibrium employment. The dependence of labor supply on taxes and the
balanced budget create the possibility of self-fulfilling expectations. In particular,
if households expect high future labor taxes, they reduce future labor supply.
This leads to a reduction in future equilibrium labor. The resulting fall in the
expected marginal product of capital implies, through the Euler equation, that
current marginal utility (λt ) has to fall. This, in turn, leads to a combination of
increased consumption (equation (7)) and leisure (equation (8)). The expectation
of high future taxes thus leads to less work today, which, in turn, forces the
government to increase current labor income taxes to maintain a balanced budget.
If the resulting increase in current taxes is large enough, such a situation can be
an equilibrium and expectations become self-fulfilling.

Schmitt-Grohé and Uribe (1997) consider the possibility of such indeterminacy
as a function of steady state tax rates. We perform a similar analysis in our context
and look at how the ranges of indeterminacy depend on the period length h. Strictly
speaking, the labor tax rate in this model is an endogenous variable and G is an
exogenous constant parameter. Because of the existence of a Laffer curve, there
are two steady state labor taxes for a given G. However, like Schmitt-Grohé and
Uribe (1997), we choose to treat the labor tax rate as a parameter and work out
what the corresponding G is. The Laffer curve in the steady state is identical to
the one derived by Schmitt-Grohé and Uribe (1997), it is independent of h, and
its peak occurs at

τ ∗ = ρ + δsn − √
skρ (ρ + δsn)

sn (ρ + δ)
.

https://doi.org/10.1017/S1365100511000745 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100511000745


908 ALEXIS ANAGNOSTOPOULOS AND CHRYSSI GIANNITSAROU

We provide a more detailed discussion of the shape and characteristics of the
Laffer curve in Section 3.4, where we explain the importance of discounting and
depreciation for indeterminacy.

We now examine the local stability properties of the model by log-linearizing
the equilibrium conditions around the steady state (see Appendix A.2 for detailed
derivations). Let

c11 = − (ρ + δ)
sn (1 − τ)

sk − τ
,

c12 = − (ρ + δ)
snτ

sk − τ
,

c21 = ρ + δ

sk

[
sn (1 − τ)

sk − τ
+ sc

]
,

c22 = (ρ + δ)
1 − τ

sk − τ
− δ,

where sc = c̄/ȳ is the steady state ratio of consumption to output. The Jacobian
describing the dynamic adjustment for an arbitrary h is then given by

D(h) =
⎛
⎝ c11 + hc12c21

1 + ρh− hc11

c12 (1 + hc22)

1 + ρh− hc11
c21 c22

⎞
⎠, (23)

where the local dynamics is described by

⎛
⎜⎝
μ̂t+h − μ̂t

h

k̂t+h − k̂t

h

⎞
⎟⎠ = D(h)

(
μ̂t
k̂t

)
, (24)

and a hat denotes a log deviation from steady state.
When h → 0, the matrix that characterizes the dynamics is C = (cij ), i, j =

1, 2, as in Schmitt-Grohé and Uribe (1997). In the case of continuous time, C
has two real and negative eigenvalues (indeterminacy) whenever sk < τ < τ ∗,
where τ ∗ gives the peak of the Laffer curve. For an arbitary period length h,
it is possible show that indeterminacy can only occur for tax rates in the same
range, i.e., for sk < τ < τ ∗ (see Appendix A.3). The upper bound τ ∗ is sharp;
however, the lower bound is sharp only as h → 0. Although we can show
that indeterminacy occurs only for tax rates τ ∈ (τ̂ (h), τ ∗), where sk < τ̂ (h),
further analytical characterization of the lower bound τ̂ (h) does not generate any
meaningful insights; for this reason, we explore the properties of the lower bound
of indeterminacy numerically.

Figure 1 shows the stability properties for the general discrete-time model when
the two key parameters, namely the labor tax rates and the period length, are varied.
We let τ ∈ [0, 1) and h ∈ [0, 4]. Gray areas indicate saddlepath stability and white
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FIGURE 1. Stability properties for the general model. Gray areas show saddlepath stability
and white areas show indeterminacy.

areas indicate indeterminate dynamics. As h increases, the indeterminacy regions
become smaller overall, despite the fact that the upper bound remains constant and
equal to 0.75. For h → 0, the range of indeterminacy is τ ∈ (0.3, 0.75), just as in
Schmitt-Grohé and Uribe (1997), whereas for h = 1, the range of indeterminacy
is τ ∈ (0.38, 0.75). In other words, for a labor tax rate between 30% and 38%,
the result of Schmitt-Grohé and Uribe is reversed when we move to the standard
discrete-time setup.

To understand whether and how the period length h matters for local deter-
minacy, consider the intuition for indeterminacy explained in the first paragraph
of Section 3.3. The sequence of arguments that leads to indeterminacy can fail
for two distinct reasons. The first is that an increase in taxes may not necessarily
increase revenues for the government. This will only occur for high levels of taxes,
i.e., when the economy finds itself on the right-hand side of the peak of the Laffer
curve and τ > τ ∗. With the current calibration, the peak of the Laffer curve is at
τ ∗ = 0.75, so indeterminacy can only arise for τ < 0.75. This upper bound does
not depend on h, because the steady state that gives the peak of the Laffer curve
is invariant to changes in h.

The second reason that the argument may fail is that the increase in current taxes
as a response to an expected increase in future taxes may not be large enough. This
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will occur for relatively low taxes: when taxes are low, the economy is on a steeply
increasing part of the Laffer curve, so that revenues can be increased substantially
with small changes in the tax rate. As we move along the Laffer curve, the increase
in taxation required to raise a certain amount of extra revenues becomes larger.
There is a threshold value for taxes τ̂ (h) at which the required increase in taxation
is large enough to sustain an equilibrium with self-fulfilling expectations. As taxes
are increased further, it becomes easier for expectations to become self-fulfilling,
because balancing the budget in response to a reduction in labor requires ever
larger increases in taxes (and this is abruptly stopped at τ ∗, from where onward
the government cannot raise more revenues by increasing taxes).

Our numerical exercise quantitatively pinpoints the lower bound of indetermi-
nacy and shows that the period length does matter for this; as h increases, the range
where indeterminacy occurs becomes smaller. The intuition is as follows. To get
self-fulfilling expectations, it must be that an increase in expected future labor tax
rates leads to a large enough increase in current labor tax rates. This is because, on
an equilibrium path, tax rates must converge monotonically to their steady state.
Therefore, the question is how much current choices are affected by changes in
expectations about the future. Not surprisingly, because agents discount the future,
if the future is one year ahead it has less of an impact on today’s choices than if
it is one quarter (or an instant) away. Put differently, as the frequency of decision
making decreases (i.e., as h becomes larger), the response of current employment
to higher expected future tax rates is milder, and therefore tax rates must be larger
to make indeterminacy relevant. This is a direct result of the effects of the period
length on optimal intertemporal decisions, as described by the Euler equation.
An equivalent way of seeing this is by considering the corresponding Bellman
equation for the household problem, where the discounting of the continuation
value governs the importance of the future for current decisions.

Finally, we wish to emphasize that the range of taxes for which the different
dynamic properties arise is both wide and empirically relevant. The result of
Schmitt-Grohé and Uribe is particularly important because many OECD countries’
tax rates fall within or very close to the range of indeterminacy they computed.
Looking at the estimated effective labor income tax rates in Mendoza et al. (1994),
in 1988 the United States, the United Kingdom, Canada, and Japan had rates only
just below 30%. Italy, Germany, and France, on the other hand, fell within the
range of indeterminacy with rates at 40% or more. Of course, these rates vary over
time and one can find years where the U.K. rate was above 30% and European rates
were less than 40%. Volkerink and De Haan (2001) provide updated estimates for
18 OECD countries in 1992. The labor income tax rates reported vary between
25% and 45%. Roughly speaking, this is the range of cross-sectional variation
across developed countries. The range of taxes for which a standard discrete-
and a standard continuous-time model produce opposite results (30–38%) lies
exactly in the middle of this and covers almost half of the interval width. These
observations reinforce the importance of understanding the difference between
period length and calibration frequency.
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FIGURE 2. Stability properties for ρ = 0.2. Gray areas show saddlepath stability and white
areas show indeterminacy.

3.4. Depreciation and Discounting

For a given period length, two parameters play an important role in indeterminacy
in this model: the capital depreciation rate δ and the time preference rate ρ.
Changes in ρ or δ will, in general, affect the regions of indeteminacy by shifting
both the lower and the upper bounds. Although the two parameters have similar
effects on the lower bound, their effects on the upper bound are opposite.

Starting with the time preference rate, comparing Figure 2 to Figure 1 illus-
trates that as ρ increases, i.e., as households become less patient, the range of
indeterminacy becomes smaller for any given h. This is both because the upper
bound moves to the left and because the lower bound moves to the right. The
lower bound is, as explained, related to the strength of the effect the future has
on today’s actions. With more discounting, expectations about the future have a
weaker effect on today’s decisions and, as a result, these expectations are less
likely to be self-fulfilling. The upper bound is given by τ ∗, which can be shown to
be decreasing in ρ. The intuition for why this is the case stems from the properties
of the Laffer curve, specifically the condition determining the peak of the Laffer
curve,

∂G

∂τ
= 0.
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As is standard, this derivative involves a trade-off between the increase in revenues
on the existing tax base and the decrease in revenues due to the endogenous
reduction in the tax base. Using the fact that G = τwn̄ = τsnκ

sk n̄, we obtain

∂G

∂τ
= snκ̄

sk n̄+ τsnκ̄
sk
∂n̄

∂τ
= 0,

or equivalently
∂n̄

∂τ

τ

n̄
= −1.

The peak of the Laffer curve occurs when the elasticity of labor with respect to
taxes is equal to −1. If the elasticity is larger than one (in absolute value), the
endogenous reduction in the tax base from a marginal increase in taxes is too large
and we are on the downward-sloping side of the Laffer curve. If the elasticity is
less than one (in absolute value), then the reduction in the tax base is not very
large and a marginal increase in taxes brings extra revenues; i.e., we are on the
upward-sloping side. Straightforward algebra shows that this elasticity depends
on ρ and δ:

∂n̄

∂τ

τ

n̄
= −

(
τ

1 − τ

) [
skρ

ρ (1 − snτ )+ snδ (1 − τ)

]

Crucially for our argument, its absolute value is increasing in ρ. Thus, as ρ
increases, the tax base is more strongly affected by taxes and the peak of the Laffer
curve shifts to the left. To summarize, because the lower bound of indeterminacy
increases and the upper bound decreases, the indeterminacy region is squeezed
unambiguously when ρ increases.

The effect of the depreciation rate on the possibility of indeterminacy is am-
biguous. We present the regions of indeterminacy for the extreme case of complete
depreciation of capital in Figure 3. From comparing Figure 3 to Figure 1, it be-
comes apparent that for any given h, both the upper bound and the lower bound of
the indeterminacy range move to the right. Again, the upper bound is related to the
peak of the Laffer curve, which can now be shown to be increasing in δ, because
the elasticity of the tax base with respect to taxes decreases as δ increases (i.e.,
higher capital depreciation makes agents’ labor choices less responsive to changes
in taxes). Regarding the lower bound, an intuition similar to that for ρ applies.
Specifically, recall that for any calibration frequency, δ represents the depreciation
of capital over one unit of time. As δ increases, capital depreciates more overall, so
when households make decisions today about future investment, future capital is
less attractive for them and therefore it has a smaller impact on current decisions.
The ranges of indeterminacy can therefore be larger or smaller when δ increases,
depending on the frequency h. For example, the range of indeterminacy when δ
increases is larger for h → 0 and smaller for h = 1.

In some sense, it is not surprising that we observe these three results relating to
h, δ, and ρ in all our examples. All three parameters are interrelated and reflect how
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FIGURE 3. Stability properties for δ = 1. Gray areas show saddlepath stability, white areas
show indeterminacy, and black areas show parameters for which no solutions exist.

relevant the future is to making consumption/savings decisions today. For the cases
of h and ρ we can clearly see that the more irrelevant the future becomes (i.e., the
larger h and ρ are), the weaker is the intertemporal link that renders expectations
self-fulfilling. The case of depreciation, where an increase in δ increases the upper
bound of the indeterminacy range, serves as a manifestation of the importance of
separating the period length h and the calibrated value of a parameter for a given
unit of time; if we were to consider δh jointly, it would not be possible to have a
clear message for the indeterminacy regions.

4. CONCLUDING REMARKS

This paper has brought to the fore the underlying assumptions inherent in discrete-
time modeling and explored the often hidden consequences of such assumptions.
We have shown, using the framework of Schmitt-Grohé and Uribe (1997), that the
choice of period length is a choice of economic significance that is separate from,
although related to, the issue of calibration.

We wish to close the paper with a word of caution to researchers who employ
dynamic general equilibrium models for analysis of macroeconomic dynamics and
policy design. Given our finding that the stability of such systems may be quite
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sensitive to the period length, quantitative results based on such models should be
interpreted with care. We hope that our work will aid researchers in assessing the
robustness of their results to different assumptions about the period length. Ulti-
mately, we believe that policy prescriptions arising from dynamic macroeconomic
modeling would be significantly strengthened if we could carefully estimate (or at
least calibrate) the frequency of decision making (which determines h) in actual
economies.

NOTES

1. The first paper to show the link between indeterminacy and sunspot fluctuations was by Azariadis
(1981). Benhabib and Farmer (1999) provide an excellent overview of the topic.

2. A similar point has previously been noted by Guo (2004) in the context of a real business cycle
model with increasing returns and variable capital utilization. We also provide additional examples
where this is true in the longer working paper version of this article, Anagnostopoulos and Giannitsarou
(2010). We conjecture that this is a quite general result in models with endogenous capital.

3. The importance of the rate of time preference for indeterminacy has been implicitly or explicitly
pointed out by various authors in the literature [see Schmitt-Grohé (1997), Baierl et al. (1998), Mitra
(1998), and Guo (2004)].

4. In related work, Bambi and Licandro (2004), Licandro and Puch (2006), and Bambi and Gori
(2010) investigate the connection between a time-to-build model and its continuous-time counterpart,
a model with delays. Benhabib (2004) mixes continuous and discrete dynamics in a model of inflation.

5. Abreu et al. (1991) also disentangle these two concepts in order to investigate the effect of
period length on the possibilities of cooperation in a repeated Prisoner’s Dilemma game with imperfect
monitoring.

6. Obstfeld (1992) provides some optimal control results by also allowing for a general period
length h and taking appropriate limits when h → 0.

7. In what follows we will use t to index variables even though, strictly speaking, the index is t
h

.
8. This assumption is innocuous, because all that matters is the average within-period return and

not how it is distributed within the period. See Anagnostopoulos and Giannitsarou (2010) for a detailed
discussion.

9. We assume throughout the paper that there is no discounting within the period. For a more
general specification, see the working paper version [Anagnostopoulos and Giannitsarou (2010)].

10. Standard monotonicity and convexity assumptions are maintained throughout for the return and
constraint functions. We also assume standard Inada conditions for utility and production and thus
ignore any non-negativity constraints on the households’ problem.
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APPENDIX
A.1. EQUILIBRIUM DEFINITION

In this Appendix, we provide a formal definition of competitive equilibrium. Let us first
describe the set of admissible paths. This will consist of sequences of continuous functions
{ct (·)}t∈I , {nt (·)}t∈I , {Skt (·)}t∈I , {wt(·)}t∈I , {rt (·)}t∈I , and {πt(·)}t∈I for consumption, labor,
net savings, wages, rental rates, and profits, respectively, where each element of these
sequences is a continuous function with domain [0, h) and range R+. It will also contain
{kt+h}t∈I , i.e. a sequence of real numbers for capital stock.

DEFINITION A.1. A competitive equilibrium with sequential trade consists of se-
quences of price functions {w∗

t (·)}t∈I and {r∗
t (·)}t∈I , sequences of quantity functions

{c∗
t (·)}t∈I , {n∗

t (·)}t∈I , {Sk∗t (·)}t∈I , and {π∗
t (·)}t∈I , a sequence of capital stocks {k∗

t+h}t∈I ,
and a sequence of tax functions {τ ∗

t (·)}t∈I such that

(i) Given {τ ∗
t (·)}t∈I , {w∗

t (·)}t∈I , {r∗
t (·)}t∈I , and {π∗

t (·)}t∈I , the quantities {c∗
t (·)}t∈I ,

{n∗
t (·)}t∈I , {Sk∗t (·)}t∈I , and {k∗

t+h}t∈I are optimal for the households. That is,

{c∗
t , n

∗
t , i

∗
t , k

∗
t+h}t∈I = max

{ct ,nt ,it ,kt+h}t∈I

∑
t∈I

(
1

1 + ρh

) t
h
∫ h

0
u(ct (s), nt (s))ds, (A.1)

s.t. ct (s)+ Skt (s) = r∗
t (s)kt +

(
1 − τ ∗

t (s)
)
w∗
t (s)nt (s)+ π∗

t (s), (A.2)

kt+h − (1 − δh) kt =
∫ h

0
Skt (s)ds, (A.3)

ct (s) ≥ 0, nt (s) ≥ 0, kt+h ≥ 0 (A.4)

k0 given. (A.5)

(ii) Given {w∗
t (·)}t∈I and {r∗

t (·)}t∈I , the quantities {n∗
t (·)}t∈I , {k∗

t+h}t∈I , and {π∗
t (·)}t∈I are

optimal for the firms. That is,

{n∗
t (s), π

∗
t (s), k

∗
t+h}t∈I = max

{n∗
t ,k

∗
t+h}t∈I

∑
t∈I

(
1

1 + ρh

) t
h
∫ h

0

uc,t (s)

uc,0(0)
πt (s)ds, (A.6)

subject to
πt (s) = k

sk
t nt (s)

sn − r∗
t (s)kt − w∗

t (s)nt (s). (A.7)

(iii) The government budget is balanced at every instant:

G = τ ∗
t (s) w

∗
t (s) n

∗
t (s) for all s ∈ [0, h) and all t ∈ I. (A.8)

(iv) All markets clear at every instant. The market-clearing condition for the goods market
is

c∗
t (s)+ Sk∗t (s)+G = (k∗

t )
sk (n∗

t (s))
1−sn for all s ∈ [0, h) and all t ∈ I . (A.9)

The labor and capital markets clear by definition of the sequences {n∗
t (·)}t∈I and

{k∗
t+h}t∈I .
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A.2. LOG-LINEARIZATION

In this Appendix we show how to obtain the log-linearized equations for the general
discrete-time model of Schmitt-Grohé and Uribe (1997). We start from the conditions
describing equilibrium in the economy and reduce them to the following three relations:

μt = μt+h
1 + ρh

[
1 +

(
skk

sk−1
t+h n

sn
t+h − δ

)
h
]
, (A.10)

Ant = snμtk
sk
t nt

sn −Gμt, (A.11)

hμ−1
t + kt+h − (1 − δh) kt = hk

sk
t nt

sn −Gh. (A.12)

We denote steady state levels of variables with upper bars and log deviations of variables
from the steady state with circumflexes. Log-linearizing these around the beginning-of-
period steady state values of the variables, we get

μ̂t = μ̂t+h + (sk − 1)
h

1 + ρh
skk̄

sk−1n̄sn k̂t+h + sn
h

1 + ρh
skk̄

sk−1n̄sn n̂t+h, (A.13)

n̂t = sk

ψ − sn
k̂t + ψ

ψ − sn
μ̂t , (A.14)

k̂t+h = 1

k̄

[
hskk̄

sk n̄sn k̂t + hsnk̄
sk n̄sn n̂t + hμ̄−1μ̂t + (1 − δh) k̄k̂t

]
, (A.15)

where

ψ = An̄1−sn

snμ̄k̄sk
. (A.16)

We eliminate n̂t to end up with a dynamic system of equations in μ̂t and k̂t given by

P

(
μ̂t+h
k̂t+h

)
= S

(
μ̂t
k̂t

)
, (A.17)

where

P =
⎛
⎝ 1 + sn

h

1 + ρh
skk̄

sk−1n̄sn
ψ

ψ − sn
sn

h

1 + ρh
skk̄

sk−1n̄sn
[

sk

ψ − sn
− 1

]

0 1

⎞
⎠ ,

(A.18)

S=

⎛
⎜⎜⎜⎝

1 0⎡
⎢⎣ψ(sn)k̄sk−1n̄sn

ψ − sn
+ 1

k̄

1

γ
μ̄

−
1

γ

⎤
⎥⎦ h

[
(1 − δh)+ hskk̄

sk−1n̄sn + h
snskk̄

sk−1n̄sn

ψ − sn

]
⎞
⎟⎟⎟⎠ .

(A.19)
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Using the steady state relations and defining sc = c̄

ȳ
, the elements of these matrices simplify

to

p11 = 1 + sn (ρ + δ) h

1 + ρh

1 − τ

sk − τ
, (A.20)

p12 = sn (ρ + δ) h

1 + ρh

τ

sk − τ
, (A.21)

s21 = h
ρ + δ

sk

[
(1 − τ) sn

sk − τ
+ sc

]
, (A.22)

s22 = h (ρ + δ)
1 − τ

sk − τ
+ 1 − δh. (A.23)

Using the matrix C defined in Section 3.3, we can write

P =
⎛
⎝ 1 + h

1 + ρh
c11

h

1 + ρh
c12

0 1

⎞
⎠ , (A.24)

S =
(

1 0
hc21 1 + hc22

)
, (A.25)

and so

D(h) = P−1S, (A.26)

which gives (23) and the linearized system (24).

A.3. BOUNDS FOR INDETERMINACY

The dynamics for the general discrete-time model can be written as

(
μ̂(t + h)

k̂(t + h)

)
=

⎛
⎝ 1 + h

c11 + hc12c21

1 + ρh− hc11

hc12 (1 + hc22)

1 + ρh− hc11

hc21 1 + hc22

⎞
⎠ (

μ̂(t)

k̂(t)

)
.

We denote the matrix that describes the dynamics by F(h). Indeterminacy occurs when
both eigenvalues of F(h) are inside the unit circle. A set of equivalent conditions [see
Medio and Lines (2001)] is

1 − detF (h) > 0,

1 + trF(h)+ detF (h) > 0,

1 − trF(h)+ detF (h) > 0,
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which here reduce to

tr C + hρc22

1 + hρ − hc11
< 0, (A.27)

2 + h
tr C + hρc22

1 + hρ − hc11
>
h2

2

(
detC

1 + ρh− hc11

)
, (A.28)

detC

1 + ρh− hc11
> 0. (A.29)

To prove our statement, we consider two cases; namely, we check if and when the conditions
hold for τ > sk and τ < sk . We can then show that (A.27) and (A.28) imply that for
indeterminacy, we need to have τ < τ ∗, irrespective of h. Using this, we can also show
that (A.28) cannot be satisfied in the second case, i.e., when τ < sk . Combining these
two statements, we conclude that indeterminacy can occur only for tax rates in the range
(sk, τ

∗). The exact lower bound for indeterminacy can be found by combining expressions
from (A.27) and (A.28); however, these do not yield elegant analytical expressions and are
therefore omitted here.
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