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SUMMARY
For robotic manipulators that are redundant or with high
degrees of freedom (dof ), an analytical solution to the
inverse kinematics is very difficult or impossible. Pioneer
2 robotic arm (P2Arm) is a recently developed and widely
used 5-dof manipulator. There is no effective solution to
its inverse kinematics to date. This paper presents a first
complete analytical solution to the inverse kinematics of
the P2Arm, which makes it possible to control the arm to
any reachable position in an unstructured environment. The
strategies developed in this paper could also be useful for
solving the inverse kinematics problem of other types of
robotic arms.

KEYWORDS: Inverse kinematics; Manipulator control; Model-
ling and control; Robotic arm.

1. INTRODUCTION
Inverse kinematics modelling has been one of the main
problems in robotics research. The most popular method
for controlling robotic arms is still based on look-up
tables that are usually designed in a manual manner1−3.
Alternative methods include neural networks4−8 and optimal
search9, which often encounter problems caused by the
fact that the inverse kinematics systems of most robotic
arms are multi-valued and discontinuous functions7 and
hardly provide satisfactory solutions to the modelling and
control of high-dof robotic arms in practice. For robotic
manipulators that are redundant or with high dof, there are
hardly effective solutions to the inverse kinematics problem
except for the manually designed look-up table method that
is limited to applications with a priori known trajectory
movements. The P2Arm developed by ActivMedia Robotics
has been widely used for robotics research, teaching, and
development (http://robots.activmedia.com/). However, to
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date there is no complete analytical inverse kinematics
solution or other effective solutions for controlling the
P2Arm.

In our previous work10, a hybrid approach was proposed,
which combines a partial analytical inverse kinematics
model with an optimal search method and provides an
almost complete solution to the inverse kinematics of the
P2Arm. Using a completely different switching mechanism
for separating various possible situations, this paper derives
a complete analytical inverse kinematics model which is
able to control the P2Arm to any given position and
orientation in its reachable space so that the P2Arm gripper
mounted on a mobile robot can be controlled to move to
any reachable position in an unknown environment. Except
for providing a complete solution, the analytical inverse
kinematics model is more robust than the one proposed
in our previous work10. In Section 2, the P2Arm inverse
kinematics model is derived in an analytical way. Sec-
tion 3 presents experimental results and discusses the quality
of the proposed analytical solution. Conclusions are included
in Section 4.

2. DERIVATION OF THE P2ARM KINEMATICS

2.1. Forward kinematics
P2Arm is a 5-dof robotic arm with a gripper, as shown in
Figure 1. All its joints are revolute. Driven by 6 servomotors,
the arm can reach up to 50 cm from the centre of its
rotating base to the tip of its closed fingers. The Denavit-
Hartenberg (DH) convention and methodology are used
in this section to derive its kinematics. The coordinate
frame assignment and the DH parameters are depicted
in Figure 2 and listed in Table I, respectively, where
(x0, y0, z0) to (x4, y4, z4) represent the local coordinate
frames at the five joints respectively, (x5, y5, z5) represents
the local coordinate frame at the end-effector, α, γ ,
and θ are the rotation angles about x, y, and z axis
respectively. (x0, y0, z0) overlaps with the global coordinate
system (X, Y, Z). More details about the definitions of the
coordinates and DH parameters can be found in our technical
report11.

Based on the DH convention, the transformation matrix
from joint n to joint n + 1 is given by:
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nAn+1 =




cos θn+1 sin γn+1 − sin θn+1 sin αn+1 sin γn+1 − sin θn+1 cos αn+1 cos θn+1 sin γn+1 + sin θn+1 sin αn+1 cos γn+1 an+1 cos θn+1

sin θn+1 cos γn+1 + cos θn+1 sin αn+1 sin γn+1 cos θn+1 cos αn+1 sin θn+1 sin γn+1 − cos θn+1 sin αn+1 cos γn+1 an+1 sin θn+1

− cos αn+1 cos γn+1 sin αn+1 cos αn+1 cos γn+1 dn+1

0 0 0 1


 (1)

The general transformation matrix from the first joint to the last joint of the P2Arm can be derived by multiplying all the
individual transformation matrices, which is as follows:

0T5 = 0A1 · 1A2 · 2A3 · 3A4 · 4A5

=




−s1c4 − c1s23s4 −c1c23s5 + s1s4c5 − c1s23c4c5 c1c23c5 + s1s4s5 − c1s23c4s5 a5(c1c23c5 + s1s4s5 − c1s23c4s5)
+ c1(d4c23 + a2c2 + a1)

c1c4 − s1s23s4 −s1c23s5 − c1s4c5 − s1s23c4c5 s1c23c5 − c1s4s5 − s1s23c4s5 a5(s1c23c5 − c1s4s5 − s1s23c4s5)
+ s1(d4c23 + a2c2 + a1)

c23s4 −s23s5 + c23c4c5 s23c5 + c23c4s5 a5(s23c5 + c23c4s5) + d4s23 + a2s2

0 0 0 1




(2)

where si = sin(θi), ci = cos(θi), s23 = sin(θ2 + θ3), and c23 = cos(θ2 + θ3). On the other hand, if the global position and
orientation of the end-effector are given, then the general transformation matrix can be represented as follows:




nx ox ax px

ny oy ay py

nz oz az pz

0 0 0 1


 =




cos φ cos γ cos φ sin γ sin α − sin φ cos α cos φ sin γ cos α + sin φ sin α px

sin φ cos γ sin φ sin γ sin α + cos φ cos α sin φ sin γ cos α − cos φ sin α py

− sin γ cos γ sin α cos γ cos α pz

0 0 0 1


 (3)

where px , py , and pz are the global coordinates indicating the spatial position of the end-effector, [nx, ny, nz], [ox, oy, oz], and
[ax, ay, az] represent the global orientation in terms of the DH convention, and α, γ , and φ represent the global orientation in
terms of the Euler angles ZYX convention. By equalizing the matrices in (2) and (3), the following equations are derived:

px = a5(c1c23c5 + s1s4s5 − c1s23c4s5) + c1(d4c23 + a2c2 + a1) (4)

py = a5(s1c23c5 + c1s4s5 − s1s23c4s5) + s1(d4c23 + a2c2 + a1) (5)

pz = a5(s23c5 + c23c4s5) + d4s23 + a2s2 (6)

nx = −s1c4 − c1s23s4 (7)

ny = c1c4 − s1s23s4 (8)

nz = c23s4 (9)

ox = −c1c23s5 + s1s4c5 − c1s23c4c5 (10)

oy = −s1c23s5 − c1s4c5 − s1s23c4c5 (11)

oz = −s23s5 + c23c4c5 (12)

ax = c1c23c5 + s1s4s5 − c1s23c4s5 (13)

ay = s1c23c5 + c1s4s5 − s1s23c4s5 (14)

az = s23c5 + c23c4s5 (15)

The Euler angles can be calculated as follows:

if (nx = 0 & ny = 0) ⇒



α = atan2(ox, oy)
γ = π/2
φ = 0

(16)

if (nx �= 0 or ny �= 0) ⇒




α = atan2(oz, az)

γ = atan2
( − nz,

√
n2

x + n2
y

)
φ = atan2(ny, nx)

(17)
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Fig. 1. P2Arm and the robot configuration.12

From (4)–(17), the position and orientation of the P2Arm
end-effector can be calculated if all the joint angles are given.
This is the solution to the forward kinematics.

2.2. Inverse Kinematics
The forward kinematics equations (4)–(17) are highly
nonlinear. It is obvious that the inverse kinematics solution

Fig. 2. Coordinate frame assignment.

Table I. Denavit-Hartenberg parameters for the P2Arm.

Link /Joints θ d (cm) a (cm) α γ

1/0-1 θ1 0 a1 = 6.875 90o 0o

2/1-2 θ2 0 a2 = 16 0 0o

3/2-3 θ3 0 0 0 90o

4/2-4 θ4 d4 = 13.775 0 0 −90o

5/4-endpoint θ5 0 a5 = 11.321 0 90o

is very difficult to derive. This paper uses various tricky
strategies to tackle the challenging inverse problem.

From (4) and (13) we derive the following equation:

px − a5ax = c1(d4c23 + a2c2 + a1) (18)

Manipulating (5) and (14) in a similar way results in the
following equation:

py − a5ay = s1(d4c23 + a2c2 + a1) (19)

It should be noted that θ2 and θ3 in the P2Arm only take
integral values in a limited range. It has been proved by
checking all the possible joint angles θ2 and θ3 that (d4c23 +
a2c2 + a1) �= 0 holds, which means that px − a5ax and py −
a5ay will not equal zero at the same time. Now consider two
possible situations. If (d4c23 + a2c2 + a1) > 0, the solution
for θ1 is as follows:

θ1 = atan2(py − a5ay, px − a5ax) (20)
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Otherwise, we have

θ1 = atan2(a5ay − py, a5ax − px) (21)

For deriving solutions for θ2 and θ3, (18) and (19) can be
represented as follows:

d4c23 + a2c2 = (px − a5ax)/c1 − a1 (22)
d4c23 + a2c2 = (py − a5ay)/s1 − a1 (23)

From (6) and (15) we can derive the following equation:

d4s23 + a2s2 = pz − a5az (24)

It should be noted that (22) and (24) or (23) and (24) describe
the forward kinematics of a 2-dof robotic arm, which has
analytical inverse solutions. To avoid division by zero, let
r = (px − a5ax)/c1 − a1 if s1 is very small or r = (py −
a5ay)/s1 − a1 if c1 is very small, and let rz = pz − a5az.
One set of possible solutions for θ2 and θ3 are as follows:

θ2 = atan2(rz, r) − acos

(
r2 + r2

z + a2
2 − d2

4

2a2
√

r2 + r2
z

)
+ 2m1π

(25)

θ3 = π − acos

(
a2

2 + d2
4 − r2 − r2

z

2a2d4

)
(26)

where m1 = −1, 0, or 1, making −π ≤ θ2 ≤ π . Another set
of possible solutions for θ2 and θ3 are as follows:

θ2 = atan2(rz, r) + acos

(
r2 + r2

z + a2
2 − d2

4

2a2
√

r2 + r2
z

)
+ 2m1π

(27)

θ3 = −π + acos

(
a2

2 + d2
4 − r2 − r2

z

2a2d4

)
(28)

The derivation of the above solutions has been given in
Appendix A. It should be noted that r �= 0, which means
the above equations always provide certain solutions for θ2

and θ3.
Now that θ1, θ2 and θ3 are known, the solutions for θ4 and

θ5 can be found by using the remaining forward kinematics
equations. It is important to avoid division by zero or the two
variables in atan2 function being zero at the same time.

Consider the case when c23 �= 0 first. From (9) we have

s4 = nz/c23 (29)

From (7) and (8) we obtain

c4 = −(nx + nzc1s23/c23)/s1 (30)

or if s1 is too small,

c4 = (ny + nzs1s23/c23)/c1 (31)

The solution for θ4 is

θ4 = atan2(nz/c23, −(nx + nzc1s23/c23)/s1) (32)

or if s1 is too small,

θ4 = atan2(nz/c23, (ny + nzs1s23/c23)/c1) (33)

Because nx , ny , and nz will not equal zero at the same time,
which means s4 and c4 will not equal zero at the same time,
thus the solution here for θ4 is certain. Knowing θ1, θ2, θ3

and θ4, it is easy to get a solution for θ5. If c4 �= 0 or s23 �= 0,
from (12) and (15) we can derive the following equations:

s5 = azc23c4 − ozs23

c2
23c

2
4 + s2

23

(34)

c5 = ozc23c4 + azs23

c2
23c

2
4 + s2

23

(35)

θ5 = atan2(azc23c4 − ozs23, ozc23c4 + azs23) (36)

If c4 = 0 and s23 = 0, from (10) and (11) we obtain another
solution for θ5, which is as follows:

s5 = −(oxc1 + oys1)/c23 (37)

c5 = (oxs1 − oyc1)/s4 (38)

θ5 = atan2(−(oxc1 + oys1)/c23, (oxs1 − oyc1)/s4) (39)

Now consider the solutions for θ4 and θ5 in the case when
c23 = 0. From (12) and (15) we obtain the solution for θ5 as
follows:

θ5 = atan2(−oz/s23, az/s23) (40)

From (7) and (8) we have

s4 = −(nxc1 − nys1)/s23 (41)

c4 = −nxs1 + nyc1 (42)

θ4 = atan2(−(nxc1 − nys1)/s23, −nxs1 + nyc1) (43)

It is difficult to prove that the two variables in the above
atan2 functions for calculating θ4 and θ5 will not equal zero
at the same time. Some alternative solutions can be derived
to replace those that have the above problem. For instance,
after θ5 is calculated, (41) can be replaced by:

s4 =
{

(axs1 − ayc1)/s5 if c5 is too small

(oxs1 − oyc1)/c5 if s5 is too small
(44)

The above derivation, with various conditions being taken
into account, provides a complete analytical solution to the
inverse kinematics of the P2Arm. It should be noted that
we do not know which solution for θ1 is true, (20) or (21),
until we obtain all the joint angles and check if they provide
a correct solution using the forward kinematics. Similarly,
there are two sets of possible solutions for θ2 and θ3, (25)–
(26) or (27)–(28), and we do not know which set is true
until we check using the forward kinematics equations. All
the other conditions used for solving θ4 and θ5 can be
checked at once when necessary. Therefore, four sets of
possible solutions to the inverse kinematics of the P2Arm
have been derived. Our strategy for choosing the correct
solution is to calculate all the four sets of possible solutions
(joint angles), which generate four possible corresponding
positions and orientations using the forward kinematics. By
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comparing the errors between these four generated positions
and orientations and the given position and orientation, one
set of joint angles, which produces the minimum error, is
chosen as the correct solution.

3. EXPERIMENTAL RESULTS AND DISCUSSIONS
Theoretically, the equations for calculating joint angles θ1 to
θ5 are correct. However, in practice there could be problems
in atan2 and acos calculation. For instance, the absolute
value of the variable in acos could be slightly greater than 1
due to computing inaccuracy, although it should not happen
according to the derivation process in Appendix A. It will
not happen that the two variables in the atan2 functions for
calculating θ1 to θ3 equal zero at the same time. However,
it is difficult to theoretically prove the same for equations
of calculating θ4 and θ5. In this section, experiments were
carried out to demonstrate the quality of the derived analytical
inverse kinematics model.

In the first batch of experiments, the testing position
and orientation data were generated using the forward
kinematics model with random joint angles that are within
physically limited ranges so that they are guaranteed to be
reachable. The experiments were conducted using both the
simulated arm model and the real P2Arm. We set the allowed
error for position as eposition = 0.1 cm and for orientation
as eorientation = 1◦. No error larger than the error threshold
was produced at all with the program kept running on the
simulated arm for one week using over 500 million random
testing positions and orientations. Because we do not have
equipment to measure directly and precisely the position and
orientation of the end-effector of real P2Arm, what was done

was to read out the joint angle values from the P2Arm and
then calculate the position and orientation using the forward
kinematics model. This treatment will rule out mechanical
error and control error, which is reasonable because the
main purpose of the experiments in this paper is to examine
whether the inverse kinematics model is correct, rather than
to evaluate the whole robotic arm system. Again, no error
larger than the error threshold was produced with the program
running on the real P2Arm.

The second batch of experiments was similar to the first
batch except that the testing positions and orientations were
disturbed with small random values. That is, the target
positions and orientations could not be exactly reached (The
working space of the P2Arm is discontinuous). This is for
testing the robustness of the derived inverse kinematics
model. In this batch of experiments, there were less than
1% of the inverse solutions that did not satisfy the error
criterion: eposition = 1 cm or eorientation = 3◦ (The orientation is
more difficult to satisfy than the position). This is still a very
satisfactory result, and in case an error exists (this happens
less than once out of 100 trials), the optimal search method
developed in reference [10] can always be used to find a
better solution.

In order to illustrate how the inverse kinematics model
works in controlling the real P2Arm more intuitively, a
trajectory following task was performed, in which positions
on a circle trajectory were used as the input to the inverse
kinematics model. It should be noted that these positions
could not be exactly reachable. Therefore this experiment
also tests the robustness of the inverse kinematics model.
Figure 3 shows the trajectory which is a circle in the XY
plane with Z = 15 cm. The target positions sent to the inverse

Fig. 3. Trajectory following: ‘�’ represents planned positions on a circle with Z = 15 cm, ‘+’ represents reached positions by the robotic
arm end-effector.
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Table II. Coordinates of positions on the trajectory.

X Y Z X′ Y′ Z′

5.00 0.00 15.00 4.84 0.60 15.19
4.33 2.50 15.00 4.11 2.26 14.89
2.50 4.33 15.00 2.38 3.91 15.08
0.00 5.00 15.00 0.02 4.28 15.10

−2.50 4.33 15.00 −2.43 3.75 14.86
−4.33 2.50 15.00 −4.50 2.02 14.97
−5.00 0.00 15.00 −5.36 0.27 15.30
−4.33 −2.50 15.00 −4.72 −2.33 14.98
−2.50 −4.33 15.00 −2.50 −3.78 15.10

0.00 −5.00 15.00 0.24 −4.54 14.98
2.50 −4.33 15.00 2.33 −3.88 14.97
4.33 −2.50 15.00 4.12 −2.29 15.09

kinematics model are represented by ‘o’ and the reached
positions using the inverse kinematics model control are
represented by ‘+’. The coordinates of the target positions
(X, Y, Z) and reached positions (X′, Y′, Z′) are given in
Table II.

The above experimental results show that if the target
position is exactly reachable the inverse kinematics model
is able to produce very accurate result, as shown in the first
batch of experiments, and that if the target position is not
exactly reachable the inverse kinematics model is able to
provide good approximate solutions.

4. CONCLUSIONS
A complete analytical solution to the inverse kinematics
of a widely used robotic arm, P2Arm, is derived for the
first time in this paper. The derived analytical inverse
kinematics model always provides correct joint angles for
moving the arm end-effector to any given reachable positions
and orientations. If the given positions/orientations cannot
be exactly reached, the model is able to give very good
approximate solutions for over 99% situations. We believe
that the solution developed in this paper will make the P2Arm
more useful in applications with unpredictable trajectory
movements in unknown environments. Without this solution,
the trajectory movements of the P2Arm would have to be
done by manually making the arm follow the trajectory and
recording a sequence of joint angles for the later use in the
trajectory following task. The analytical solution is able to
provide joint angles automatically for a given trajectory. The
methods used for deriving the inverse kinematics model for
the P2Arm could be applied to other types of robotic arms,
such as the EduBots developed by the Robotica Ltd13. Our
software for the P2Arm control based on the derived inverse
kinematics model will be made available to the public after
this paper is published.

References
1. R. D. Klafter, T. A. Chmielewski and M. Negin, Robotic

Engineering: An Integrated Approach (Prentice Hall, 1989).
2. P. J. McKerrow, Introduction to Robotics (Addison-Wesley,

1991).
3. S. B. Niku, Introduction to Robotics: Analysis, Systems,

Applications (Prentice Hall, 2001).

4. D. Demers and K. Kreutz-Delgado, “Learning global pro-
perties of nonredundant kinematic mappings,” Int. J. of
Robotics Research 17, 547–560 (1998).

5. S. Tejomurtula and S. Kak, “Inverse kinematics in robotics
using neural networks,” Information Sciences 116, 147–164
(1999).

6. E. Oyama, A. Agah, K. F. MacDprman, T. Maeda and S. Tachi,
“A modular neural network achitecture for inverse kinematics
model learning,” Neurocomputing 38–40, 797–805 (2001).

7. E. Oyama, N. Y. Chong, A. Agah, T. Maeda and S. Tachi,
“Inverse kinematics learning by modular architecture neural
networks with performances prediction networks,” Proc. IEEE
Int. Conf. on Robotics and Automation (2001) pp. 1006–1012.

8. Y. Li and S. H. Leong, “Kinematics control of redundant
manipulators using CMAC neural network,” Proc. 5th World
Multiconference on Syst. Cybern. & Inform. (SCI2001), (2001)
pp. 274–279.
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APPENDIX A. DERIVATION OF SOLUTIONS FOR θ2
AND θ3
Equations (22) and (24) or (23) and (24) can be represented
as

d4c23 + a2c2 = r (A1)

d4s23 + a2s2 = rz (A2)

From (A1)–(A2), the following equation can be derived:

d2
4 + 2a2d4(c2c23 + s2s23) + a2

2 = r2 + r2
z (A3)

From trigonometry we have

c2c23 + s2s23 = cos(θ3) = cos(−θ3)

= − cos(π − θ3) = − cos(θ3 − π) (A4)

Therefore there are several possible solutions for θ3, which
are as follows:

θ3 = ±acos

(
r2 + r2

z − a2
2 − d2

4

2a2d4

)
(A5)

or

θ3 = ±
[
π − acos

(
a2

2 + d2
4 − r2 − r2

z

2a2d4

)]
(A6)

Now consider possible solutions for θ2. Expanding c23 and
s23 in (A1) and (A2) generates the following equations:

(d4c3 + a2)c2 − (d4s3)s2 = r (A7)

(d4s3)c2 + (d4c3 + a2)s2 = rz (A8)
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Dividing both sides of (A7) and (A8) by
√

r2 + r2
z , we have

(d4c3 + a2)√
r2 + r2

z

c2 − (d4s3)√
r2 + r2

z

s2 = r√
r2 + r2

z

(A9)

(d4s3)√
r2 + r2

z

c2 + (d4c3 + a2)√
r2 + r2

z

s2 = rz√
r2 + r2

z

(A10)

Assuming sin(θ) = (d4s3)/
√

r2 + r2
z and cos(θ) =

(d4c3 + a2)/
√

r2 + r2
z , which is acceptable as this assump-

tion leads to sin2(θ) + cos2(θ) = 1, we transfer (A9) and
(A10) into the following:

cos(θ + θ2) = r√
r2 + r2

z

(A11)

sin(θ + θ2) = rz√
r2 + r2

z

(A12)

Therefore,

θ + θ2 = atan2(rz, r) + 2m1π (A13)

θ = ±acos

(
d4c3 + a2√

r2 + r2
z

)

= ±acos

(
r2 + r2

z + a2
2 − d2

4

2a2
√

r2 + r2
z

)
(A14)

where m1 = −1, 0, or 1. It is clear that θ could be in [0, π]
or (−π , 0). The range of θ will depend on the range of θ3. If
0 ≤ θ3 ≤ π , then s3 > 0 and sin(θ) > 0, thus 0 ≤ θ ≤ π . If
−π < θ3 < 0, then s3 < 0 and sin(θ) < 0, thus −π < θ < 0.
Therefore, if

θ3 = π − acos

(
a2

2 + d2
4 − r2 − r2

z

2a2d4

)
(A15)

i.e., 0 ≤ θ3 ≤ π and 0 ≤ θ ≤ π , then

θ2 = atan2(rz, r) − acos

(
r2 + r2

z + a2
2 − d2

4

2a2
√

r2 + r2
z

)
+ 2m1π

(A16)

Otherwise, if

θ3 = −π + acos

(
a2

2 + d2
4 − r2 − r2

z

2a2d4

)
(A17)

i.e., −π < θ3 < 0 and −π < θ < 0, then

θ2 = atan2(rz, r) + acos

(
r2 + r2

z + a2
2 − d2

4

2a2
√

r2 + r2
z

)
+ 2m1π

(A18)
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