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SUMMARY
A new global isotropy index (GII) is proposed to quantify
the configuration independent isotropy of a robot’s Jacobian
or mass matrix. A new discrete global optimization
algorithm is also proposed to optimize either the GII or
some local measure without placing any conditions on the
objective function. The algorithm is used to establish design
guidelines and a globally optimal architecture for a planar
haptic interface from both a kinematic and dynamic
perspective and to choose the optimum geometry for a
6-DOF Stewart Platform. The algorithm demonstrates
consistent effort reductons of up to six orders of magnitude
over global searching with low sensitivity to initial condi-
tions.

KEYWORDS: Minimax optimization; Robot parameter; Global
isotropy index; Stewart Platform; Pantograph robot.

1. INTRODUCTION
Modern robot applications such as haptic interfaces and
surgical assistants make performance demands far beyond
those of the assembly and repetitive task devices of the past.
Designing a robot to uphold a set of performance standards
is complicated by the fact that the relationship between the
robot’s actuators and end-effector varies with position and
direction. Only after minimizing this variation, or in other
words maximizing the mechanical isotropy, can one choose
suitable actuators and design a controller. The greatest
opportunity for improving isotropy is through geometric
parameter selection but making the best choice is no small
task. The search space can be made finite through
discretization but the order of the optimization problem is
compounded by each geometric parameter and by each
workspace dimension. Even relatively low dimensional
problems are impossible to complete in a reasoable amount
of time if an all-inclusive search is attempted. While many
efficient search methods exist, most are incompatible with
robot design problems which are of the minimax form since
an optimum parameter should produce the best worst-case
behaviour throughout the robot’s workspace, and also
because the objective function is, in general, non-linear,
non-differentiable, non-convex and may even be dis-
continuous. Descent algorithms become trapped in local
minima, stochastic approaches have uncertain stopping

criteria and the results of a global search become increas-
ingly suspicious as the search resolution is decreased.

The kinematic and/or dynamic equations of a robot are
often used to describe the relationship between a robot’s
end-effector and its actuators. The Jacobian matrix deter-
mines the required actuator force/torque from a desired
end-effector force/torque or the actuator velocity from a
desired end-effector velocity. The mass matrix relates
actuator force/torque to end-effector acceleration of a
device that is starting from rest. Directional independence is
represented by a scalar condition index derived from these
matrices. Condition indices have been proposed to describe
kinematic isotropy1,2 and manipulability,3 inertial isotropy4–6

and manipulability,7 maximum joint velocity,8 kinematic
nonlinearity and redundancy,9 task completion time,10

accuracy3 and stiffness.4 These condition indices are,
however, local measures (i.e. evaluated at a single position)
and one is usually interested in behaviour throughout a
range of positions. Various methods have been proposed to
remove configuration dependence from these measures.
Some fix the link lengths and search only for optimal
poses2,4,9 while others combine the geometry and pose
variables and search for optimal geometry/pose pairs.3,5 One
approach integrates the performance measure over the
workspace6,11,12 while another simply reduces the workspace
to a one dimensional trajectory.10 Similarly, in Reference 8
the parameter set is pared down using a set of predefined
trajectories while in Reference 6 the six trajectories along
the primary translations and rotations about a central
operating point are considered. A coarse minimax optimiza-
tion is attempted in Reference 7 where the finely discretized
workspaces of a few hand-picked 2-DOF device parameters
are compared. In Reference 13 a 3-DOF manipulator is
similarly optimized by fixing each degree of freedom
individually. The local results of the MatlabTM minimax
routine are relied upon in Reference 14 to choose optimum
joint arrangements and the number of achievable isotropic
poses is analytically maximized in Reference 1.

Many optimization procedures can be nested to solve
minimax problems. Various descent methods exist (see for
example Reference 15) to handle constrained problems.
They include gradient direction, quasi-gradient direction,
penalty, feasible direction and gradient projection methods.
Attempts to make these local descent methods global
include multi-start,16 clustering,16,17 decomposition point
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identification,18 Rock and Roll,19 tunneling,20 transformation
of the problem into its concave dual21 and linear and
nonlinear programming.22,23 Some global methods assume a
natural model for the objective function such as Baye-
sian17,24 and Monte-Carlo17,25 methods while others emulate
natural processes such as simulated annealing16,17,25 and
genetic algorithms.26,27 These approaches offer a measure of
confidence but no guarantee of global optimality. Other
methods such as branch-and-bound28 guarantees a global
optimum but it is not always easy to bound a function and
the method is inefficient if the bounds are too conservative.
Proposals which address minimax optimization directly
include objective function integration over the workspace29

and tree-searches such as game theory.30

A new measure of gobal isotropy, the “Global Isotropy
Index” (GII), is proposed in Section 2 to measure the worst-
case consistency of a mechanism in all directions and at any
position in its workspace. A new algorithm belonging to the
branch-and-bound family of optimization algorithms is
presented in Section 3 which finds the globally optimum
parameter from a discretized parameter space within a
discretized workspace. Unlike descent algorithms, it is
unhampered by non-differentiable, non-convex or dis-
continuous cost fuctions or those containing local minima.
One version is presented for optimizing the GII and another
is presented to solve minimax problems in general. The new
isotropy index and optimization algorighm are used in
Section 4 to design a 2-DOF pantograph robot and again in
Section 5 to design a 6-DOF Stewart Platform. The
efficiency of the algorithm is discussed in Section 6 and
conclusions are drawn in Section 7.

2. THE GLOBAL ISOTROPY INDEX
The Jacobian matrix can be viewed as an effective
transmission ratio between the actuators and the end-
effector. It transforms joint rates into end-effector velocity
or the end-effector force/torque into acutator forces and/or
torques. These two uses are shown for a serial manipulator
in (1) and (2) where ẋ is end-effector velocity, q̇ is joint
velocity, t is actuator force/torque and f is end-effector
force/torque.

ẋ=Jq̇ (1)

t=JTf (2)

Using the Jacobian to transform all end-effector forces of
unit magnitude and arbitrary direction into actuator torques
produces an ellipsoid in the torque domain. Consider the
planar elbow manipulator in Figure 1 with the parameter
p={l1 =5, l2 =4} and which applies forces in all directions
but whose workspace is constrained to the horizontal

trajectory xP{2xmax, xmax} at y=2. A unit circle in the end-
effector force domain and its corresponding ellipse in the
actuator torque domain at x=5 are shown in Figure 2. The
lengths of the major and minor axes of the actuator torque
ellipse are equal to the minimum and maximum singular
values of the Jacobian, denoted by 

˜
s (J(p, x)) and s̃(J(p, x))

respectively and the condition number k(p, x) is defined as
the ratio of these two values as shown in (3). The closer
k(p, x) is to unity, the more isotropic the device is at x. Note
that while the Jacobian is used in this example, the same can
be said about any matrix transformation such as the mass
matrix.

k(p, x)=
s̃ (J(p, x))

˜
s (J(p, x))

(3)

Because the Jacobian is a function of position, the condition
number is a local measure and manipulators that are
designed to be isotropic at individual positions may not
exhibit similar levels of isotropy throughout their work-
spaces. The condition number only measures the roundness
of an ellipse but does not measure its size. Both of these
attributes are, however, important in determining the overall
consistency of a device’s behaviour since shape is a relative
measurement which represents directional isotropy whereas
size is an absolute measurement which represents average
capabilities. Optimizing the condition number, therefore,
does not address the possibility that average capabilities
may change as the workspace is navigated. Figure 3 shows
the different sizes and shapes of torque ellipses that occur at
three different positions for the robot in Figure 1. The
ellipses at x=0 and x=5 have similar shapes (k(p, 0)=2.17
and k(p, ±5)=1.81), but the singular values at x=5 are an
average of 1.5 times larger than those at x=0
(s (J(p, 0)) =2.97 and s (J(p, ±5)) =4.56). In other words,
even though the manipulator is comparably isotropic at
these two positions, it has over one and a half times the
average force capabilities in the centre of its workspace than
it does at the edges of its workspace. This is hardly uniform

Fig. 1. Constrained planar elbow manipulator.

Fig. 2. Torque ellipse at x=5.

Fig. 3. Force/torque transformation.
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behavour.
In the past,7 configuration independence has been

checked by comparing the products of minimum and
maximum singular values at different positions. Here, this
secondary, local measure is averted by introducing a global
isotropy index called the GII which compares the smallest
and largest singular values in the entire workspace (4). The
GII is essentially a global, workspace inclusive version of
the condition number. Note that the GII is defined as a
minimum over a maximum rather than a maximum over a
minimum like the condition number. This conveniently
makes the GII a normalized performance measure s(p)
which assigns a value of 1 to perfect isotropy and a value of
0 rather than ∞ to singular behaviour.

GII(p)=s(p)= min
x0, x1PW

˜
s(J(p, x0))
s̃(J(p, x1))

=
min
x0PW ˜

s(J(p, x0))

max
x1PW

s̃(J(p, x1))
(4)

Consider again the elbow manipulator in Figure 1. Local
actuator torque ellipses are computed at all values of x
ranging from 25 to +5 and are superimposed upon one
another in Figure 4. The GII is the ratio of the radius of the
largest circle contained in all of these ellipses to the radius
of the smallest circle containing all of these ellipses.

A GII value of 1 implies that a mechanism is not only
isotropic (direction insensitive) at each position in its
workspace, but also that it behaves consistently at all
positions within its workspace. Therefore, an optimally
isotropic robot design parameter p* is one that maximizes
the value of the GII as shown in (5).

p*=arg max
pPP

GII(p) (5)

3. CULLING ALGORITHM
A new algorithm is proposed which is of the branch and
bound variety but is specifically designed to solve GII or
minimax optimization problems. It identifies non-optimal
parameters and culls them from the search space until only
the optimum remains. The algorithm optimizes the GII (4)
which is defined between 0 and 1 corresponding to poor and
ideal performance respectively, over a workspace W which
is a constrained set of configurations x for a parameter p.
The optimization goal (5) is to find the parameter p* with
the best “worst-case” behavior throughout the constrained
workspace W. The algorithm is shown in (6) through (15)
and uses the following notation:

List of Symbols
i=looping index

Pi =set of all parameters in parameter space
pi =design parameter
p̂i =best known design parameter
W=set of all positions in workspace
x=end-effector position

˜
x=position with the smallest singular value
x̃=position with the largest singular value

˜
s=minimum singular value at a position
s̃=maximum singular value at a position

˜
Si: Pi→R=minimum singular value upper bounding

function
S̃i: Pi→R=maximum singular value lower bounding

function
s=performance measure; either GII or k21 as

defined in (3)
ŝ=performance measure of best known

design parameter

GII Culling Algorithm

Set i=0, ŝ0 =0 (6)

Set H ˜
S0(p)=∞
S̃0(p)=0J; ;pPP0 (7)

Choose any (p0 = p̂0)PP0 (8)

REPEAT

Find
˜
xi =arg min

xPW ˜
s(pi, x), x̃i =arg max

xPW
s̃(pi, x) (9)

if Sŝi+1 = ˜
s(pi, ˜

xi)
s̃(pi, x̃i)

D>ŝi; p̂i+1 =pi

(10)
; p̂i+1 = p̂i, ŝi+1 = ŝiotherwise

Set H ˜
Si+1(p)=min{

˜
Si(p),

˜
s(p,

˜
xi)}

S̃i+1(p)=max{S̃i(p), s̃(p, x̃i)}
J; ;pPPi (11)

Set Pi+1 =HpPPiU ˜
Si+1(p)

S̃i+1
(p)

> ŝi+1J (12)

Fig. 4. Force/torque ellipses and GII.

Fig. 5. Planar elbow manipulator workspace.
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Choose pi+1Parg max
pPPi+1

˜
Si+1(p)

S̃i+1
(p)

(13)

i= i+1 (14)

UNTIL p̂i =pi (15)

The algorithm starts with a looping index and best known
performance measure of zero (6), optimistic bounding
functions (7) and an initial p0 that is chosen from P0 (8).
Minimum and maximum singular values are calculated for
pi at each x in W (9). If pi produces a better GII than the best
known parameter p̂i, pi becomes the new best known
parameter p̂i+1 and a new best known performance measure
ŝi+1 is calculated (10). Singular values are calculated for
each p in Pi at 

˜
xi and x̃i and the corresponding upper 

˜
Si(p)

and lower S̃i(p) bounds are updated (11). Note that since all
singular values are known for 

˜
xi and x̃i from (9), bounding

may be improved by replacing (11) with (16).

Set H ˜
Si+1(p)=min{

˜
Si(p),

˜
s(p,

˜
xi), ˜

s(p, x̃i)}
S̃i+1(p)=max{S̃i(p), s̃(p,

˜
xi), s̃(p, x̃i)}

J; ;pPPi (16)

Although any improvement from using (16) can be
primarily attributed to good fortune, it comes from a
negligible increment in computational effort and is a
worthwhile investment. Also note that one or both updates
in steps (11) and (16) can be omitted for all p whose ratio of
upper and lower bounds is already less (i.e. worse) than ŝi+1

since those p will be culled from Pi in (12). The p with the
largest ratio of upper and lower bounds is chosen as the next
candidate pi+1 (13). (9) through (14) are repeated until p̂i is
the only parameter left in Pi which conclusively identifies p̂i

as the global optimum (15).
Since a parameter is only removed from the search space

after it has produced values with a ratio worse than that of
another parameter p̂ for which all singular values have been
rigorously computed, the global optimum is guaranteed.
Computational savings result from strategically exploring
configurations which are likely to simultaneously identify
many parameters as sub-optimal. Expected efficiency,
however, relies on the presumption that within a continuous,
bounded range of parameters, many of them, particularly
those in close proximity to each other, will exhibit similarly
favourable or poor behaviour at common configurations.
This is a presumption that holds well in robot design
problems. Consider, for example, a robot that stretches to its
reachable limit when visiting a position in the pre-defined
workspace which produces a minimum singular value of 0.
A small adjustment to one geometric parameter will usually
only slightly affect the robot’s reachable limit and it will
continue to produce very large and/or small singular values
at that position. It and all other neighbors of the orignal
parameter are, therefore, likely candidates for being culled
from the parameter space after being evaluated at that
position.

While the GII culling algorithm is specifically geared
toward optimization of the GII, some worst-case design
problems are of the form shown in (17) and can be solved
using a similar approach. An optimization criteria of this

form is used, for example, by Hayward et al.7 with
s(p, x)=

˜
s(D(p, x))/s̃(D(p, x)) to optimize the mass matrix

D(p, x) of a planar pantograph haptic interface. Problems of
this form can be solved by the minimax culling algorithm
shown in (18) through (27). Note that in the minimax
version of the culling algorithm, 

˜
Si is an upper bound on the

worst-case performance function s(p, x), and no longer
contains singular values explicitly.

p*=arg max
pPP0

min
xPW

s(p, x) (17)

Minimax Culling Algorithm

Set i=0, ŝ0 =0 (18)

Set
˜
S0(p)=1; ;pPP0 (19)

Choose any (p0 = p̂0)PP0 (20)

REPEAT

Find
˜
xi =arg min

xPW
s(pi, x) (21)

if
(ŝi+1 =s(pi, ˜

xi))> ŝi

otherwise

; p̂i+1 =pi

; p̂i+1 = p̂i. ŝi+1 = ŝi

(22)

Set
˜
Si+1(p)=min{

˜
Si(p), s(p,

˜
xi)}; ;pPPi (23)

Set Pi+1 ={pPPi | ˜
Si+1(p)> ŝi+1} (24)

Choose pi+1Parg max
pPPi+1 ˜

Si+1(p) (25)

i= i+1 (26)

UNTIL p̂i =pi (27)

The minimax culling algorithm is illustrated by a step-by-
step example using the planar elbow manipulator of Figure
1. The performance index is the ratio of singular values of
the Jacobian matrix s(p, x)=

˜
s(J(p, x))/s̃(J(p, x)) and the

parameter space is reduced to a single dimension by
calculating the minimum forearm length l1 from (28) which
ensures that the boundaries of the usable and reachable
workspaces shown in Figure 5 are separated by a minimum
safety margin of length K. In other words, l1 is chosen such
that {k0, k1}$K.

l1 =max( iÏx2
max +y2 2 l0 i, iy2 l0 i)+K (28)

The performance index is non-linear, non-differentiable and
contains local minima and maxima in both its operation and
parameter spaces which, in this case, can be verified by
brute force since the problem has only three dimensions (x,
l0, and s(l0, x)=

˜
s (J(l0, x))/s̃ (J(l0, x))). The performance

index s(l0, x) is plotted against x and l0 in Figure 6 with

Fig. 6. Surface and contour plots of dexterity.
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xmax =5, y=2, K=0.4 and l0P{2, 8}.
A mid-range value of l0 =6 is picked as the initial best

known parameter p̂0 (20). The workspace of l0 =6 is
searched to find that x0 =0 minimizes s(l0, x) with a value of
s(6, 0)=0.28 (21) and the condition index of the best known
parameter is updated (22). The parameter space at x0 =0 is
searched, the upper bound 

˜
S1 is updated for each parameter

(23) and all sub-optimal parameters are culled (shaded
regions in Figure 7) from the parameter space (24). l0 =3.3
has the largest upper bound and is the next candidate p1

(25).
The workspace of l0 =3.3 is searched to find that x1 =25

minimizes s(l0, x) with a value of s(3.3, 25)=0.16 (21) so
l0 =6 is still the best known parameter (22). The parameter
space P1 ={2.3 . . . 5.9} at x1 =25 is searched, the upper
bound 

˜
S2 is updated for each parameter (23) and all sub-

optimal parameters are culled from the parameter space
(24). l0 =4.5 has the largest upper bound and is the next
candidate p2 (25) (see Figure 8).

The workspace of l0 =4.5 is searched to find that x2 =0
minimizes s(l0, x) with a value of s(4.5, 0)=0.4 (21) making
it the new best known parameter (22). All remaining
parameters left in the parameter space P2 ={4.1 . . . 5.9}
have upper bounds that are below this value and are culled
from the parameter space (23), (24). Only l0 =4.5 remains
and is, therefore, the global optimum p* (27). This is
verified by performing an exhaustive search and plotting the
worst-case performance of each geometry. The optimum
geometry is shown to be l0 =4.5 in Figure 9.

The culling algorithm belongs to the branch-and-bound
family of optimization algorithms but is unconventional in
that it is only useful in solving minimax problems. It also
performs all of its bounding through explicit function

evaluations and, therefore, does not require any worst-case
estimates of the objective function. Each time the condition
index of a candidate parameter is rigorously computed, the
value is used to push up the lower bound on the performance
index of the optimum parameter and each time the condition
index is computed for a parameter at a new position, the
value is used to push down the upper bound on the
performance index of that parameter. If the lower bound on
the optimal performance index exceeds the upper bound on
the performance index of any parameter, that parameter is
culled from the parameter space. This is how the culling
algorithm performs bounding. It performs branching by
alternating between workspace-inclusive searches for a
single parameter and parameter-space inclusive searches for
a single point, choosing which parameter or position to
search from the results of the previous iteration.

4. DESIGN OF A FIVE-BAR LINKAGE BASED
PLANAR DEVICE
Karadis et al.31 design a dynamically balanced five-bar
linkage for micro-probing while Hayward et al.7 optimize a
five-bar linkage for use as a planar haptic interface. The
culling algorithm and new definition of global isotropy are
used to re-examine the five-bar linkage based haptic
interface for both kinematic and dynamic conditioning. A
general representation of a five-bar linkage with a square
workspace is shown in Figure 10 and is used to establish
symmetry and positioning guidelines for the device.

The Jacobian matrix (29) of this device is concisely
computed as a function of end-point location from equations
(30) through (36).

Fq̇0

q̇1
G=J(p, x)Fẋ

ẏG (29)

d0 =(x+a)2 +y2 (30)

Fig. 7. First culling of non-optimal geometries.

Fig. 8. Second culling of non-optimal geometries.

Fig. 9. Optimum solution.

Fig. 10. Five-bar linkage.
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d1 =(x2a)2 +y2 (31)

J0 =b2
0 2c2

0 2d0 (32)

J1 =b2
1 2c2

1 2d1 (33)

J2 =d0Ï4b2
0d0 2 (b2

0 2c2
0 +d0)

2 (34)

J3 =d1Ï4b2
1d1 2 (b2

1 2c2
1 +d1)

2 (35)

J=

2y
d0

+
J0(x+a)

J2

2y
d1

2
J1(x2a)

J3

x+a
d0

+
J0y
J2

x2a
d1

2
J1y
J3

(36)

The kinematic GII is optimized with seven free design
parameters (a, b0, b1, c0, c1, g and h) and with r and w fixed
to avoid a trivial result since isotropy improves as r→∞ or
as w→0. For r=w=10 and Dw=0.1 (Dw is the discrete
sample spacing in the workspace) the search space and
solution obtained by the GII culling algorithm are shown in
Table I.

The global optimum has left/right symmetry of both the
robot and workspace. Future optimizations, therefore, need
only consider three parameters (a, b=b0 =b1 and c=c0 =c1)
and half of the workspace (x$0). This simplifies the
problem sufficiently to allow further generalization. Varying
r while constraining the elbow angles l0, l1P{0 . . . p}
shows the optimum posture for a range of r values where a
negative value of r corresponds to a workspace positioned
below the line connecting joints {q0, q1}. Figure 11 shows
the optimum geometry, GII and posture for
rP{225 . . . 25}, g=h=p/2 and the parameter space
shown in Table II. Note that the search space constrains the
robot and workspace to a 303 30 square area.

The GII curve is non-smooth and the optimal parameter
curves (a, b & c) are discontinuous in r. Parametric dis-
continuities occur at the intersections of optimum GII
curves for different postures. Consider the region around
r=10. The optimum GII of the “M” posture is relatively
level while the optimum GII of the elbow-out posture
increases with r. When the curves intersect, the optimum
posture switches from “M” to elbow-out and the parametric
curves experience a jump. There are clearly two viable
ranges for r. Values of rP{23 . . . 1} are acceptable in
which case the “M” posture is best with the workspace
positioned between the actuators. Magnitudes greater than
10 are also acceptable in which case the elbow-out posture
is preferred. While elbow-in achieves GIIs similar to elbow-
out for similar magnitudes of r it requires longer physical
link lengths (b & c). The inertial implications of this
distinguish elbow-out as the better posture. For all other
values (i.e. rP{{212 . . . 23}, {1 . . . 10}}), the optimal
postures combine long link length with poor GIIs and
should be avoided.

For an inertial optimization, it is assumed that the device
is held with a light fingertip grip so hand inertia is
neglected. It is also assumed that joint and rotor inertia is
dominated by the inertia of the linkages which are made
from circular cross-section 2024-T4 aluminum tubing of
thickness t. The mass matrix is obtained by computing the
passive joint velocities l̇0 and l̇1 and treating the device like
two elbow manipulators joined at the end-effector. The mass
matrix of an elbow manipulator as a function of position,
geometry and the mass and centre of mass of each link is
available in Reference 32. For uniform tubing, the centre of
mass of each tube is its geometric centre and mass per unit
length (37) is a function of wall thickness t and diameter d.
Keeping wall thickness constant, the natural frequency v of
the mechanism is conservatively bounded by choosing the
diameter (38) that results in the same natural frequency for
a cantilever beam the length of all four robot links arranged
end to end as calculated in Reference 33.

m=8.7td (g/cm) (37)

d=2.553 1026(b0 +b1 +c0 +c1)
2v (cm) (38)

It is debatable whether it is preferable to optimize the mass
matrix for isotropy or scale. Since isotropic mass is not
particularly important if the magnitude is small, maximum
mass is minimized by considering the normalized perform-
ance index involving only the maximum singular value of
the mass matrix shown in (39). Since this measure can be
computed locally, the minimax culling algorithm is used.

s(p, x)=
1

1+ s̃[D(p, x)]
(39)

It was observed that the culling algorithm becomes

Table I. Parameter space and optimum

Parameter Min. val. Max. val. Resolution Optimum

a 0 3 0.5 1.5
b0, b1 4 10 0.5 7.5
c0, c1 7 14 0.5 9.5
g, h 0 p/2 p/20 p/2

Fig. 11. Optimal postures of five-bar linkage.

Table II. Reduced parameter space

Parameter Min. val. Max. val. Resolution

a 0 15 0.2
b, c 5 30 0.2
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significantly less efficient when the value obtained from the
objective function does not change throughout large,
connected portions of the workspace. This often occurs
when the desired workspace extends beyond the reachable
workspace where s(p, x) is equal to 0. Efficiency is restored
by augmenting the condition index with a separate function
for unreachable points s9(p, x) which assigns a value of 0 to
a position on the boundary of the reachable workspace and
a value of 21 to a position infinitely far from it (40). The
augmented condition index s0(p, x) (41) is still a normalized
index since its magnitude is less than or equal to unity (42)
with positive values (39) for reachable positions and
negative values (40) for unreachable positions.

s9(p, x)=
1

1+distance from w/s
21 (40)

s0(p, x)=Hs(p, x) if position is reachable

s9(p, x) otherwise
(41)

s0(p, x)P{21 . . . 1} (42)

Since s0(p, x) can have either a positive or a negative value,
a modification must be made to the minimax culling
algorithm. The initialization step (18) must be replaced with
(43) but the remainder of the algorithm is entirely
compatible.

Set i=0, ŝ0 =21 (43)

Two optimizations are performed, both with w=10,
Dw=0.1 and v=200p (100 Hz) but searching two different
parameter spaces. The first optimization (parameter space
“A”) attempts to find a design that is both dynamically and
kinematically favourable by picking the dynamic optimum
from the geometric combinations that are the kinematic

optima for different values of r. There is only one free
parameter r while all other geometric parameters (a, b and
c) are chosen as a function of r from Figure 11. Although
this parameter space is very small, it ensures a kinematic
GII that is no less than 0.3. The second optimization
(parameter space “B”) includes the full cross-section of
geometric combinations searched during the kinematic
optimizations so all four geometric design parameters a, b,
c and r are free. Although a trivial result is obtained when r
is free during kinematic optimization, this does not occur
during dynamic optimization. The two parameter spaces and
optimum solutions are shown in Table III.

Parameter space “A” has a narrow scope but guarantees a
kinematically favourable solution. Parameter space “B”
ignores kinematic conditioning but results in the dynamic
global optimum. In order to decide which solution is most
favourable overall, the two are compared by a sensitivity
analysis in Table IV. Since both solutions have similar
dynamic performance but solution “A” has significantly
better kinematic performance, solution “A” (a=1.6, b=7.6,
c=9.8, r=10.4) is concluded to be best overall design.

Special purpose robots such as haptic interfaces are
hampered by large changes is singular values as well as by
sudden changes in singular values. Smoothness is checked
as a secondary measure for the optimal design by plotting
the minimum and maximum singular values of the Jacobian
and mass matrices over the workspace. As seen in Figure
12, they are both smooth and even have regions of perfect
isotropy where the minimum and maximum singular value
curves intersect (i.e. 

˜
s(J or D)= s̃(J or D)).

Three optimal geometries have resulted from the preced-
ing discussion, each satisfying different design criteria
including kinematic conditioning, dynamic conditioning
and a combination of the two. Strictly speaking, a kinematic
optimum does not exist since isotropy can always be
improved by moving the workspace away from the base and

Table III. Inertial parameter spaces and optima

Parameter Min. val. Max. val. Resolution Optimum

Parameter space A
a from table from table from table 1.6
b from table from table from table 7.6
c from table from table from table 9.8
r 225 25 0.2 10.4

Parameter space B
a 0 15 0.2 0
b 5 30 0.2 7.2
c 5 30 0.2 8.8
r 225 25 0.2 9.2

Table IV. Sensitivity analysis

Kinematic GII Maximum inertia

Parameter % Change % Change
space Value from mean Value from mean

Solution A 0.3657 +13.5% 0.9045 21.2%
Solution B 0.2790 213.5% 0.9271 +1.2%
Mean 0.3224 0% 0.9158 0%

Minimax optimization 601

https://doi.org/10.1017/S0263574798000435 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574798000435


increasing the link lengths. An optimum does exist for a
fixed workspace position but this is not very helpful in
practice since it is unclear where the optimal workspace
position is located. A more natural method of keeping
device sizes reasonable is to penalize large geometries by
including dynamic criteria in the objective function. Unfor-
tunately, a design optimization that relies solely on dynamic
conditioning can result in a device with poor static
performance. To get the best overall behaviour from a
reasonably small device, one should consider both kine-
matic and dynamic criteria simultaneously. The difficulty of
creating a weighted performance function is avoided here
by narrowing down the parameter space with one criteria
and finding the optimum with the other. It should, however,
be noted that approaches such as this are quite computation-
ally expensive.

5. DESIGN OF A STEWART PLATFORM BASED
6-DOF DEVICE
The GII culling algorithm is next used to attempt a higher
dimensional design optimization involving the 6-DOF
Stewart Platform manipulator shown in Figure 13.

The manipulator is designed by exploring combinations
of the design parameters a, L0, L1, h and the ratio L0/l0 =
L1/l1. The workspace is a cubic volume with all sides of
length 10 cm centred 25 cm above the centre of the base.
The range of orientations includes a solid angle of 30°
traced by the k axis of the platform coordinate frame
combined with all rotations of up to 30° about that axis.
Symmetry of the workspace about the jk plane is used to
reduce the number of geometric robot parameters by
imposing the same symmetry upon the robot. The distances
between the centre of the platform and the left and right
pairs of actuators are equal (L1) and the platform is shaped
similarly to the base but is scaled by the ratio L0/l0 =L1/l1. It
is suggested in References 34 and 35 that the physical units

of the Jacobian of such a device can be normalized using a
Characteristic Length of 12 cm if the device is to be used as
a haptic interface. Using this value, the GII of the Jacobian
matrix is optimized given the discrete parameter space
shown in Table V and the discrete workspace shown in
Table VI.

The optimum parameters shown in Table V produce a GII
value of 0.281. To see if the result is sensitive to sample
spacing, the discretization resolution is halved for all
parameters and workspace dimensions and the optimization
is repeated. A GII of 0.285 results from the parameters
a=17, L0 =L1 =10, h=120° and L0/l0 =L1/l1 =0.7. Since the
GII fluctuates by only 1.4% and the optimum parameters
differ by a maximum of only 3%, it is concluded that the
original resolution is adequate and that little improvement
can be expected in terms of a better (parameter space
resolution) or more trustworthy (workspace resolution)
solution from reducing the sample spacing.

6. EFFICIENCY OF THE CULLING ALGORITHM
The Culling algorithm belongs to the branch-and-bound
family of optimization algorithms where all bounds are
determined by explicit function evaluations. It avoids
redundant evaluations by eliminating parameters that are
shown to be sub-optimal and, therefore, always converges to
a global optimum within the discretized parameter space.
Each loop iteration removes at least one parameter from
contention so the number of potential loop iterations is
bounded by the dimension of the parameter space and the
stopping criterion is always satisfied in finite time. A worst
case scenario of no culling whatsoever results in an
exhaustive global search. As with most optimization
algorithms, efficiency depends on the objective function and
initial conditions. While the algorithm makes no efficiency
guarantees, experience with robot design problems has
consistently shown dramatic improvement over a global
search with low sensitivity to initial conditions. Table VII
compares the number of objective function evaluations

Fig. 12. Singular values of Jacobian and mass matrix.

Fig. 13. Stewart platform.

Table V. Stewart platform parameter space

Parameter Minimum Maximum Resolution Optimum

a 1 20 0.5 16.5
L0 1 20 0.5 10.0
L1 1 20 0.5 10.0
L0/l0, L1/l1 0.5 1.5 0.1 0.7
h 100° 130° 1° 118

Table VI. Stewart platform workspace

Dimension Minimum Maximum Resolution Total

Translation
i axis 0 5 0.625 9
j axis 25 5 0.625 17
k axis 25 5 0.625 17

Rotation
i, j axes Uniformly sampled solid angle 168
k axis 230° 30° 5 13
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performed by the culling algorithm to those required by a
global search for the optimizations described in this paper.

The algorithm is demonstrated to be effective at solving
both modest (i.e. few dimensions) and complex (i.e. many
dimensions) problems. An example involving the Stewart
Platform with a workspace containing over 5 million
elements and a parameter space containing over 13 million
elements resulted in an effort reduction of over 6 orders of
magnitude over a global search. This calculation which took
just over 4 days to solve on a Sun Sparc 5 workstation using
culling is estimated to require over 20,000 years to solve by
a global search using a similar machine. By looking at the
severity of culling during each loop iteration, we can
identify where most of the computation effort takes place.
The Stewart Platform optimization described in Table V and
Table VI was solved in 5 loop iterations. Table VIII shows
for each loop iteration the number of parameters initially
present, the number of parameters culled, the maximum
number of objective function evaluations required to update
the singular value upper and lower bounds of all remaining
parameters and the number of objective function evaluations
required to search all workspace locations of the candidate
parameter. Note that because the GII culling algorithm was
used, up to two parameter evaluations (two different
workspace locations for each parameter) can occur during
each loop iteration.

It is, however, possible to skip one or both parts of steps
(11) and (23) so the number of total parameter space
evaluations are bounded from below by the number of
parameters in parameter space P0. The minimum, maximum
and actual number of calculations that took place are shown
in Table IX.

Computational effort is split quite evenly between
parameter space and workspace searches. Parameter space
searches leave little room for improvement since an average
of only one or two positions are visited for each parameter
but workspace positions could be visited in steps (9) and
(21) in a random order, stopping when ŝi+1 < ŝi which
identifies pi as suboptimal. If, however, this condition is
never met, the workspace search can only be terminated
after an exhaustive search has been completed so that the
guarantee of global optimality is not compromised. Since
the x̃i and/or 

˜
xi produced from a truncated search are not

expected to be as good as those produced by an exhaustive
search, culling is likely to be less severe after the subsequent
parameter space search but the net gain from truncating the
workspace search could in many cases exceed the net loss
from the reduction in parameter culling.

To determine sensitivity to initial conditions, the Stewart
Platform optimization was repeated two more times, once
with the initial condition set to the optimum solution from
Table V and again with the initial condition set to the
parameter farthest from the optimal solution (i.e. a=1.0,
L0 =L1 =20.0, h=130° and L0/l0 =L1/l1 =1.5). The number of
function evaluations resulting from each of the three trials is
presented in Table X and shows that a good first guess can
reduce computational effort by up to 12.7% over the mean
value. One way of obtaining a good first guess is to increase
the sample spacing and pre-optimize the device. The
optimization of the Stewart Platform with double the
original sample spacing that was described earlier required
8.773 105 function evaluations to complete. Adding this
initial investment to the required computational effort when
starting from the optimal solution reduces its 12.7% gross
effort reduction to a 9.9% net effort reduction over the mean
value. Since the effort reduction from having a good starting
point is only expected to be in the neighborhood of 10%, it
is only practical to pursue when the problem is very large
and is expected to take a long time to complete. Otherwise,
it is probably more practical to choose the starting point
arbitrarily.

As a final note, due to the low computational overhead of
the culling algorithm, almost all of the processing power is
consumed by objective function evaluations. The effort
required to calculate a Jacobian and its singular values
overwhelms the few conditional checks and assignment
statements associated with the algorithm itself, especially in
the case of a 6-DOF device. Since the culling algorithm
performs blocks of functions evaluations for large sets of
parameters and positions where the order of evaluations is

Table VII. Culling/global search effort reduction

Workspace Param space Global search:
Optimization size size culling ratio

Table I 1.023104 2.663107 3670:1
Table II 5151 1.213106 1910:1A

Table III–A 5151 251 82:1
Table III–B 5151 3.033108 3500:1B

Table V 5.683106 1.373107 1.793106 :1

A Typical value for an optimization conducted for any one value
of r.
B The parameter space was divided into 10 parts to overcome
hardware (memory) limitations so the reported ratio is an average.
Partitioning reduces the efficiency of the culling algorithm so the
reported improvement ratio is conservative.

Table VIII. Effort breakdown of GIII culling

Loop Number of Parameters Parameter Workspace
iteration parameters culled evaluations evaluations

0 13,702,689 12,498,014 27,405,378 5,680,584
1 1,204,675 1,204,049 2,409,350 5,680,584
2 625 353 1,252 5,680,584
3 273 271 546 5,680,584
4 2 1 4 5,680,584
5 1 0 0 0
Total n/a 13,702,688 29,816,530 28,402,920
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of no importance, the algorithm is easily adapted to
machines with parallel processing capabilities. One could
reaonably expect a linear relationship between completion
time and the number of available processors.

7. CONCLUSIONS
A new global isotropy index (GII) was proposed which
defines isotropy as the ratio between the minimum and
maximum singular values in the workspace. It summarizes
the workspace inclusive performance of a mechanism by a
scalar quantity and can be applied to the Jacobian, mass
matrix or any other linear transformation describing a
robot’s performance. A novel optimization procedure was
also proposed which belongs to the branch-and-bound
family of optimization algorithms but is specifically
designed for either GII or minimax optimization. It
repeatedly uses the worst configuration of one parameter to
eliminate others from contention until only the optimum
remains. The approach guarantees convergence, finite time
termination and a global result. The algorithm consistently
displays drastic improvements over a global search with
demonstrated effort reduction of up to six orders of
magnitude. One design example described here took just
over 4 days to solve on a Sparc 5 workstation using the
culling algorithm. This same example is estimated to require
over 20,000 years to solve by a global search on a similar
machine. The culling algorithm, therefore, allows one to use
unsophisticated computer hardware to solve high dimen-
sional problems that are otherwise too computationally
demanding to attempt. When used on more sophisticated
hardware, the culling algorithm allows one to solve more
complex or finely discretized problems within reasonable
time frames and is also easily adapted to exploit the parallel
processing capabilities of muti-processor machines.

The culling algorithm is used to optimize the kinematic
GII and maximum inertia of a five-bar linkage based planar
haptic interface. It is shown that the best overall architecture
has left/right symmetry about the robot and workspace and
that the robot is best kept in either an “M” or an elbow-out
posture. A sensitivity analysis is performed to trade-off
kinematic and dynamic performance for an overall optimum
design. Another design example involving a 6-DOF Stewart

Platform with 5 design parameters demonstrates that the
culling algorithm is also very effective at solving large
optimization problems with low sensitivity to initial condi-
tions.
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