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We critically analyse the different ways to evaluate the dependence of the Nusselt
number (Nu) on the Rayleigh number (Ra) in measurements of the heat transport
in turbulent Rayleigh–Bénard convection under general non-Oberbeck–Boussinesq
conditions and show the sensitivity of this dependence to the choice of the reference
temperature at which the fluid properties are evaluated. For the case when the fluid
properties depend significantly on the temperature and any pressure dependence is
insignificant we propose a method to estimate the centre temperature. The theoretical
predictions show very good agreement with the Göttingen measurements by He
et al. (New J. Phys., vol. 14, 2012, 063030). We further show too the values of the
normalized heat transport Nu/Ra1/3 are independent of whether they are evaluated
in the whole convection cell or in the lower or upper part of the cell if the correct
reference temperatures are used.
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1. Introduction
Natural thermal convection, which occurs in a fluid layer due to temperature

differences, is omnipresent in nature and plays an important role in many engineering
applications. A paradigm system to study this type of fluid motion is Rayleigh–Bénard
convection (RBC), which takes place in a fluid layer confined between two horizontal
plates, a lower heated plate and an upper cooled one (see, e.g. Bodenschatz, Pesch
& Ahlers 2000; Ahlers, Grossmann & Lohse 2009; Lohse & Xia 2010; Chillà &
Schumacher 2012).

Within the Oberbeck–Boussinesq (OB) approximation (Oberbeck 1879; Boussinesq
1903; Spiegel & Veronis 1960), all fluid properties are assumed to be pressure- and

† Email address for correspondence: Olga.Shishkina@ds.mpg.de
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Bulk temperature and heat transport in turbulent Rayleigh–Bénard convection 375

temperature independent, apart from the density in the buoyancy term, which is
assumed to be a linear function of the temperature. Under the OB approximation,
the RBC system is governed by the following dimensionless control parameters: the
Rayleigh number Ra, the Prandtl number Pr and (for a cylindrical container) the
diameter-to-height aspect ratio Γ :

Ra≡
gα1H3

νκ
, Pr≡

ν

κ
, Γ ≡

D
H
. (1.1a−c)

Here, 1≡ Tbot − Ttop is the temperature difference between the hot bottom and cold
top plates, H the height and D the diameter of the RBC cell, g the gravitational
acceleration, ν the kinematic viscosity, κ the thermal diffusivity and α the isobaric
thermal expansion.

In any real RBC experiment, however, the sample properties deviate from the OB
approximation, since all material properties generally depend on the temperature and
pressure. So-called non-Oberbeck–Boussinesq (NOB) effects become apparent, see
Busse (1967), Gray & Giorgini (1976), Wu & Libchaber (1991), Zhang, Childress
& Libchaber (1997), Niemela et al. (2000), Xia, Lam & Zhou (2002), Roche et al.
(2004), Ahlers et al. (2006, 2007, 2008), Sugiyama et al. (2007), Sugiyama et al.
(2009), Burnishev, Segre & Steinberg (2010), Horn, Shishkina & Wagner (2013),
Horn & Shishkina (2014). The NOB effects influence the global flow structure and,
therefore, can affect the global heat transport in the RBC system. This heat transport
is usually expressed by the dimensionless Nusselt number, Nu= q/q̂, that is, by the
ratio of the total time averaged vertical heat flux q to the purely conductive heat
flux q̂.

While in many natural systems (e.g. in the atmosphere) large hydrostatic pressure
differences cause variations of the fluid properties, the pressure variation across the
fluid layer in laboratory RBC experiments is much smaller and the NOB effects are
mainly caused by temperature variations. Even in the large-scale experiments in the
‘Uboot’ of Göttingen (Ahlers et al. 2012b; He et al. 2012), where pressurized sulfur
hexafluoride (SF6) is used in up to 2 m high RBC cells, the variations of the fluid
properties with the temperature are at least 5 times larger than the variations of the
fluid properties with the pressure. This is despite the large cell height and the fact
that the density of SF6 is approximately 5 times larger than the density of air. Also
in large Ra-experiments with helium close to its critical point, the fluid property
variations with the pressure are negligible compared to their strong variations with
the temperature, see, e.g. Castaing et al. (1989), Ashkenazi & Steinberg (1999),
Niemela & Sreenivasan (2003), Roche et al. (2004), Urban et al. (2014). Therefore,
in the following we will focus on the NOB effects caused exclusively by temperature
variations and assume a constant hydrostatic pressure throughout the cell.

Among the NOB effects, one of the most notable is a broken up–down symmetry
of the convective flow and of the top and bottom boundary layers (BLs), as illustrated
in figure 1. The broken symmetry results in a deviation of the centre temperature, Tc,
from the arithmetic mean, Tm≡ (Ttop+ Tbot)/2, of the temperatures Ttop and Tbot at the
top and bottom plates, respectively.

Under NOB conditions, various questions arise, such as: What is the right way
to calculate the Nusselt number Nu? How should Ra be calculated? In particular, at
which reference temperature should the fluid properties be evaluated? Is it possible to
deduce from the heat flux measurements under slightly NOB conditions the heat flux
that would be measured in the OB case and which scaling relation of Nu versus Ra
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(a) (b)

FIGURE 1. (Colour online) Sketch of a typical (a) NOB Rayleigh–Bénard convection cell
and (b) mean vertical temperature profiles for a gas under NOB conditions (thick line)
and a perfect OB fluid (thin line), as functions of the distance z from the heated bottom
plate: the temperature at the bottom plate (T = Tbot for z= 0), at the cross-over from the
bottom BL to the bulk (T = T+ for z= δ+), at mid-height of the cell (T = Tc for z=H/2),
at the cross-over from the top BL to the bulk (T = T− for z=H− δ−) and at the cooled
top plate (T = Ttop for z=H). We have Ttop < T−< Tc < T+< Tbot and Tm≡ (Tbot + Ttop)/2.
Pink and blue stripes correspond to the bottom and top BLs, respectively.

would be measured under perfect OB conditions? These questions became especially
pertinent as different experiments, conducted at similar Ra, Pr and system geometries,
have produced different scaling relations Nu(Ra).

In previous work Shishkina, Weiss & Bodenschatz (2016) addressed the issue of
how to calculate correctly the Nusselt number in measurements under general NOB
conditions. There, an algorithm to calculate the mean conductive heat flux q̂, which
is needed for normalization of the measured total heat flux q, was presented.

Here we show the sensitivity of the Nu versus Ra relation to the reference
temperatures at which the fluid properties are evaluated. For the case, when the
fluid properties depend significantly on the temperature and any pressure dependence
is unimportant, we propose a method to predict the centre temperature and show by
example of the Göttingen measurements (Ahlers et al. 2012b; He et al. 2012) that
it leads to more accurate predictions than the models based on an extension of the
Prandtl–Blasius approach to a NOB case (Ahlers et al. 2006, 2007, 2008) or any
of the three models by Wu & Libchaber (1991) or their modification (Urban et al.
2014).

In our approach we consider two virtual symmetric RBC cells I− and I+ filled with
artificial fluids. The fluid properties are assumed to be functions of the temperature T
that are symmetric about Tc. For I− (I+) they are taken to be equal to those of the
real cell over the temperature range Ttop 6 T 6 Tc (Tc 6 T 6 Tbot).

We demonstrate that the Nu versus Ra scaling relations for the real cell and for
both virtual cells are very similar. This means that it is impossible to remove the
NOB effects in the Nu versus Ra relationship, while considering, for example, only
the lower half of the real RBC cell. In particular, the transition, obtained in the
measurements by Ahlers et al. (2012b) and He et al. (2012), is present in the scaling
relations for the real cell as well as for the virtual symmetric cells, determined by
the BLs like either the bottom BL or the top BL of the real RBC cell.
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2. Model to predict the centre temperature in a real RBC cell
Here we develop a model to predict the temperature at mid-height, Tc, of a

convection cell containing a fluid with properties that depend on the temperature.
Hydrostatic pressure changes within the sample are assumed to be sufficiently small
so that the dependence of the fluid properties on the pressure may be neglected.

In our model we assume that there are two BLs, one each adjacent to the top and
bottom plate. The remainder of the system is regarded as the bulk. Thus we neglect
the existence of mixing layers between the BLs and the bulk (see e.g. Kraichnan
1962; Chung, Yun & Adrian 1992), as well as the logarithmic profiles (Ahlers et al.
2012a; Ahlers, Bodenschatz & He 2014; Wei & Ahlers 2014) in the bulk just beyond
the mixing layers. It turns out that this crude approximation is adequate for our
purpose. We define two temperatures T+ and T− as the temperatures at suitably
chosen locations of the cross-over from the BLs to the bulk. It also turns out that
under the assumptions of the model the temperature drops across the BLs will not be
needed. However, the model requires that fluid properties are evaluated at T+ and T−.
We shall see below that these temperatures emerge naturally from the assumptions of
the model (see (2.14)).

In figure 1 a typical mean vertical temperature profile is sketched, which has much
larger temperature gradients within the BLs compared to that in the bulk region.
Here T+ and T− are the temperatures at the cross-overs from the bottom and top
thermal BLs to the bulk, respectively. The thicknesses of the bottom and top BLs
are, respectively, δ+ and δ−. The drops of the temperature within the lower and upper
halves of the convection cell,

∆+ = Tbot − Tc, ∆− = Tc − Ttop, (2.1a,b)

are generally different in a NOB case.
The absence of the top–bottom symmetry of the BLs in the real RBC cell causes

a small deviation of the obtained Nusselt number (Nu) from that in the OB case.
This deviation is small (except in the case of extreme deviations from the OB
approximation) because, to lowest order, the effect on Nu from one of the BLs is
nearly cancelled by an effect of similar magnitude but opposite sign from the other
(see e.g. He, Bodenschatz & Ahlers 2016, § 4). Here we address this small deviation,
and perhaps more importantly the much larger shift of the centre temperature Tc
away from the mean temperature Tm.

In our model we consider virtual symmetric RBC cells, filled with artificial fluids,
the properties of which are symmetric (with respect to the central temperature Tc)
functions of the temperature T . We will refer to these virtual systems as virtual
symmetric RBC cells I+ and I−. The cells I+ and I− have a priori unknown heights
H+ and H−, respectively. The bottom-plate temperature of the cell I+ equals Tbot and
the applied temperature difference is 2∆+. The top-plate temperature of the cell I−
equals Ttop and the applied temperature difference is 2∆−. In each virtual cell, the
temperature of the bottom plate is larger than the temperature of the top plate. The
fluid properties of the cells I− and I+ are determined by the fluid properties of the
real cell for the temperature ranges Ttop 6 T 6 Tc and Tc 6 T 6 Tbot, respectively.
More precisely, for Ttop 6 T 6 Tc, the fluid properties of the cell I− are the same
as those of the real cell, while for Tc 6 T 6 Ttop + 2∆− the fluid properties of the
cell I− are obtained by reflection with respect to Tc. Analogously, for Tc 6 T 6 Tbot,
the fluid properties of the cell I+ are the same as those of the real cell, while for
Tbot − 2∆+ 6 T 6 Tc the fluid properties of the cell I+ are obtained by reflection with
respect to Tc.
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The total vertical heat flux averaged in time and over any horizontal cross-section
in both cells, I+ and I−, is assumed to be equal to that in the real RBC cell, q. To
calculate the Nusselt numbers for the corresponding cells,

Nu+ ≡ q/q̂+ and Nu− ≡ q/q̂−, (2.2a,b)

one needs the values of the mean vertical heat fluxes q̂+ and q̂− that would occur via
heat conduction alone, in the absence of convection, in the same cells. As the cells
I+ and I− are symmetric, the conductive heat fluxes equal, respectively,

q̂+ = λ+(2∆+)/H+ and q̂− = λ−(2∆−)/H−. (2.3a,b)

Here λ± ≡ λ(T±) is the thermal conductivity at the temperature T±.
At this point it becomes necessary to decide upon which temperatures should be

used to evaluate the conductivities λ+ and λ−, as well as the other fluid properties
that will be needed below. Our definition of the virtual cells implies that the extrema
of the properties will be at the plates (i.e. at Tbot or Ttop) and at Tc. Thus we should
choose a temperature somewhere between Tc and Tbot for I+ and between Ttop and Tc

for I−. Within our model we shall choose the cross-over temperatures T+ and T− for
that purpose. While so far T+ and T− were defined only qualitatively, we shall see
below that this choice will also lead to a unique definition of T+ and T−.

The Rayleigh numbers of the cells I+ and I− are, respectively,

Ra+ = η+(2∆+)H3
+

and Ra− = η−(2∆−)H3
−
, (2.4a,b)

where η± ≡ η(T±) and η is defined as η≡ αg/(κν).
Although the total vertical heat fluxes averaged in time and over any horizontal

cross-section in both cells, I+ and I−, are equal to the same quantity, q, the Nusselt
numbers and Rayleigh numbers of these symmetric cells can be different. However,
we assume that the Nusselt numbers for both cells, although not equal to each other,
follow the same scaling laws. That is,

Nu+ = A+Pra+
+

Rab+
+

and Nu− = A−Pra−
−

Rab−
−

(2.5a,b)

with

A+ = A− = A, a+ = a− = a and b+ = b− = b. (2.6a−c)

Here Pr± ≡ Pr(T±) = ν±/κ± is the Prandtl number evaluated at the temperature T±.
Note that this assumption is valid to a good approximation as long as (Pr−, Ra−) and
(Pr+, Ra+) are sufficiently close, such that they belong to the same scaling regime, see
Grossmann & Lohse (2000, 2001, 2004, 2011). Combining (2.2)–(2.6), we obtain:(

Nu+
Nu−

)3b−1 (Pr+
Pr−

)a (
λ+

λ−

)3b (
η+

η−

)b (
∆+

∆−

)4b

. (2.7)

In the considered RBC experiments with SF6, the Prandtl number is larger than
0.5 and, therefore, the scaling regimes there correspond to the ‘upper’ regimes in the
Grossmann & Lohse (2000) theory. In the ‘upper’ regimes, I<

∞
, III∞ and IVu in the

terminology of Grossmann & Lohse (2000), the effective value of the scaling exponent
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in the Nu versus Pr scaling relation is very close to zero, a≈ 0. Therefore, the Prandtl
number dependence in the left-hand side of the relation (2.7) can be omitted:(

Nu+
Nu−

)3−1/b (
λ+

λ−

)3 (
η+

η−

)(
∆+

∆−

)4

= 1. (2.8)

Furthermore, the effective value of the exponent b in the regimes I<
∞

, III∞ and IVu
is very close to 1/3 (see derivations for these regimes, respectively, in Grossmann
& Lohse 2000, Grossmann & Lohse 2001 and Shishkina et al. 2017a). This means
that the Nusselt number term in the left-hand side of the relation (2.8) can be also
neglected as long as the Rayleigh number is not too high so that the so-called
ultimate scaling of Nu versus Ra takes place. In the Göttingen experiments (Ahlers
et al. 2012b; He et al. 2012) for high Ra, where already a transition to the ultimate
regime takes place, the effective value of b is approximately 0.38, but even in this
case the variation of the Nusselt number, taken to the power (3 − 1/b), is much
smaller than the variation of the fluid properties. Indeed, even if the Nusselt number
variation would be as large as 40 % (Nu−/Nu+ = 1.4), the variation of the Nusselt
number term in the relation (2.8) is only approximately 12 % ((Nu+/Nu−)3−1/b

≈ 0.88),
while η has a much stronger variation. For example, in the experiments by Ahlers
et al. (2012b) and He et al. (2012) with SF6, it can be up to 300 % larger close to
the cold plate than near the warm plate. The λ-term in the relation (2.8) also cannot
be neglected, however, the λ-variation of SF6 is not as large as the η-variation. Note
that the above considered 40 % variation of the Nusselt number occurs not from the
measurements by Ahlers et al. (2012b) and He et al. (2012), but is just taken as a
very upper bound.

Thus, with the above explanations, we obtain from the relation (2.8) the following
temperature balance relation:

λ3
+
η+∆

4
+
≈ λ3

−
η−∆

4
−
, (2.9)

where the fluid properties λ± and η± are evaluated at the temperature T±.
Equation (2.9) is equivalent to

Tc =
λ

3/4
+ η

1/4
+ Tbot + λ

3/4
− η

1/4
− Ttop

λ
3/4
+ η

1/4
+ + λ

3/4
− η

1/4
−

. (2.10)

As T+ and T− correspond to the temperatures at the cross-overs from the
corresponding BLs to the bulk of the real cell, we shall represent them as a linear
combination of the centre temperature and the temperature of the corresponding plate,
as follows:

T+ = β+Tbot + (1− β+)Tc, (2.11)
T− = β−Ttop + (1− β−)Tc. (2.12)

Although the temperature gradients in the BLs of a real RBC cell are very steep,
the BLs are not purely conductive but are highly fluctuating for sufficiently large Ra,
see, e.g. du Puits et al. (2007), du Puits, Resagk & Thess (2013). For a fixed aspect
ratio of the container, the mean temperature profiles within the BLs depend slightly
on Pr and very weakly on Ra, see Shishkina et al. (2015, 2017b) and Ching, Dung &
Shishkina (2017). Therefore, in a fully developed turbulent RBC flow, the temperature
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at the BL–bulk cross-over depends on Pr, although quite weakly. Based on this and
the fact that Pr+ ≈ Pr−, we assume further that

β+ = β− = β (2.13)

for a certain value of β, 0 6 β 6 1. Thus, we write

T+ = βTbot + (1− β)Tc,

T− = βTtop + (1− β)Tc.

}
(2.14)

Relations (2.10), (2.14) build a model to predict the bulk, or central, temperature Tc
in the real RBC cells. Note that although (2.10) is nonlinear, its numerical solution
can be obtained quite easily, using an iterative procedure, as soon as the value of β
in (2.14) is known.

As one can see in figure 2, the model (2.10) is very sensitive to the accuracy of
the approximation of β in the relations (2.14). In figure 2 the estimates of the relative
temperature deviations, (Tm − Tc)/∆, in pressurized gas SF6 are presented, according
to (2.10), (2.14), for different values of βappr in the approximation β ≈ βappr. The
case βappr = 0 would propose that the temperature at the cross-over from the BL
to the bulk equals the centre temperature, T± = Tc, and the case βappr = 1 would
mean that at the cross-over from the BL to the bulk the temperature equals the plate
temperature. Because of the strong sensitivity of the model (2.10) on the quality of
the approximation of β, it is extremely important to estimate the value of β possibly
precise.

The value of β is strongly influenced by the geometry of the container, which
is determined mainly by its diameter-to-height aspect ratio Γ . In slender containers,
when Γ is small, the temperature gradient in the bulk is not negligible and, therefore,
β is relatively large. For large Γ and sufficiently large Ra, the mean temperature
gradient vanishes in the bulk and, therefore, β is relatively small. When Γ tends to
infinity, the value of β saturates at a certain fixed value β0, which generally depends
on Pr and Ra. Assuming an exponential dependence of β on Γ , we approximate β
with βGö, where

β ≈ βGö = (1− β0) exp(−BΓ )+ β0. (2.15)

The coefficient B, B> 0, which generally depends on Pr and Ra, shows how fast β
saturates at β0 when Γ →∞.

From an analysis of the mean temperatures at the cross-overs from the BLs
to the bulk in RBC for different Ra and Pr but fixed Γ , one can conclude that
this temperature and, hence, also the value of β are influenced by Pr and depend
negligibly weak on Ra, as soon as the convective flow is turbulent (Shishkina et al.
2017b). The value of β0 is slightly larger for smaller Pr, larger Ra and near the
lateral walls, where stronger fluctuations are observed. For Pr≈ 1 it can be estimated
from the solution of the thermal boundary layer equation that takes into account the
turbulent fluctuations in terms of the eddy thermal diffusivity (Shishkina et al. 2015).
In this case, the vertical profile of the dimensionless temperature θ , which is equal
to 0 at the plate (ξ = 0) and equals 1 in the bulk (ξ →∞), is described by the
following analytical expression:

θ(ξ)=

√
3

4π
log

(1+ eξ)3

1+ (eξ)3
+

3
2π

arctan
2eξ − 1
√

3
+

1
4

(2.16)
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FIGURE 2. (Colour online) Sensitivity of the model (2.10) to the accuracy of the
approximation of β ≈ βappr in the relations (2.14). Shown are predictions for different
values of βappr against the measurements in pressurized SF6, for the cell aspect ratios
(a) Γ = 1 (He et al. 2012) and (b) Γ = 1/2 (Ahlers et al. 2012b). The predicted or
measured values of the relative deviation of Tc from Tm are plotted against the Rayleigh
number evaluated at the measured Tc.

with e= 2π/(3
√

3). Here ξ is the dimensionless distance from the plate, where ξ = 1
corresponds to the cross-over from the BL to the bulk. Since θ(1)≈ 0.765, we obtain
that for Pr ≈ 1 the value of β0 equals β0 = 1 − θ(1) ≈ 0.235. We cannot derive the
value of B in (2.15) from the BL equations and, therefore, fit it from the available
experimental data. Thus, we complement the relation (2.15) with

β0 = 0.235 and B= 1.14. (2.17a,b)
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Any choice of B within the interval [1.1; 1.2] would not change much the
predictions of the central temperature. Thus, for the largest studied Ra we obtained
that the relative deviation of the predictions for B = 1.2 and B = 1.1 is less
than 0.07 %. Although the values of B and β0 defined by (2.17) are only rough
approximations, they, together with (2.10)–(2.15), lead to quite accurate predictions
of the centre temperature in the cases considered in the next section. In the future,
the estimates (2.17) of β0 and B will be eventually updated and formulated as Pr-
and Ra-dependences. For more accurate estimates one needs more measurements of
the centre temperature, for possibly high Ra and different values of Γ and Pr.

3. Comparison with other models
Now we compare the proposed model (2.10)–(2.17) with other existing models and

measurements.
In Horn et al. (2013), Horn & Shishkina (2014), models to predict the centre

temperature Tc in RBC, including those by Wu & Libchaber (1991), Zhang et al.
(1997), Manga & Weeraratne (1999), Ahlers et al. (2006), were compared, based on
direct numerical simulations. For the case of very strong temperature dependence of
the fluid properties, the models by Wu & Libchaber (1991) (more precisely, their
second and third model) were more accurate than the other models. Therefore in the
present work we restrict our consideration to the model by Ahlers et al. (2007, 2008)
and the three models by Wu & Libchaber (1991) and a slight modification of their
first model by Urban et al. (2014) and compare them with our model (2.10)–(2.17)
to predict the centre temperature Tc, which was proposed in the previous section.

Let us first recollect the models by Wu & Libchaber (1991). There, the following
rough approximations are used: the total temperature drop is assumed to take place
exclusively across the bottom and top BLs and heat is assumed to be transported
purely by conduction within the BLs, i.e. q = λb∆+/δ+ = λt∆−/δ−. The reference
temperature Tb (Tt) of the bottom (top) BL, at which the corresponding values of the
fluid properties λb and ηb (λt and ηt) are evaluated, is defined as follows:

Tb ≡ (Tbot + Tc)/2, and Tt ≡ (Ttop + Tc)/2. (3.1a,b)

To close the system of the above equations, Wu & Libchaber (1991), in their
first model, follow Malkus (1954) and Howard (1966) and assume that the Rayleigh
numbers for the BLs are equal, i.e. ηb∆+δ

3
+
= ηt∆−δ

3
−

. This leads to their first model:

λ3
bηb∆

4
+
= λ3

t ηt∆
4
−
. (3.2)

One can see that this model coincides with our model (2.10) if, instead of (2.15), the
value β = 1/2 is taken in the relations (2.14).

Following Castaing et al. (1989), in the second model by Wu & Libchaber (1991),
it is assumed that the reference velocities wb and wt of the thermal plumes emitted
from the two BLs are similar, wb ≈ wt. The reference plume velocity wb (wt) of the
bottom (top) BL is estimated by the balance of the buoyancy force and the viscous
force, i.e. gαb∆+ = νbwb/δ

2
+

(gαt∆− = νtwt/δ
2
−

). This leads to their second model:

λ2
bηbκb∆

3
+
= λ2

t ηtκt∆
3
−
. (3.3)

In the third model by Wu & Libchaber (1991), it is assumed that the inversed
temperature scales of the BLs are similar, i.e. ηbδ

3
+
= ηtδ

3
−

, which leads to the
following relation:

λ3
bηb∆

3
+
= λ3

t ηt∆
3
−
. (3.4)
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To estimate the centre temperature Tc with the models by Wu & Libchaber (1991),
one needs to solve the corresponding nonlinear equations (3.2)–(3.4). A modification
of their first model (3.2) was also considered by Urban et al. (2014), where instead
of (3.1), the following approximations of the reference temperatures of the BLs were
used:

Tb ≡ (Tbot + Tm)/2= (3Tbot + Ttop)/4,
Tt ≡ (Ttop + Tm)/2= (Tbot + 3Ttop)/4.

}
(3.5)

This modification allowed for estimation of Tc using the explicit relations (3.2), (3.5).
The last model, which we compare our model with, is an extension of the

Prandtl–Blasius BL theory to a general NOB case of compressible flows, which
was developed by Ahlers et al. (2006, 2007, 2008). There, the centre temperature
is found based on an assumption of asymmetric BLs, which, however, follow the
Prandtl–Blasius BL equations. Since the temperature profiles in Oberbeck–Boussinesq
RBC deviate significantly from the Prandtl–Blasius predictions, the extension of
the Prandtl–Blasius BL theory to a non-Oberbeck–Boussinesq case inherits similar
problems (see, e.g. Ahlers et al. 2008, figure 11). This limits the applicability of the
extended Prandtl–Blasius BL theory to predict the centre temperature in NOB RBC.
Note that the deviations between the predictions of the Prandtl–Blasius BL theory
and real temperature profiles are larger for larger Ra and smaller Pr, see theoretical
explanations in Shishkina et al. (2015, 2017b) and Ching et al. (2017), and results
of direct numerical simulations in, e.g. Scheel, Kim & White (2012), Stevens et al.
(2012), Shishkina, Horn & Wagner (2013), Shishkina, Wagner & Horn (2014).

In figure 3 we compare our model (2.10)–(2.17) with the model by Ahlers et al.
(2007, 2008) and with the three models (3.2)–(3.4), (3.1) by Wu & Libchaber (1991)
and a modification of their first model (3.2), (3.5). The comparison is made using the
measurements of the bulk temperature in the RBC experiments with pressurized SF6
in cylindrical containers of the diameter-to-height aspect ratios Γ = 1 (He et al. 2012)
and Γ = 1/2 (Ahlers et al. 2012b).

For the case Γ = 1 (figure 3a), the predictions of our model (2.10)–(2.17) are
in perfect agreement with the measurements by He et al. (2012) and the proposed
model excels all other considered models. The third model by Wu & Libchaber (1991)
significantly overestimates the relative deviation of the centre temperature from the
arithmetic mean of the top and bottom temperatures, while the model by Ahlers et al.
(2007, 2008) underestimates it.

In the case Γ = 1/2 (figure 3b), for the highest Ra, where the measurements of the
temperature deviation are most precise, the predictions of our model (2.10)–(2.17) are
again in good agreement with the measurements. In this case, in contrast to what was
obtained for Γ = 1, the predictions of the first and second models by Wu & Libchaber
(1991) underestimate the temperature deviation; so does the model by Ahlers et al.
(2007, 2008).

4. Comments on the scaling relations of the compensated Nusselt number with
the Rayleigh number
In the previous sections, for the purpose of estimating the centre temperature in

a real RBC cell, we considered two virtual symmetric RBC cells, I±, which can be
understood as an approximation of the real RBC cell. This approximation is the next
closest to the OB approximation, which takes into account the temperature variation
of the fluid properties.
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Measurements He et al. (2012) Ahlers et al. (2012b)
Proposed model (2.10) – (2.17)
(1) Wu & Libchaber (1991)
(2) Wu & Libchaber (1991)
(3) Wu & Libchaber (1991)
Urban et al. (2014)
Ahlers et al. (2007, 2008)

10141013 10151012

0.02

0.01

0

0.03

0.02

0.01

0

0.03

(a)

(b)

FIGURE 3. (Colour online) Comparison of the measured relative deviation of the centre
temperature from the arithmetic mean of the top and bottom temperatures in the RBC
experiments with pressurized SF6 by (a) He et al. (2012), for the aspect ratio Γ = 1 and
by (b) Ahlers et al. (2012b), for Γ =1/2, with the predictions of the here proposed model
(2.10)–(2.17) and earlier models by Ahlers et al. (2007, 2008), three models by Wu &
Libchaber (1991) and a modification of their first model by Urban et al. (2014).

Although the virtual symmetric cells I± and the real RBC cell can generally have
different heights, H± and H, respectively, the compensated Nusselt numbers,

Nu+
Ra1/3
+

=
q

λ(T+)[16(Tbot − Tc)4η(T+)]1/3
, (4.1)

Nu−
Ra1/3
−

=
q

λ(T−)[16(Tc − Ttop)4η(T−)]1/3
(4.2)
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are independent of the heights. The Nusselt numbers here are assumed to be calculated
according to the definition, as proposed in Shishkina et al. (2016). Obviously, in
the OB case, the values of Nu±/Ra1/3

± and Nu/Ra1/3
c coincide. How different are

Nu±/Ra1/3
± and Nu/Ra1/3

c under NOB conditions, with the temperature-dependent fluid
properties?

When the exact values of the temperatures at the cross-overs from the BLs to the
bulk, T±, and the centre temperature Tc are known, the fluid properties η± and λ± at
these temperatures and, hence, the compensated Nusselt numbers Nu±/Ra1/3

± can be
easily calculated. In the case, when Tc is known, but T± is not known, one can use
the approximation (2.14)–(2.17), to estimate T±. In most measurements of the mean
heat transport in RBC, not only T±, but also Tc is not available. In such cases the
model (2.10)–(2.17) can be used to estimate Tc and T±.

As discussed above, inaccurate approximations of β in the relations (2.14) lead
to inaccurate predictions of the bulk temperature Tc (see, for example, figure 2 for
β ≈ βappr with different values of βappr), while an accurate approximation βappr = βGö,
according to (2.15) and (2.17), leads to precise predictions of Tc (see figure 3).

In figures 4 and 5, the dependences of the compensated Nusselt numbers, i.e.
Nu±/Ra1/3

± against the measured Rayleigh numbers Rac are presented for the virtual
symmetric RBC cells I±, by example of the RBC data for pressurized SF6. The cases
Γ = 1 and Γ = 1/2 are presented, respectively, in figures 4 and 5. There Nu±/Ra1/3

±

calculated for different reference temperatures T± (i.e. different approximations of β),
are plotted against Rac. For an inaccurate approximation β ≈ βappr with βappr = 0
(when the temperature at the cross-over from the BL to the bulk is assumed to be
equal to the centre temperature), the dependence Nu+/Ra1/3

+ on the Rayleigh number
is decreasing, while Nu−/Ra1/3

− is increasing (see figures 4a and 5a). Opposite to
this, for another inaccurate approximation, i.e. βappr = 1 (when the temperature at
the cross-over from the BL to the bulk is assumed to be equal to the temperature
at the corresponding plate), the dependence Nu+/Ra1/3

+ on the Rayleigh number is
increasing, while Nu−/Ra1/3

− is decreasing (see figures 4c and 5c).
With an accurate approximation βappr = βGö (which leads to the correct values of

the centre temperature Tc and of the temperatures at the cross-overs from the BLs
to the bulk, T±, see (2.15), (2.17)), the scalings relations of Nu±/Ra1/3

± versus Rac

and Nu/Ra1/3
c versus Rac are very similar. One can see this in figure 4(b) for Γ = 1

and figure 5(b) for Γ = 1/2. These three scaling relations almost replicate each other
and, in particular, the transition (i.e. an increase of the normalized Nusselt numbers
for large Ra), reported in Ahlers et al. (2012b), He et al. (2012) is visible not only
in the Nu/Ra1/3

c dependence, but also in the Nu+/Ra1/3
+ and Nu−/Ra1/3

− dependences.
Note that plotting Nu±/Ra1/3

± versus Ra± instead of Nu±/Ra1/3
± versus Rac would only

stretch or compress the plots in the horizontal direction, and therefore will not affect
the presence of the transition.

5. Conclusions

In the present work we use a thought experiment introducing two virtual cells,
as described in § 2, to derive a model (2.10)–(2.17) for non-Oberbeck–Boussinesq
thermal convection, where the fluid properties depend exclusively on the temperature
and are almost independent of the pressure. We show that the model with quantifiable
assumptions allows to estimate the centre temperature Tc in turbulent RBC, according
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101410131012

Ra

(a)

(b)
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FIGURE 4. (Colour online) Sensitivity of the dependences Nu±/Ra1/3
± versus Rac to

the temperatures T± at which the fluid properties are evaluated (obtained using an
approximation β ≈ βappr in (2.14)), for virtual symmetric RBC cells with the BLs like
the warm BL (squares) or like the cold BL (circles) in a real RBC cell, by example of
the measurements by He et al. (2012) for Γ = 1. The values of Nu±/Ra1/3

± are evaluated
according to (4.1), (4.2), for measured Tc and (a,c) inaccurate approximations (a) βappr= 0
and (c) βappr= 1 and (b) an accurate approximation βappr=βGö, according to (2.15), (2.17).
The dependences Nu/Ra1/3

m versus Ram (triangles) and Nu/Ra1/3
c versus Rac (diamonds) are

shown for comparison.
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FIGURE 5. (Colour online) Sensitivity of the dependences Nu±/Ra1/3
± versus Rac to

the temperatures T± at which the fluid properties are evaluated (obtained using an
approximation β ≈ βappr in (2.14)), for virtual symmetric RBC cells with the BLs like
the warm BL (squares) or like the cold BL (circles) in a real RBC cell, by example of
the measurements by Ahlers et al. (2012b) for Γ = 1/2. The values of Nu±/Ra1/3

± are
evaluated according to (4.1), (4.2), for measured Tc and (a,c) inaccurate approximations
(a) βappr = 0 and (c) βappr = 1 and (b) an accurate approximation βappr = βGö, according to
(2.15), (2.17). The dependences Nu/Ra1/3

m versus Ram (triangles) and Nu/Ra1/3
c versus Rac

(diamonds) are shown for comparison.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

50
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.507


388 S. Weiss, X. He, G. Ahlers, E. Bodenschatz and O. Shishkina

to (2.10). The fluid properties in (2.10) are evaluated at the temperatures T±, see
(2.14), where the parameter β is approximated according to the relations (2.15),
(2.17).

The model admits that the Rayleigh numbers of the top and bottom BLs can be
different, but the scaling laws of the Nusselt number versus the Prandtl number and
Rayleigh number are the same. Based on the measurements by Ahlers et al. (2012b)
and He et al. (2012) in containers of the aspect ratios Γ = 1 and Γ = 1/2, we showed
that the model leads to very precise estimates of Tc in turbulent NOB RBC.

Finally, based on the above measurements, we showed that the compensated values
of the heat transport, i.e. Nu/Ra1/3, evaluated for the real RBC cell with the reference
temperature Tc or for the virtual symmetric RBC cell, with the BLs like the bottom
or top BL in the real cell, are very similar if the correct reference temperatures T+
and T− are considered for these symmetric cells.
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