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Abstract. We define the notion of ε-flexible periodic point: it is a periodic point with stable
index equal to two whose dynamics restricted to the stable direction admits ε-perturbations
both to a homothety and a saddle having an eigenvalue equal to one. We show that an ε-
perturbation to an ε-flexible point allows us to change it to a stable index one periodic
point whose (one-dimensional) stable manifold is an arbitrarily chosen C1-curve. We also
show that the existence of flexible points is a general phenomenon among systems with a
robustly non-hyperbolic two-dimensional center-stable bundle.

1. Introduction
Since Poincaré’s discovery of the transverse homoclinic intersections and the complex
behaviors near them, the search for the transverse homoclinic intersections, in other words,
the control of the invariant manifolds of the systems, has been one of the central problems
in dynamical systems. In the late 1990s, a breakthrough was achieved in the form of
Hayashi’s connecting lemma (see [H]). This allows us to control the effect of perturbations
on the invariant manifolds and enables us to create new intersections. This perturbation
technique provides one basis for the recent active development of the study of non-
uniformly hyperbolic dynamical systems. For example, [CP] uses the connecting lemma
and its generalizations for building heterodimensional cycles in order to characterize the
robust non-hyperbolic behaviors.

In the uniformly hyperbolic context, the invariant manifold theorem tells us their
rigidity. The local stable/unstable manifolds of a uniformly hyperbolic set are
embedded discs varying continuously with respect to the points and the variation
of the diffeomorphisms. A consequence of this fact is the great constraint on the
geometric behavior of invariant manifolds under small perturbations. Such rigidities are
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paradoxically exploited for the construction of robustly non-hyperbolic systems such as
Newhouse’s example of robust tangencies (see [N]) or Abraham and Smale’s example of
robust heterodimensional cycles (see [AS]).

Meanwhile, the problem of the control of the variations of the invariant manifolds of
periodic orbits under small perturbations in non-uniformly hyperbolic systems remains an
important issue. On the one hand, non-hyperbolic systems in general contain plenty of
regions where the local dynamics exhibits hyperbolic behaviors, which also give us some
rigidity of the invariant manifolds. On the other hand, we may expect that the absence of
uniform hyperbolicity implies the existence of periodic orbits whose invariant manifolds
have less rigidity so that they can be altered considerably by small perturbations.

A prototype of arguments of this kind can be found in [BD1]. The rescaling invariant
nature of C1-distance gives us strong freedom for the change of relative position of
objects in the homothetic regions, that is, contracting or repelling regions where the
diffeomorphism is smoothly conjugated to a homothety. Furthermore, [BD1] gave an
example of non-uniformly hyperbolic systems in which the homothetic behaviors are quite
abundant. This enables us to construct interesting examples of dynamical systems, such as
the construction of universal dynamics by the first author with Dı́az, or the construction of
heterodimensional cycles near the wild homoclinic classes by the second author [S].

The fact that non-hyperbolic dynamics may exhibit homothetic behaviors was first
exploited by Mañé in [M] for surface diffeomorphism (see also [PS]), and has been
generalized to higher-dimensional cases in [BB, BDP, BGV]. These works are essentially
within the scope of perturbations of the derivative of periodic orbits, and their conclusions
provide us only local information on perturbed systems. In this paper we pursue the
possibility of such a strategy further and propose a new, semi-local technique for the
control of invariant manifolds.

In many applications, we need to control the effect of the perturbation on the invariant
manifold such as keeping a heteroclinic connection while the periodic orbit is changing
its index. This is the aim of [G1] where Gourmelon uses invariant cone fields for keeping
the strong stable manifold almost unchanged along the perturbation. Here we follow a
completely opposite strategy: we will use the homothetic region (where there is no strictly
invariant cone field) to obtain great freedom of choice of the position of the invariant
manifolds.

The aim of this paper is twofold. First, we consider diffeomorphisms of two-
dimensional manifolds and define the notion of flexible periodic points, which is an
abstract sufficient condition for a periodic point which guarantees that the above strategy is
available. We investigate the possible perturbations on such points. We extend the concept
of flexible points to diffeomorphisms in higher dimension with stable index two periodic
point and see that the perturbation technique proved in the two-dimensional setting is
valid also in higher-dimensional situations. Second, we show that flexible points are quite
abundant in some higher-dimensional partially hyperbolic dynamical systems.

Let us now state our main results.

1.1. Flexible points of surface diffeomorphisms. First, we briefly review the notion of
linear cocycles. Let X be a topological space, f : X→ X be a homeomorphism of X and
E be a Riemannian vector bundle over X . A linear cocycle on E is a bundle isomorphism
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A : E→ E which is compatible with f . In this paper we are mainly interested in the
situation where f is a diffeomorphism of some manifold, X is a periodic orbit of such
dynamical systems and A is the restriction of the differential map acting on the restriction
of the tangent bundle over the orbit. By taking coordinates, such a system can be identified
with the situation where X = Z/nZ (n is the period of the orbit), f (x) := x + 1 and A is
a sequence of regular matrices. We call such system a linear cocycle over a periodic orbit
of period n.

Let A, B be linear cocycles on E over (X, f ). We put

dist(A, B) := sup ‖A(x)− B(x)‖

and call it the distance between A and B (where x ranges over all unit vectors in all fibers).
This defines a topology on the space of linear cocycles on E . Let At denote a continuous
one-parameter family of cocycles, that is, a continuous map from some interval to the
space of cocycles. We put

diam(At ) := sup
s<u

dist(As,Au)

and call it the diameter of At .
Let us now give a precise definition of flexible cocycles.

Definition 1.1. Let A= {Ai }i∈Z/nZ, Ai ∈ GL(2, R), be a linear cocycle over a periodic
orbit of period n > 0. Fix ε > 0. We say that A is ε-flexible if there is a continuous one-
parameter family of linear cocycles At = {Ai,t }i∈Z/nZ defined over t ∈ [−1, 1] such that
the following conditions hold:
• diam(At ) < ε;
• Ai,0 = Ai , for every i ∈ {0, . . . , n − 1};
• A−1 is a homothety;
• for every t ∈ (−1, 1), the product At := (An−1,t ) · · · (A0,t ) has two distinct positive

contracting eigenvalues;
• if we denote by λt the smallest eigenvalue of the product At , then max−1≤t≤1 λt < 1;
• A1 has a real positive eigenvalue equal to 1.

Definition 1.2. A periodic orbit of a diffeomorphism on a smooth two-dimensional
manifold is called ε-flexible if the linear cocycle of the derivatives along its orbit is ε-
flexible.

The interesting feature of ε-flexible points is the great freedom for changing the position
of their strong stable manifold by an ε-perturbation supported in an arbitrarily small
neighborhood of the orbit. More precisely, we can choose the fundamental domain of
this strong stable manifold to be any prescribed curve subject to the unique limitation that
it should remain in the same isotopy class in the orbit space.

Let us explain that. Let N be a compact neighborhood of some attracting periodic orbit
O(x) of some diffeomorphism F on a two-dimensional manifold. Suppose that:
• the derivative of F on O(x) in the period has two distinct contracting eigenvalues;
• N is F-invariant and is contained in the basin of O(x).

Let us consider the punctured neighborhood N \O(x) and take the quotient space by
the orbit equivalence (that is, x ∼ y if and only if Fm(x)= Fn(y) for some m, n ≥ 0).
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We denote it by T∞F and call it the orbit space. Then T∞F is naturally identified with
the two-dimensional torus T2, This torus is naturally endowed with a homotopy class of
a parallel, which consists of the class of an essential circle around O(x). Moreover, the
strong stable manifold W ss(x)\{x} projects to the quotient space as two parallel circles,
cutting the parallel with intersection number one. We call these two simple closed curves
in T∞F meridians.

Consider another diffeomorphism G which is a perturbation of F whose support
is contained in a small neighborhood of O(x) and preserving the orbit of O(x). Let
3G :=

⋂
i≥0 Gi (N ) denote the locally maximal invariant set in N . Consider the set

N \3G and take the quotient by the orbit equivalence under G. We denote the orbit space
by T∞G . We identify T∞F and T∞G as follows. First, note that the restriction of G|N \3G

can be conjugated to F |N \O(x) by a unique homeomorphism h which coincides with the
identity map outside the support of the perturbation and is C1 on N \O(x). Let us call this
homeomorphism standard conjugacy. It gives us an identification between T∞F and T∞G

Under this identification, the freedom of flexible points mentioned above can be
formulated as follows.

THEOREM 1.1. Let f be a C1-diffeomorphism of a surface and D be an attracting
periodic disc of period π , that is, D, f (D), . . . , f π−1(D) are pairwise disjoint and
f π (D) is contained in the interior of D. Assume that D is contained in the stable manifold
of an ε-flexible periodic point p contained in D. Let γ = γ1 ∪ γ2 ⊂ T∞f be the two simple
closed curves which W ss(p) projects to.

Then, for any pair of C1-curves σ = σ1 ∪ σ2 embedded in T∞f isotopic to γ1 ∪ γ2, there
is an ε-perturbation g, supported in an arbitrarily small neighborhood of p (which is also
sufficiently small so that we can define the standard conjugacy) such that g satisfies the
following conditions:
• p is a periodic attracting point having an eigenvalue λ1 ∈ ]0, 1[ and a eigenvalue

λ2 = 1;
• D is contained in the basin of p;
• W ss(p, g) projects to (σ1 ∪ σ2)⊂ T∞g ' T∞f .

The orbit of p for g is a non-hyperbolic attracting point, having an eigenvalue equal to
one. By another, arbitrarily small, perturbation one can change the index of p so that the
strong stable manifold becomes the new stable manifold. Therefore we have the following
corollary.

COROLLARY 1.1. Under the hypotheses of Theorem 1.1, there is an ε-perturbation h of
f , supported in an arbitrarily small neighborhood of p, such that:
• p is a periodic saddle point having two real eigenvalues 0< λ1 < 1< λ2;
• W s(p)\O(p) is disjoint from the maximal invariant set 3H ;
• W s(p, h) projects to (σ1 ∪ σ2)⊂ T∞h ' T∞f .

The proof of Theorem 1.1 is given in §§2–4.

1.2. Stable index two flexible points. The existence of flexible points is certainly
unusual for surface diffeomorphisms. However, it appears very naturally in higher-
dimensional partially hyperbolic systems with two-dimensional stable directions. To
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explain that, first we extend the definition of flexible points to a higher-dimensional setting
and see the direct consequence of Theorem 1.1 about them. Let f be a diffeomorphism
of a smooth manifold, and p be a (not necessarily hyperbolic) periodic point of it. Then
the stable index of p is the number of eigenvalues of the differential of the first return map
with absolute value strictly less than one, counted with multiplicity.

Definition 1.3. Let f be a diffeomorphism of a smooth closed manifold with a metric and
ε > 0. A stable index two hyperbolic period point x is called ε-flexible if the restriction of
D f to the stable direction over O(x) is an ε-flexible cocycle.

Remark 1.1. The notion of flexibility is a robust property in the following sense: if q f is
an ε-flexible periodic orbit of f then there is a C1-neighborhood U of f such that every
g ∈ U has a well-defined continuation qg of q f and qg is 2ε-flexible.

Let x be a stable index two periodic point of period n, with two distinct real positive
contracting eigenvalues. For flexible points in this setting, we can also define the notion
of orbit space, parallel, and meridians as follows. Consider the neighborhood N in
the local stable manifold of x which is strictly positively invariant. The orbit space of
N \O(x) under f is again diffeomorphic to the torus T2 and we denote it by T∞f . As is
in the previous case, this torus is naturally endowed with a parallel, and the strong stable
manifold of x induces by projection on T∞f two disjoint simple curved called meridians.

We consider the perturbation g of f whose support is contained in a small neighborhood
of O(x) and which preserves the forward invariant property of N . Then the space of g-
orbits in D\(3g) (where 3g is the locally maximal invariant set of g in N ), denoted by
T∞g , is naturally identified with T∞f via the standard conjugacy.

The following remark is straightforward.

Remark 1.2. Any ε-perturbation of the restriction of f to the forward orbit of N , in
a sufficiently small neighborhood of O(x), can be realized as an ε-perturbation of f .
Furthermore, if the perturbation preserves the periodic orbit O(x) then one may require
that the eigenvalues of x transverse to N are kept unchanged.

Therefore, as a direct corollary of Theorem 1.1 we obtain the following result.

COROLLARY 1.2. Let f be a diffeomorphism of a compact manifold, ε > 0, and x be
an ε-flexible stable index two hyperbolic periodic point. Fix a strictly forward invariant
neighborhood N of O(x) contained in the local stable manifold of x. Let T∞f , endowed
with the meridians γ1, γ2, denote the orbit space of the punctured stable manifold of x.

Let σ1 and σ2 be two disjoint simple curves isotopic to the meridians. Then there is an
ε-perturbation g of f , supported in an arbitrarily small neighborhood of O(x), preserving
the forward invariance of N and the orbit O(x) such that the following statements hold.
• The eigenvalues in the directions transversal to N at x of g are the same as for f .
• O(x) is a stable index one saddle point: there is a contracting eigenvalue tangent

to N .
• The punctured stable manifold of x is disjoint from the maximal invariant in N , and

the projection of W s(x)\{x} on T∞f is precisely the two curves σ1 ∪ σ2.
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As a conclusion, for flexible points in this setting, we also have great freedom to choose
the position of strong stable manifolds. However, in higher-dimensional settings, we have
a priori little control over the effect of the perturbation to the local unstable manifold of x ,
and therefore over the position of the local strong unstable manifold of g.

More precisely, if the angle between the unstable bundle over O(x) and the orthogonal
complement to the stable bundle is very small all along O(x), then every ε perturbation
of f in the local stable manifold of O(x), supported in a very small neighborhood of
O(x) and preserving O(x), may be realized as an ε-perturbation g of f , supported in a
small neighborhood of O(x), and which coincides with f on the local unstable manifold
of O(x). On the other hand, if this angle is large, that is, if the angle between the stable
and unstable bundles is very small at some point of O(x), then perturbing f in the stable
manifold without perturbing the unstable one can be very costly.

This can be a serious problem if one applies this technique to the problem of
(non-)existence of homoclinic intersections. However, if we have a priori estimates on
the angles mentioned above, the perturbation technique suggested in Corollary 1.2 works
well. Note that such a priori estimates are available in the case where the system admits
partially hyperbolic splitting, or more generally, dominated splitting.

1.3. Abundance of flexible points. At first glance, the definition of flexible points may
appear strange, as it claims the existence of perturbations to two completely different
situations. However, it is quite common in the context of non-uniformly hyperbolic
situations, as we will see below.

First let us give a precise statement in the form of a C1-generic property.

THEOREM 1.2. There is a residual subset G ⊂ Diff1(M) such that for every f ∈ G, for
every ε > 0, and for any chain recurrence class C containing
• a periodic point p of stable index two with complex (non-real) contracting eigenvalue
• and a periodic point q of stable index one,
there are ε-periodic points {pn} homoclinically related to p whose orbits γn converge to
the chain recurrence class C in the Hausdorff topology.

We observe there is a large class of diffeomorphisms satisfying the hypotheses of
Theorem 1.2. To explain that, let us briefly review the notion of robust heterodimensional
cycles. We say that two hyperbolic basic sets K and L of a diffeomorphism f form a
C1-robust heterodimensional cycle if:
• the stable-indices of K and L are different;
• for any g sufficiently C1-close to f , the continuations Kg and Lg of K and L satisfy

W u(Kg) ∩W s(Lg) 6= ∅ and W s(Kg) ∩W u(Lg) 6= ∅.

Robust heterodimensional cycles are very important mechanisms for the study of robustly
non-hyperbolic behaviors of diffeomorphisms, as they are the mechanisms that account
for the birth of robust non-hyperbolicity in the large class of C1 non-hyperbolic
diffeomorphisms. Indeed, up to now, all the known examples of robustly non-hyperbolic
behaviors have been ascribed to robust heterodimensional cycles, and it is conjectured
by the first author in [B] that every robustly non-hyperbolic diffeomorphism can be
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approximated by one that has a robust heterodimensional cycle. Furthermore, it is
worth mentioning that the creation of robust heterodimensional cycles is a quite general
phenomenon from the bifurcation of heterodimensional cycles between saddles of different
indices (see [BD2, BDK]).

Let us now consider diffeomorphisms satisfying the following conditions.
• They have a robust heterodimensional cycle between two hyperbolic basic sets K

and L .
• K has stable index one and L has stable index two.
• L has a periodic point with complex eigenvalues in the stable direction.
The set of such diffeomorphisms forms, by definition, an open set in Diff1(M) which is
non-empty if dim M ≥ 3. Then, every diffeomorphism contained in the intersection of this
open set and the residual set in Theorem 1.2 serves as an example (for the chain recurrence
set take the one that contains K and L).

To observe the largeness of the class of diffeomorphisms which are within the
range of hypotheses of Theorem 1.2, let us briefly discuss the relationship between the
hypotheses of Theorem 1.2 and the notion of homoclinic tangencies. The hypotheses
of Theorem 1.2 require the existence of a periodic point which has complex eigenvalues
in the stable direction. This implies the indecomposability in the stable direction. The
other condition guarantees that the stable direction is not uniformly contracting. By the
work of Gourmelon [G2] and Wen [W], this hypothesis is equivalent to saying that this
diffeomorphism can be approximated by the one with homoclinic tangency of stable index
one. Remember that the results in [BD2] (see Theorem 1.5 for example) say that the class
of diffeomorphisms satisfying such conditions is quite large.

The proof of Theorem 1.2 is a consequence of Theorem 1.3 below, a ‘local’ result,
combined with the generic property that C1-generically a homoclinic class coincides
with the chain recurrence class which contains it (see [BC]) and that the coexistence of
the periodic point of different indices implies the existence of robust heterodimensional
cycles [BD2]. To state Theorem 1.3, we require some definitions. Given a periodic point p
and a neighborhood U of p, the relative homoclinic class H(p,U ) of p in U is the closure
of the set of transverse homoclinic points whose whole orbit is contained in U . A periodic
point q is homoclinically related with p in U if there are points of transverse intersection
between W s(p) and W u(q), W s(q) and W u(p), such that their entire orbits are contained
in U .

THEOREM 1.3. Let f be a diffeomorphism of a compact smooth manifold. Suppose that
f admits a hyperbolic periodic point p and an open neighborhood U of the orbit O(p)
with the following properties.
• p has stable index two.
• There is periodic point p1 homoclinically related with p in U, such that the p1 has

a complex (non-real) contracting eigenvalue.
• There is a periodic point q with O(q)⊂U with stable index one.
• There are hyperbolic transitive basic sets K ⊂ H(p,U ) and L ⊂ H(q,U )

containing p and q, respectively, such that K and L form a C1-robust
heterodimensional cycle in U.
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Then, for any ε > 0, there is an arbitrarily small C1-perturbation g of f having an ε-
flexible point homoclinically related with pg in U and whose orbit is ε-dense in the relative
homoclinic class H(pg,U ).

We give the proof of Theorem 1.3 (thus also of Theorem 1.2) in §5.

1.4. Possible dynamical consequences and generalizations. The notions of flexible
points and their abundance are interesting in themselves. At the same time, we think
that they would be a powerful tool for the study of C1-generic systems in many ways. Let
us explain in more detail.

The first possible application is to the investigation of tame/wild properties in Diff1(M)
(see [B]). In a future work, the authors will use them as a mechanism for producing new
examples of wild diffeomorphisms, that is, C1-generic diffeomorphisms with infinitely
many chain recurrence classes. The idea is very simple: if p is a flexible point of stable
index two, then one can transform p into a stable index one periodic point whose stable
manifold is an arbitrarily chosen curve in the old two-dimensional stable manifold. If we
can choose this curve to be disjoint from the initial chain recurrence class, this implies that
the point has been ejected from the class. Repeating this procedure, we obtain infinitely
many saddles with trivial homoclinic classes in a neighborhood of any classes satisfying
the hypotheses of Theorem 1.2.

However, this strategy is not complete: there are C1-robustly transitive diffeomorphisms
which satisfy the hypotheses of Theorem 1.2 (see, for example, [BV]). They have plenty
of flexible points but cannot be expelled from the class! The reason is that, since the class
is the whole manifold, there is no space to escape from the original classes. Thus, to carry
out this strategy completely, we need to investigate the topology of the chain recurrence
class in the center stable directions, which will be one of the central topics in [BS].

We suggest another possible application. The control of the position of the stable
manifold may open the way to study the difference between C1-generic diffeomorphisms
and C1-open diffeomorphisms. For example, it is known that for C1-generic robustly
transitive diffeomorphisms, the homoclinic class of every hyperbolic periodic point
coincides with the whole manifold (this is a consequence of Hayashi’s connecting lemma).
One interesting question is whether this is an open property. A priori, there is no reason for
it to be so. However, obtaining a rigorous conclusion is no simple matter. For that, what
we need to understand is the position of homoclinic intersections. In the situation where
we have abundance of flexible points, obtaining a better understanding of the position
of homoclinic intersections sounds quite feasible, since the perturbation technique of
Theorem 1.1 provides us with considerable freedom to control the (un)stable manifolds.

In this paper, we define the notion of flexible points of stable index two. We can define
similar notions for larger stable index cases, for example, as points whose derivative in the
stable direction can be perturbed both to a contracting homothety and to a saddle having at
least one eigenvalue equal to unity. It would be interesting to establish similar perturbation
techniques to control the position of stable manifolds for them, and to study possible
topology of flags of strong stable manifolds in the orbit spaces. However, describing a
deformation of a linear cocycle in higher dimensions is much more difficult and technical
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than in dimension two. Therefore, we think it is better to restrict our attention to the
two-dimensional situation, deferring the generalization to higher-dimensional cases to
future work.

2. Flexibility and the control of the stable manifold
The purpose of §§2–4 is the proof of Theorem 1.1.

Let us give a rough idea of the proof. First, we see that the flexibility property allows
us to perform an ε-perturbation of the flexible linear cocycle, among the cocycle of
diffeomorphisms, which inserts a region where the dynamic in the period is a homothety.
Here, the important thing is that the number of fundamental domains in the homothethic
region may be chosen arbitrarily large, keeping the smallness of the perturbation. In some
sense, we require the orbit to spend an arbitrarily large time in the homothetic region. For
this reason we call them retardable cocycles.

Iterating a homothetic dynamic does not introduce any distortion: it is therefore easy to
control the effect of perturbations performed inside the homothetic region. The fact that
we may use an arbitrarily large number of fundamental domains gives us the time to slowly
deform the strong unstable manifold to the a priori chosen curve.

2.1. Retardable cocycles. To explain what is meant by ‘inserting a lot of homothetic
regions’ we first define the notion of retardable cocycles. That requires the notion of
diffeomorphism cocycles over a finite orbit. We consider cocycles of diffeomorphisms
on R2

× Z/nZ, for which {0i } (where we put 0i := (0, i)) is a periodic sink attracting
all the points. More precisely, a diffeomorphism cocycle is a set of diffeomorphisms
F = { fi | R2

× {i} → R2
× {i + 1}}. We denote the map induced on the total space

R2
× Z/nZ from the cocycle F = { fi } also by F .
In this paper, we assume that every diffeomorphism cocycle fixes the origin, that is,

we always assume that fi (0i )= 0i+1 for every i . A diffeomorphism cocycle is called
contracting if the zero section is an attracting periodic orbit and every point is contained
in its basin. Given a linear cocycle A= {Ai }, we regard it as a diffeomorphism cocycle
in the obvious way, that is, we consider Ai to be the diffeomorphism from R2

× {i} to
R2
× {i + 1}. For a diffeomorphism cocycle F = { fi }, we denote its first return map on

R2
× {0} by F (dropping the subscript in Z/nZ and capitalizing the symbol.) Note that

a linear cocycle A= {Ai } is contracting if and only if all eigenvalues of A have absolute
value strictly less than one.

In the following, we denote the two-dimensional disc of radius r centered at 0i by
Bi (r)⊂ R2

× {i}, and, for any 0< r < s, we denote by 0r,s the round closed annulus in
R2
× {0} bounded by circles of radii r and s, that is, 0r,s := B0(s)\B0(r).

Definition. A contracting cocycle of diffeomorphisms F = { fi } over R2
× Z/nZ is called

a retardable cocycle if there exist R1, R2, R3 satisfying R1 > R2 > R3 > 0 such that:
• fi |Bi (R1)\Bi (R3) = Ai , where Ai is a linear map such that A =

∏n−1
j=0 A j = λId where

0< λ < 1 (in other words, A is a contracting homothety);
• for every x ∈ B0(R2) and i satisfying 0≤ i < n, we have (

∏i−1
j=0 f j )(x) ∈ Bi (R1);

• A(B0(R2))= B0(λR2) contains B0(R3) in its interior—we call 0λR2,R2 the
homothetic region of F .
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The main property of retardable cocycles is that one may insert arbitrarily many
fundamental domains of homothety as follows.

PROPOSITION 2.1. Let F = { fi }i∈Z/nZ be a retardable cocycle. We define new cocycles
Fm = { fi,m | R2

× {i} → R2
× {i + 1}}, (m ≥ 0) as follows:

• for x ∈ R2
× {i} with |x |> R3, fi,m(x) := fi (x);

• for x ∈ R2
× {i} with λm R3 < |x |< R3, fi,m(x) := Ai (x);

• for x ∈ R2
× {i} with |x | ≤ λm R3, fi,m(x) := (Am

◦ fi ◦ A−m)(x).
Then these maps define a C1-diffeomorphism contracting cocycle. We call { fi,m} the
m-retard of { fi }.

The proof of above proposition is obvious, so we omit it.
Roughly speaking, { fi,m} is a cocycle that is obtained by the insertion of m-homothetic

fundamental domains into { fi }. This insertion does not change the main dynamical
properties of the cocycle: the orbits will just spend more time in the newly added
homothetic region. More precisely, on the homothetic region, the relative position of
objects such as the strong stable manifold are kept intact under the iteration. For example,
we have the following properties of retarded cocycles.

Remark 2.1.
• { fi,0} = { fi }.
• Let 0λR,R be the homothetic region of F . Then, Fm |0

λm+1 R,R
is a homothety of rate

of contraction λ. We call 0λm+1 R,R the homothetic region of Fm .
• Suppose that the origin {0i } has strong stable manifold W ss(00, F) of { fi }. Then

W ss(00, Fm) ∩ 0λl+1 R,λl R = Al(W ss(00, F) ∩ 0λR,R)

for l satisfying 0≤ l ≤ m.
• The item above can be stated in a more sophisticated way in the language of orbit

spaces. Note that for every m ≥ 0, Fm = { fi,m} coincides with F = { fi } outside
some compact neighborhood of the origin. Thus the standard conjugacy gives the
natural identification between T∞Fm

and T∞F . Then the above item is paraphrased as
follows: W ss(00, Fm) and W ss(00, F) project to the same curve in T∞Fm

= T∞F .

Furthermore, in some special circumstances, the operation of retarding does not
change the dynamics so much. To explain that, we introduce the notion of distance on
diffeomorphism cocycles. Let { fi }, {gi } be two diffeomorphism cocycles on R2

× Z/nZ.
We say that {gi } is a perturbation of { fi } if the support, that is, the set {x ∈ R2

× {i} |
fi (x) 6= gi (x)}, is relatively compact for all i . Suppose that {gi } is a perturbation of { fi }

and ε > 0. Then {gi } is called an ε-perturbation of { fi } if

max
i∈Z/nZ,x∈R2×{i}

‖D fi (x)− Dgi (x)‖< ε.

For the notion of ε-perturbations of diffeomorphism cocycles, see Remark 2.2 below.
Then, for the retarded cocycle, we have the following lemma.

LEMMA 2.1. Suppose that {Ai } is a linear cocycle and { fi } is a retardable diffeomorphism
cocycle which is also an ε-perturbation of {Ai } such that the support of the perturbation
and the homothetic region is contained in a neighborhood N of {0i }. Then { fi,m} is also a
ε-perturbation of {Ai } whose support is contained in N .
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Remark 2.2. The notion of ε-perturbation gives a sense of the closeness between a cocycle
and its perturbation. A priori, this is different from the usual notion of C1-distance, since
our notion does not take the contribution of C0-distance into consideration. However,
this difference is negligible for the following reason: in the following, we establish
a perturbation technique which provides us an ε-perturbation with very small (indeed,
arbitrarily small) support. This smallness of support combined with the smallness of the ε
implies the smallness of C0-distance, and it implies the C1-smallness of the perturbation
in the usual sense.

By inserting a lot of homothetic regions, combining the fragmentation lemma, we will
see that we can obtain considerable freedom to change the relative positions of the objects.

2.2. Proof of Theorem 1.1. The aim of this section is to prove Theorem 1.1 as a
consequence of the following propositions.

The first proposition gives the relation between flexible and retardable cocycles:
retardable cocycles may be obtained as small perturbations of flexible cocycles.

PROPOSITION 2.2. Let ε > 0 and A= {Ai }i∈Z/nZ, Ai ∈ GL(2, R) be an ε-flexible linear
cocycle over a periodic orbit of period n > 0. Then there is a contracting retardable
diffeomorphism cocycle F = { fi } with the following properties.
• For any m ∈ N, the retarded cocycle Fm = { fm,i } is an ε-perturbation of A.
• There is an isotopy of contracting diffeomorphism cocycle connecting F and A such

that for every moment the periodic orbit {0i } has two different real eigenvalues.
• For every i ∈ Z/nZ, the map fi coincides with Ai outside the unit balls Bi (1)⊂

R2
× {i}.

• The derivative DF at the origin {00} has a contracting eigenvalue and one
eigenvalue equal to unity.

The second proposition explores the effect of perturbations to retardable cocycles on
the position of the strong stable manifold.

PROPOSITION 2.3. Let F = { fi } be a retardable diffeomorphism cocycle over R2
× Z/nZ

whose origin has two distinct real positives eigenvalues. For any pair of disjoint simple
curves σ1, σ2 in T∞F , isotopic to the meridians, and for any ε0 > 0, there is N > 0 such
that, for every m ≥ N, there is an ε0-perturbation G of the m-retarded cocycle Fm such
that the following conditions hold.
• G is a perturbation of Fm with support in the homothetic region.
• G is a contracting cocycle.
• The strong stable manifold of the origin {0i } induces σ1 ∪ σ2 on the orbit space T∞G .

We now give the proof of Theorem 1.1 assuming these two perturbation results.

Proof of Theorem 1.1 using Propositions 2.2 and 2.3. Let f be a C1-diffeomorphism of
some surface and D be an attracting periodic disc, in the basin of an ε-flexible hyperbolic
periodic point p of period n. Remember that the orbit space in the punctured stable
manifold of p is a torus T∞f endowed with a parallel and a meridian (isotopy class of
the projection of the strong stable manifold of p).
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First, we perform a perturbation along the orbit of p so that we can reduce the problem
to the linear cocycle case, which enables us to use Propositions 2.2 and 2.3. In the
following, all the perturbations we give are tacitly assumed to be supported in a sufficiently
small neighborhood of the orbit of p so that the orbits entering in D can always be
identified with a point in T∞f by the standard conjugacy. We fix a pair (σ1, σ2) of disjoint
simple curves isotopic to a meridian. Then, by an arbitrarily C1-small perturbation of
f supported in an arbitrarily small neighborhood of the orbit of p, one can obtain a
diffeomorphism f0 whose expression in local charts around the orbit of p is linear, and
coincides with the differential of f along the orbit of p. Furthermore, we can take f0 such
that it is isotopic to f through cocycles with the same eigenvalues. Hence, the continuous
dependence of the strong stable manifolds implies that the meridians of f0 in T∞f are
isotopic to the meridians of f .

Therefore, by changing f with f0, we can assume that f is linear in a neighborhood
of the orbit of p. Let A= {Ai = D f ( f i (p))} be the corresponding linear cocycle. As
f is linear near the orbit of p and is a contraction, the space of orbits of the punctured
linear cocycle T∞A is canonically identified with T∞f , via the standard conjugacy (see the
Introduction for the definition). Therefore, the circles σ1 and σ2 of T∞f induce circles α1
and α2 of T∞A . Now the problem is translated to the perturbation problem of linear cocycles
A over R2

× Z/nZ, that is, to prove Theorem 1.1, we only need to show that there is an
ε-perturbation of A in an arbitrary small neighborhood of the orbit of {0i } which satisfies
the conclusion of the theorem for the curves for α1 and α2 in T∞A . Let us construct such a
perturbation by using Propositions 2.2 and 2.3.

Proposition 2.2 allows us to perform an ε-perturbation of A in order to get a retardable
cocycle F which coincides with A outside the unit ball. By conjugating this perturbation
by a homothety (which does not change the C1-size of the perturbation), we can assume
that the support of the perturbation given by Proposition 2.2 is contained in an arbitrarily
small neighborhood of the orbit of the origin. Remember that the orbit of the origin for
F and hence for Fm is a non-hyperbolic attracting orbit having exactly one eigenvalue
equal to one, as stated in Theorem 1.1. Thus now the notion of the ‘meridians in T∞F ’
makes sense. Since F is isotopic to A through a contracting cocycle having distinct
real eigenvalues supported in the small ball, we have that the meridians of F in T∞F are
isotopic to the meridians of A. Remark 2.1 tells us that the same holds for the m-retarded
cocycles Fm .

Now we apply Proposition 2.3: for m large enough, Fm admits an arbitrarily C1-small
perturbation supported in the homothetic region, so that the strong stable manifold of the
periodic orbit induces the circles α1 and α2 on the orbit space T∞A = T∞F = T∞Fm

. �

It remains to prove Propositions 2.2 and 2.3. In §3 we prove Proposition 2.3 and in §4
we prove Proposition 2.2.

3. Perturbation of retardable cocycles in the homothetic region
In this section we will prove Proposition 2.3. As in [BCVW, BD1], we combine the
following two simple ideas.
• The fragmentation lemma, which asserts that every diffeomorphism of a closed

manifold isotopic to the identity map can be written as a finite product of
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diffeomorphisms arbitrarily close to the identity map, supported in balls of arbitrarily
small size.

• Conjugating a diffeomorphism supported in a small ball by a contracting homothety
does not change its C1 distance to the identity. Therefore if one considers an ε-
perturbation of a retarded cocycle Fm supported in some fundamental domain in the
homothetic region, and if we put this perturbation in another fundamental domain by
conjugating it by a homothety, it is still an ε-perturbation.

Note that the second item is one of the main ideas of Franks’ lemma (linearization of
local dynamics near the periodic point by arbitrarily small perturbation; see [F]), which is
frequently used in the study of C1-generic dynamical systems.

Proof of Proposition 2.3. Let F = { fi } be a retardable contracting cocycle over
R2
× Z/nZ, and T∞F the space of orbit of the punctured cocycle. Let γ1, γ2 ⊂ T∞F

be the meridian induced by the strong stable manifold of F . Remember that for any
contracting cocycle G which coincides with F outside a small neighborhood of the orbit
of the origin, the punctured orbit space T∞G is identified with T∞F through standard
conjugacy. In particular, according to Remark 2.1, we have that W ss(00, Fm) (remember
that Fm = { fi,m} is m-retarded cocycle of F) projects to the same meridian in T∞F = T∞Fm
for every m ≥ 0.

Let σ1, σ2 ⊂ T∞F be two disjoint simple curves which are isotopic to meridians. We
take a diffeomorphism ψ : T∞F → T∞F which is isotopic to the identity and satisfies
ψ(γi )= σi for i = 1, 2. Fix some ε0 > 0. To prove Proposition 2.3 one has to show that
there is N such that every Fm with m ≥ N admits an ε0-perturbation supported in the
homothetic region, and such that the corresponding meridians are σ1 and σ2.

We want to perturb Fm in the homothetic region to realize the behavior of ψ . For this
purpose let us first consider the relation between the diffeomorphism on the orbit space
and that of the original space. Consider a diffeomorphism ϕ : R2

× {0} → R2
× {0}whose

support is contained in a fundamental domain of the return map Fm : R2
× {0} → R2

× {0}
(remember that Fm denotes the first return map of diffeomorphism cocycle Fm). Then ϕ
projects to a diffeomorphism of T∞Fm

. Let us denote this projection by ϕ̃.
In some special cases, we can also define the lift of the diffeomorphism; more precisely,

we can find a diffeomorphism defined on R2
× {0} which projects to the initial one.

We observe that the round circles centered at the origin in R2
× {0} contained in the

homothetic region of Fm induce a foliation by parallels on T∞Fm
. We call each leaf of

this foliation a round parallel. Then we make the following claim (remember that 0s,t

in the claim denotes the annulus bounded by two circles centered at the origin with radii
0< s < t).

CLAIM 1. Given any η > 0, there is µ > 0 satisfying the following condition. Let ϕ̃ be a
diffeomorphism of T∞Fm

such that:
• the C1-distance between ϕ̃ and the identity map is less than µ;
• there is a round parallel disjoint from the support of ϕ̃.
Then for any m > 0 and any r such that 0λ2r,r is contained in the homothetic region of Fm ,
there exists a diffeomorphism ϕ, supported in a round fundamental domain contained in
0λ2r,r , whose projection on T∞Fm

is ϕ̃ and is an η-perturbation of the identity map (for the
definition of C1-distance on diffeomorphisms of T∞Fm

, see Remark 3.1).
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Proof. The fact that the support of ϕ̃ is disjoint from one round parallel implies that
it admits a lift on some round fundamental domain 0 = 0λr0,r0 ⊂ R2

× {0} of Fm in a
homothetic region. Up to some homothetic conjugacy we can assume that 0 ⊂ 0λ2r,r .

In this situation one can easily see that there exists a (unique) lift ϕ of ϕ̃ supported in 0.
Let us consider the C1-distance between the identity map and ϕ. Note that the C1-distance
of ϕ to the identity does not depend on the choice of the lift in the homothetic region.
Thus we only need consider a specific lift in a 0λ2r,r . We can see that this correspondence
ϕ̃ 7→ ϕ is continuous and sends the identity map on TF to the identity map on R2

× {0}.
Therefore, the choice of small µ guarantees the closeness of the lifted diffeomorphism to
the identity map. �

We perform a perturbation by composing such lifted maps with Fm . Let us see the
effect of such a perturbation. First, for the C1-distance, we have the following: given ϕ
supported in a round fundamental domain contained in the homothetic region of Fm , we
denote by Fm,ϕ := { fi,m,ϕ} the perturbation of the cocycle Fm defined by fi,m,ϕ := fi,m if
i 6= n − 1 and fn−1,m,ϕ := ϕ ◦ fn−1,m . Then there is C (depending only on fn−1,m) such
that for every m, every η > 0 and every ϕ which is an η-perturbation of the identity map,
the cocycle Fm,ϕ is a Cη-perturbation of Fm .

For the behavior of the strong stable manifold, we have the following lemma which
follows immediately from the definition).

LEMMA 3.1. Let 0< r1 < λr2 < r2 < λr3 · · ·< rk and m > 0 be given such that the round
annulus 0λr1,rk is contained in the homothetic region of Fm . Let {ϕi } (i = 1, . . . , k) be
diffeomorphisms on R2

× {0} such that ϕi is supported in 0i = 0λri ,ri , and let 8 be the
diffeomorphism which coincides with ϕi on 0i and equal to the identity outside 0λr1,rk .
Then:
• Fm,8 is a contracting cocycle which coincides with Fm outside the homothetic

region;
• the meridians of Fm,8 are (ϕ̃k)

−1
◦ · · · ◦ (ϕ̃1)

−1(γi ) (i = 1, 2).

Now let us perform the perturbation. Consider η < ε1/C and µ associated to η by
Claim 1. The fragmentation lemma ensures that the diffeomorphismψ (for whichψ(γi )=

σi ) can be written as
ψ = (ϕ̃k)

−1
◦ · · · ◦ (ϕ̃1)

−1

where k > 0 and ϕ̃i are diffeomorphisms of T∞F supported in small discs such that each
ϕi has at least one round parallel disjoint from its support and the C1-distance from the
identity less that µ.

Then we fix m > 3(k + 1) such that there is a round annulus 0λmr,r contained in
the homothetic regions of Fm . Then each ϕ̃i admits a lift ϕi supported in an annulus
0i = 0λri ,ri for some λm−3i+1r ≤ ri ≤ λ

m−3ir such that the sequence {ri } satisfies the
hypotheses of Lemma 3.1. Therefore, Fm,8 is the announced ε1-perturbation where
8 is the diffeomorphism which coincides with ϕi on 0i and is equal to the identity
outside 0i . �

Remark 3.1. In Claim 1, we did not specify the definition of C1-distance put on the space
of C1-diffeomorphisms on T∞F . In fact, as was elucidated in the proof, such a choice is
not important for Claim 1 and the whole proof.
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4. Construction of retardable cocycles
The goal of this section is the proof of Proposition 2.2. Let A= {Ai } be an ε-flexible
contracting linear cocycle, i ∈ Z/nZ. This gives us, by definition, a path {Ai,t } of
contracting linear cocycles. We will use this path to construct a retardable contracting
cocycle isotopic to A with several other properties. Our main tool is Proposition 4.1
below, which realizes paths of contracting linear cocycles as diffeomorphism contracting
cocycles. Note that Proposition 4.1 is independent of the notion of flexibility.

Let
Cn := GL(2, R)Z/nZ

= {A= {Ai } | Ai ∈ GL(2, R), i ∈ Z/nZ}

be the space of linear cocycles of period n. Remember that a cocycle is called contracting
if the total space R2

× Z/nZ is contained in the basin of the orbit of the origin. We denote
by Cn,con ⊂ Cn the (open) subset of contracting cocycles.

PROPOSITION 4.1. Let O ⊂ Cn,con be a relatively compact open subset. Then, for any
ε1 > 0, there is δ > 0 with the following property. Consider any C1-path At : [0,+∞[→
O, t 7→ {Ai,t | i ∈ Z/nZ} which is constant near t = 0. Assume that∥∥∥∥∂Ai,t

∂t

∥∥∥∥≤ δt .
Then the cocycle of maps F = { fi | R2

× {i} → R2
× {i}, i ∈ Z/nZ} defined as

fi (x) := Ai,‖x‖(x)

satisfies the following conditions:
• F is a contracting diffeomorphism cocycle;
• at each point (x, i),

‖D fi (x)− Ai,‖x‖‖< ε1.

Let us first show how to derive Proposition 2.2 from Proposition 4.1.

4.1. Gradual realization of the path: Proof of Proposition 2.2. Let A= {Ai } be an ε-
flexible cocycle and At = {Ai,t | t ∈ [−1, 1]} be the path of cocycles in the definition of
ε-flexibility. Proposition 2.2 claims the existence of a contracting diffeomorphism cocycle
F which coincides with A outside the unit ball and with the homothety on n consecutive
round fundamental domains, and the origin has one eigenvalue equal to unity. Furthermore,
F needs to be isotopic to A through contracting cocycles.

Recall that At has two contracting eigenvalues for t 6= 1, but A1 has an eigenvalue
equal to one. In order to deal with the contracting property we will show the proposition
by replacing A1 by A1−η for some very small η: the corresponding diffeomorphism
cocycle will coincide with A1−η in a neighborhood of the periodic orbit and an extra
small perturbation will change A1−η in A1.

The path At , t ∈ [−1, 1− η] is a compact segment in the open set of contracting linear
cocycle. Therefore we can approximate it by a smooth path with the same properties.
Thus we assume that t 7→At is smooth. Recall that A−1 is a homothety of ratio λ < 1
in the period, A0 =A, and At has two different real eigenvalues for t 6= −1. First, we
reparametrize At in order to apply Proposition 4.1.
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LEMMA 4.1. Let a(t) : [0, 1] → V be a smooth path in an Euclidean space V . Then, for
every δ > 0 there exists a smooth non-decreasing function θ : [0,+∞)→ [0, 1] such that:
• θ(t)≡ 0 near t = 0;
• θ(t)≡ 1 for t > 1;
• for every t ∈ (0,+∞), ∥∥∥∥d(a ◦ θ)

dt
(t)
∥∥∥∥< δ

t
.

Proof. Note that the length of the path a(t) is finite while the integral
∫ 1

0 δt
−1 dt is infinite

for δ > 0. This ensures that we can take the desired reparametrization θ(t). The explicit
construction of θ(t) is left to the reader. �

We are now in a position to embark on the proof of Proposition 2.2.

Proof of Proposition 2.2. Let A= {Ai } be an ε-flexible cocycle. First, we fix ε1 sufficiently
small so that ε1 + diam(At ) < ε holds. We also fix small η > 0. The precise choice of
η is fixed at the end of the proof. By applying Lemma 4.1, we reparametrize the path
At , t ∈ [−1, 1− η], by a function 2 : [0,+∞[→ [−1, 1− η] (note that this 2 does not
need to be monotone) such that we have the following consequences.
• For t > 0, ∥∥∥∥∂Ai,2(t)

∂t

∥∥∥∥≤ δt .
• 2(t)= 0, for t ≥ 1.
• 2(t)= 1− η near t = 0.
• There are 0< t3 < t2 < t1 < t0 < 1 such that:

– 2(t)=−1 for t ∈ [t3, t0];
– for {ti },

t2 < λt1, t3 < K−n t2 < t1 K n < t0,

where n is the period of the cocycle, K :=max{‖A±1
i,t ‖} ≥ 1 and λ is the rate

of the contraction of the homothety A−1.
Then the announced cocycle F = { fi } is defined by fi (x) := Ai,2(‖x‖)(x). Indeed,

Proposition 4.1, together with the first condition on 2, implies the contraction property
of F . The last condition of 2 ensures that this cocycle (in the period) is a homothety
of ratio λ on at least one fundamental domain, implying the retardable property. More
precisely, by choosing R1 = t3, R2 = t1 and R3 = t0, we can check the retardable property.
Note that by the choice of ε1, we can deduce that the diffeomorphism cocycle F itself
is an ε-perturbation of {Ai } and Lemma 2.1 implies that its retarded cocycles are also
ε-perturbation.

Furthermore, the cocycle F is isotopic to A through contracting cocycles which
coincide with A outside the unit ball, and whose periodic orbit has two distinct real positive
eigenvalues: for that it is enough to change2 to2s(t)= s2(t)where s ∈ [0, 1] (note that,
for every s ∈ [0, 1], we can apply Proposition 4.1).

To finish the proof, it remains to perform an extra perturbation in a very small
neighborhood of the periodic point in order to make the weakest eigenvalue of A1−η
equal to unity, preserving the contracting property of the cocycle. We can see that if η
is sufficiently small, then such a perturbation can be attained in the form of isotopy. More
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precisely, first we perform an perturbation so that the local dynamics along the periodic
orbit exhibit an eigenvalue-one direction. Then we add another perturbation so that the
central direction is topologically attracting, keeping the eigenvalue.

Thus the proof is complete. �

4.2. Realizing a path of linear cocycles as a diffeomorphism cocycle: proof of
Proposition 4.1. Let us start the proof of Proposition 4.1. We consider a relatively
compact open subset O ⊂On,con (remember that On,con is the space of contracting linear
cocycles of period n). We start with some auxiliary observations. We put

KO :=max{‖A±1
i ‖ |A= {Ai }i∈Z/nZ ∈O} ≥ 1,

that is, the bound of matrices and their inverse for the cocycles in O.
The relative compactness of O (compactness of the closure) implies that this bound is

finite. The relative compactness of O, together with the fact that each cocycle in O is
contracting, implies that they are uniformly contracting in the following sense.

LEMMA 4.2. Let O be a relatively compact set of contracting linear cocycles. Then there
is kO > 0 such that, for every A= {Ai } ∈O and for every i ∈ Z/nZ,

‖Ai+kO−1 ◦ · · · ◦ Ai‖<
1
2 .

Remark 4.1. In fact, we will prove that the number δ that appears in Proposition 4.1
depends only on ε, KO and kO and is independent of the period n and of the relatively
compact set O.

Note that the relative compactness of O also implies that O does not contain any
singular matrices. This fact, combined with a compactness argument, yields the following
lemma.

LEMMA 4.3. Given a relatively compact set O ⊂ Cn,con, there exists µO > 0 such that, for
every {Ai } ∈O, if {Bi } ∈ M(2, R)Z/nZ (where M(2, R) is a set of square matrices of size
2) satisfies ‖Ai − Bi‖< µO then {Bi } ∈ GL(2, R)Z/nZ.

Remark 4.2. Let K > 1. Then

BK := {{Ai } ∈ GL(2, R)Z/nZ
|max{‖A±1

i ‖} ≤ K }

is a compact set. Thus, we can apply Lemma 4.3 to BK . We denote the corresponding µ
by µK .

The following proposition implies Proposition 4.1.

PROPOSITION 4.2. Given K ≥ 1, ε1 > 0 and an integer k > 0, there exists δ > 0 such
that the following result holds. Let n > 0 and At = {Ai,t }i∈Z/nZ (t ∈ [0, 1]) be a path
satisfying:
• ‖A±1

i,t ‖< K , for every i and t;
• ‖Ai+k−1,t ◦ · · · ◦ Ai,t‖< 1/2 for every i and t;

•

∥∥∥∥∂Ai,t

∂t

∥∥∥∥≤ δt .
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Then the diffeomorphism cocycle F = {Fi }i∈Z/nZ, where fi : R2
× {i} → R2

× {i + 1} is
defined as

fi (x) := Ai,‖x‖(x),

such that:
• F is a contracting diffeomorphisms cocycle;
• for each point (x, i) ∈ R2

× Z/nZ and for every 0≤ j ≤ k − 1,

‖DF j (x, i)− Ai+ j−1,‖x‖ ◦ · · · ◦ Ai,‖x‖‖< ε1

(remember that F is the diffeomorphism of the total space R2
× Z/nZ).

Proof. First, note that the inequality in the second item of the conclusion implies the
contracting property: it implies that ‖DFk

‖< 1/2+ ε1, thus by exchanging ε1 with a
number smaller than 1/2 if necessary, we obtain ‖DFk

‖< 1.
Let us start the proof of this inequality for j = 1. By a direct calculation, for every i ,

D fi (x)= D(Ai,‖x‖)(x, i)= Ai,‖x‖ +

(
d Ai,t

dt

∣∣∣∣
t=‖x‖

)
⊗

(
∂(‖x‖)
∂x

)
(x).

Therefore,

‖D fi (x)− Ai,‖x‖‖ ≤ C‖x‖ ·
∥∥∥∥d Ai,‖x‖

dt

∥∥∥∥,
where C is a constant that does not depend on particular choices of other constants.

Then we fix δ so that δ <min{ε1, µK }/C holds (for the definition of µK , see
Lemma 4.3 and Remark 4.2). This guarantees that∥∥∥∥∂Ai,t

∂t

∥∥∥∥≤ δt <min{ε1, µK }/(Ct).

Therefore,

‖D fi (x)− Ai,‖x‖‖ ≤ ‖x‖ ·
Cδ
‖x‖
= Cδ <min{ε1, µK },

which implies the desired inequality for j = 1. Furthermore, this inequality, together with
Lemma 4.3, shows that D fi : R2

× {i} → R2
× {i + 1} is a local diffeomorphism. This

fact, combined with some topological observations, leads to the conclusion that fi is a
diffeomorphism for every i .

Now we start the proof of the inequality above for general j < k. The difficulty is as
follows. Remember that the differential DF j (x, i) is the product

DF j (x, i)= DF(F j−1(x, i)) ◦ · · · ◦ DF(x, i).

A priori, the distance between F j−1(x, i) and (x, i + j) can be very large. Thus the
corresponding differentiations can be very different. Our strategy is to choose sufficiently
small δ so that the matrix Ai+`,‖F`(x,i)‖ remains almost equal to Ai+`,‖x‖, for 0≤ `≤
k − 1.

We start by bounding ‖F`(x, i)‖, for 0≤ ` < k − 1, as follows:

‖x‖/K k
≤ ‖F`(x, i)‖ ≤ K k

‖x‖,

where K is the uniform bound of the norms ‖A±1
i,t ‖. Then, a simple argument involving

the mean value theorem implies the following claim.
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CLAIM 2. For any ν > 0, there is δ > 0 such that, if ‖∂Ai,t/∂t‖ ≤ δ/t for every t > 0,
then, for every t > 0, i ∈ Z/nZ, ` satisfying 0≤ ` < k and s ∈ [K−k t, K k t],

‖Ai+`,t − Ai+`,s‖< ν.

Also a simple compactness argument, together with the continuity of products of
matrices, shows the following claim.

CLAIM 3. There is ν > 0 such that, for any matrices {Bi,t }i∈Z/nZ,t∈[0,1] with ‖Bi,t −

Ai,t‖< 2ν, any 0≤ j < k and for any i, t, ε1 > 0,

‖Bi+ j−1,t ◦ · · · ◦ Bi,t − Ai+ j−1,t ◦ · · · ◦ Ai,t‖< ε1.

We are now in a position to prove the inequality. We fix ν > 0 given by Claim 3 and δ
given by Claim 2. Then, for every 0≤ ` < k,

‖DF(F`(x, i))− Ai+`,‖x‖‖

≤ ‖DF(F`(x, i))− Ai+`,‖F`(x,i)‖‖ + ‖Ai+`,‖F`(x,i)‖ − Ai+`,‖x‖‖

≤ ν + ν = 2ν.

Now the choice of ν implies the inequality

‖DF j (x, i)− Ai+ j−1,‖x‖ ◦ · · · ◦ Ai,‖x‖‖< ε1.

Thus the proof is complete. �

5. Abundance of flexible periodic points
The purpose of this section is the proof of Theorem 1.3 (and therefore of Theorem 1.2).
The proof contains two steps. The first step is to show that the hypotheses of Theorem 1.3
lead (up to arbitrarily small perturbations) to the coexistence of points with complex stable
eigenvalues and points with a stable eigenvalue arbitrarily close to unity in the same basic
set. The second step is to show that such basic sets contain flexible points.

Throughout this section, M denotes a smooth closed manifold endowed with a
Riemannian metric.

5.1. Periodic points with an arbitrarily weak stable eigenvalue. Let us start the proof
of the first step. We will show the following proposition.

PROPOSITION 5.1. Let f ∈ Diff1(M) and let p be a hyperbolic periodic point of f .
Suppose that U is an open neighborhood of the orbit O(p) with the following properties.
• p has stable index two.
• There is a stable index one periodic point q with O(q)⊂U.
• There are hyperbolic transitive basic sets K ⊂ H(p,U ) and L ⊂ H(q,U )

containing p and q, respectively, so that K and L form a C1-robust
heterodimensional cycle in U (that is, the orbits of K and L are contained in U
and there exist heteroclinic points between W u(K ) and W s(L), W u(L) and W s(K )
whose orbits are contained in U).
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Then, for every ν > 0, there is g ∈ Diff1(M) arbitrarily C1-close to f having a periodic
point p2 with the following properties:
• p2 has stable index two and is homoclinically related with p in U;
• p2 has a real stable eigenvalue λcs(p2) with |λcs

| ∈ [1− ν, 1);
• p2 has the smallest Lyapunov exponent such that

χ ss(p2) ∈ [inf{χ ss(p), χ ss(q)} − ν, sup{χ ss(p), χ ss(q)} + ν];

• the orbit of p2 is ν-dense in the relative homoclinic class H(p,U, f ).

Sketch of proof of Proposition 5.1. The creation of periodic orbits with eigenvalues
arbitrarily close to unity inside a homoclinic class containing a robust heterodimensional
cycle has been already done in [ABCDW]. The proof of Proposition 5.1 can be done in a
similar fashion. So we only show the sketch the proof.

We fix ν > 0. First, note that either K or L is non-trivial, since otherwise they cannot
form a robust heterodimensional cycle. Thus by performing a perturbation by Hayashi’s
connecting lemma if necessary, we can assume that both of them are non-trivial.

Recall that the homoclinic class of p is the closure of transverse homoclinic intersection,
hence is the Hausdorff limit of an increasing sequence of hyperbolic basic sets. The
corresponding fact is also true for relative homoclinic classes. Therefore one can choose a
hyperbolic basic set K̃ ⊂U whose Hausdorff distance from H(p,U, f ) is less than ν/10.
We can also find an arbitrarily small perturbation f0 of f and a periodic point p̃ ∈ K̃ ( f0),
where K̃ ( f0) is the hyperbolic continuation of K̃ such that:
• the Hausdorff distance between the orbit O( p̃) and H(p,U, f0) is less that ν/5;
• |χ ss( p̃, f0)− χ

ss(p, f )|< ν/10;
• the Lyapunov exponent χ ss( p̃, f0) has multiplicity 1, that is, the restriction of the

derivative to the stable plane has two distinct real eigenvalues (see [ABCDW, §2] or
[BCDG, §4]).

If the perturbation f0 is sufficiently close to f , then one still has a C1-robust
heterodimensional cycle associated with K ( f0) and L( f0) (and therefore K̃ ( f0) and
L(g0)). In other words, by replacing f with f0 and ν with ν/2 , one may assume that:
• the orbit of p is ν/2 dense in H(p,U, f );
• p has two real distinct eigenvalues.

In the same way, by changing q to another periodic point in L and performing an
arbitrarily small perturbation of f , one may assume that q has the real weakest unstable
eigenvalue.

Then we perform a second perturbation to construct a heterodimensional cycle between
p and q in U as follows (see [ABCDW, §2]).
• As p and q belong to the same chain recurrence class, an arbitrarily small

perturbation (using, for instance, the connecting lemma in [BC]) allows us to create
a transverse intersection between W u(q) and W s(p);

• As the C1-robust cycle persists under the first perturbation, p and q still belong to the
same class. Hence, an arbitrarily small perturbation, preserving the first intersection,
allows us to create a transverse intersection between W s(q) and W u(p).

Now [ABCDW, §3] (see also [BD2, BDK]) tells us that by performing an arbitrarily
small perturbation to the heterodimensional cycle as above, we can create a periodic
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point p2 with the following properties (we denote the perturbed diffeomorphism by g):
• p2 has a stable index two;
• p2 has a weakest stable eigenvalue λcs with absolute value |λcs

| = 1− ν < 1;
• the orbit of p2 passes arbitrarily close to pg (as a consequence O(p2) will be ν/2

dense in H(p,U, f );
• χ ss(p2) is arbitrarily close to a convex sum of χ ss(p, f ) and χ ss(q, f );
• the unstable manifold of p2 cuts transversely the stable manifold of p and the stable

manifold of p2 cuts transversely the unstable manifold of q .
The last item implies that p2 and p are robustly in the same chain recurrence class (since

we can always find a pseudo-orbit from q to p following the robust heterodimensional
cycle between K and L): a new arbitrarily small perturbation by the connecting lemma
in [BC] creates a transverse intersection between the stable manifold of p with the unstable
manifold of q , which completes the proof. �

5.2. Weak eigenvalues, complex eigenvalues, and flexible points. The aim of the rest of
this section is the proof of the next proposition.

PROPOSITION 5.2. Given C > 1, χ < 0 and ε > 0, there exists ν ∈ (0, 1) with the
following property. Let f ∈ Diff1(M) be a diffeomorphism and 3 be a compact invariant
hyperbolic basic set of f with stable index two such that ‖D f ‖ and ‖D f −1

‖ are bounded
by C from above over3. Suppose that3 contains a hyperbolic periodic point q (of stable
index two) with complex (non-real) stable eigenvalues and a point p having two distinct
real stable eigenvalues such that:
• the smallest Lyapunov exponent of p is less than χ < 0;
• the stable eigenvalue with largest absolute value λcs satisfies |λcs

| ∈ (1− ν, 1).
Then f admits an arbitrarily small perturbation which creates an ε-flexible point xL

containing the continuation of 3, and the ε-neighborhood of O(xL) contains O(p).

This proposition, together with Proposition 5.1 and a standard genericity argument
(involving the generic continuity of the homoclinic classes with respect to the Hausdorff
distance), implies Theorem 1.3.

The main ingredient of the proof is that, in a basic set, given a finite set of periodic
points, one may choose a periodic point which travels around these periodic points with
the predetermined itinerary. By choosing a convenient itinerary, we can find a periodic
point whose differential behaves in a way very close to what we want. Thus, by adding
some perturbation, we can obtain the desired orbit. This technique has been formalized
in [BDP] by the notion of transition.

5.3. Transitions on the periodic points. In this subsection we will extract a consequence
from [BDP]. For the proof of Lemma 5.1, see [BDP, Lemma 1.9] (indeed, Lemma 5.1 is
just a special case of [BDP, Lemma 1.9]).

LEMMA 5.1. Suppose that f ∈ Diff1(M) has a hyperbolic basic set 3 with stable index
two. Let T3= E s

⊕ Eu be the hyperbolic splitting (thus dim E s
= 2). We fix a coordinate

on 3|Es and take the matrix representation of d f . Let x1, x2 ∈3 be two hyperbolic
periodic saddle points of period πi (i = 1, 2), respectively.
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Then, given ε2 > 0, there exist two finite sequences of matrices (T j
i ) ( j = 0, . . . ,

ji − 1, i = 1, 2) in GL(2, R) (where j denotes the superscript, not the power of the matrix)
with the following property. For any L = (l1, l2, l3, l4) ∈ N4 satisfying (l1, l2) 6= (l3, l4),
there exists a periodic point xL ∈3 such that:
• the period of xL is (l1 + l3)π1 + (l2 + l4)π2 + 2( j1 + j2);
• if k = K with 0≤ K < π1l1 or k = l1π1 + l2π2 + j1 + j2 + K with 0≤ K < π1l3,

then D f |Es ( f k(xL)) is ε2-close to D f |Es ( f k(x1));
• if k = l1π1 + j1 + K with 0≤ K < π2l2 or k = (l1 + l3)π1 + l2π2 + 2 j1 + K with

0≤ K < π2l4, then D f |Es is ε2-close to D f |Es ( f K (x2));
• if k = l1π1 + K or k = (l1 + l3)π1 + l2π2 + K with 0≤ K < j1, then

D f |Es ( f k(xL)) is ε2-close to T K
1 ;

• if k = l1π1 + l2π2 + j1 + K or k = (l1 + l3)π1 + (l2 + l4)π2 + 2 j1 + j2 + K with
0≤ K < j2, then D f |Es ( f k(xL)) is ε2-close to T K

2 .
We put Ti :=

∏ ji−1
j=0 T j

i (i = 1, 2) and call them transition matrices.

Remark 5.1. In the above lemma, by adjusting L we can control the position of the orbit
of xL . More precisely, if we take l1 or l3 (respectively, l2 or l4) very large, then xL passes
arbitrarily close to x1 (respectively, x2). See [BDP] for details.

5.4. Rudimentary results from linear algebra. We collect two results from linear
algebra, which will be used in the proof of Proposition 5.2.

First, we prove the following lemma.

LEMMA 5.2. Let T ∈ GL+(2, R) and Q be a contracting homothety (that is, Q = λId
where λ satisfies 0< λ < 1). Then, given ε > 0, there exist h > 0 and a sequence of
matrices (Ji ) (respectively, (L i )) (i = 0, . . . , h − 1) such that:
• each Ji (respectively, L i ) is ε-close to Q;
• the product T (

∏h−1
i=0 Ji ) (respectively, (

∏h−1
i=0 L i )T ) is a contracting homothety.

Proof. We only give the proof of the existence of (Ji ). The proof of (L i ) is similar.
Let T , Q, and ε be given. First we fix δ > 0 such that if X ∈ GL+(2, R) is δ-close

to Id, then Q and X Q are ε-close. We can fix such δ because of the continuity of the
multiplication.

For every T ∈ GL+(2, R), there is a continuous path I (t) in GL+(2, R) such that
I (0)= T and I (1)= Id (since GL+(2, R) is path-connected). Then, because of the
compactness of the path, we can take a sufficiently large integer m > 0 such that, for every
k (0≤ k < m − 1), I ((k + 1)/m)(I (k/m))−1 is δ-close to the identity. We put h = m and
Jk = I ((k + 1)/m) · (I (k/m))−1 Q. Since Q is a homothety,

T
h−1∏
k=0

(Jk) = T
h−1∏
k=0

(I ((k + 1)/h) · (I (k/h))−1 Q)

= T Qh
h−1∏
k=0

I ((k + 1)/h) · (I (k/h))−1

= T Qh
· I (1) · (I (0))−1

= Qh .

This completes the proof. �
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Denote by R(θ) the rotation matrix of angle θ ; more precisely, put

R(θ) :=
(

cos θ −sin θ
sin θ cos θ

)
.

We prove the following lemma.

LEMMA 5.3. Let 1> λ1 > λ2 > 0. Then, for 0< t < 1, the matrix

M(t) := R(−t)
(
λ1 0
0 λ2

)
R(t)

(
λ1 0
0 λ2

)
satisfies the following properties:
• for 0≤ t < π/2, M(t) has two distinct positive contracting eigenvalues;
• for t = π/2, M(t) is a homothetic contraction.

Proof. Both items can be checked by calculating the characteristic polynomial of M(t)
directly. Indeed, it is given by x2

− tr(M(t))x + det(M(t)). Note that det(M(t)) is equal
to (λ1λ2)

2 (independent of t). By a direct calculation, we can see that tr(M(t)) is equal to

(λ2
1 + λ

2
2) cos2 t + 2λ1λ2 sin2 t.

One can check that this value is monotone decreasing on [0, π/2]. Then, by a direct
calculation we can check the desired properties of the path M(t). �

5.5. Proof of Proposition 5.2. To prove Proposition 5.2 we use Lemma 5.3, which
explains the behavior of products of rotation matrices and diagonal matrices. To use the
lemma we need to take convenient bases on tangent spaces of our basic set. First let us see
how to fix such bases.

5.5.1. Diagonalizing coordinates. In the assumption of Proposition 5.2, the basic set
3 contains a periodic point p with distinct real eigenvalues: one eigenvalue is very close
to ±1 but the smallest Lyapunov exponent is bounded away from 0. In particular, the
restriction of the differential D f π (p), where π is the period of p, to the stable plane is
diagonalizable. We want to take the pair of eigenvectors as the basis of stable tangent
directions along the orbit of p. However, such a coordinate change may be large (with
respect to the metric induced from the original Riemannian metric) and the seemingly
small perturbations observed through the diagonalized coordinate can be very large. Thus,
we need to estimate the size of such a coordinate change.

To clarify our argument, we generalize the situation as follows. Let Ai : Vi → Vi+1

(i ∈ Z/πZ) be a sequence of isomorphisms between the sequence of two-dimensional
Euclidean vector spaces {Vi }. Suppose that the product Aπ−1 · · · A0 is diagonalizable.
Thus, on each Vi , there are images of two eigenspaces Ui and Wi of dimension one. We
assume that Ui is the strong contracting direction.

For each Vi , we fix an orthonormal basis 〈e1,i , e2,i 〉 so that Ui ∧Wi and (e1,i ) ∧ (e2,i )

define the same orientation. Then let Bi ∈ SL(2, R) be the matrix representing the
change of basis from the orthonormal one to the one having one unit vector on the
most contracted eigendirection. More precisely, Bi : Vi → Vi is the (unique) matrix in
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SL(2, R) satisfying Bi (e1,i ) ∈Ui , Bi (e2,i ) ∈Wi and ‖Bi (e1,i )‖ = 1 (we take the matrix
representation regarding 〈e1,i , e2,i 〉 as the standard basis). Up to a multiplication by an
orthogonal matrix (deriving from the ambiguity of the choice of initial orthonormal basis),
Bi is well defined. In particular, ‖Bi‖ is well defined.

The value ‖Bi‖ measures the angle between two eigendirections of Vi in the sense that
it is a strictly decreasing function of the angle. The norm ‖Bi‖ is equal to unity when two
eigendirections are orthogonal and diverges to +∞ as the angle tends to zero (the proof is
easy, so we omit it).

We now use the following lemma from linear algebra.

LEMMA 5.4. For every C1 > 1 and χ < 0, there exists α > 0 such that the following
result holds. Let Ai : Vi → Vi+1 (i ∈ Z/πZ) be a sequence of isomorphisms between two-
dimensional Euclidean vector spaces with norms ‖A±i ‖< C1. Suppose that the product
Aπ−1 · · · A0 is diagonalizable and its Lyapunov exponents are such that:
• the smaller one is less than χ ;
• the larger one is greater than χ/2.
Then there is i ∈ Z/πZ on which the matrix of coordinate change Bi (defined as above)
has a norm ‖Bi‖ smaller than α.

We apply Lemma 5.4 to our situation, letting C1 = C , χ as in the hypotheses of
Proposition 5.2, Vi = T f i (p)3|Es and Ai = D f ( f i (x))|Es . It implies that there is a
constant α depending only on C1, χ such that there is at least a point f i (p) of the orbit of
x where ‖Bi‖< α. Thus, by replacing p with f i (p), we can assume that ‖B0‖< α. In
other words, up to a conjugacy by matrices in SL(2, R) whose norm is bounded by α from
above, one may assume that D f π (x) is diagonal. This bounded change of coordinates
induces a bounded change of the notion of perturbations (remember that, for matrices in
SL(2, R), the norm of the matrix and of its inverse are the same).

Thus, up to a multiplication by some constant, we can assume that a δ-perturbation with
respect to this coordinate is also a δ-perturbation to the orthonormal coordinate. So we fix
some coordinate around Tp3|Es explained as above and continue the proof.

Let us prove Lemma 5.4. First, note that a simple compactness argument shows the
following lemma.

LEMMA 5.5. Let C1 > 1. Then, for every κ > 1, there exists τ > 0 such that, for every
A ∈ GL(2, R) satisfying ‖A‖, ‖A−1

‖< C1, if u, v are unit vectors such that the angle
between them is less than τ then 1/κ < ‖Au‖/‖Av‖< κ .

Proof of Lemma 5.4. First, we fix C1 > 0 and χ < 0. Then, apply Lemma 5.5 for this C1,
letting κ = exp(−χ/4) and fix τ . We then fix α sufficiently large so that if B ∈ SL(2, R)
is the matrix representing the change of the basis with ‖B‖> α, then the corresponding
angle is less than τ .

For such choice of α, we show the existence of good i where the corresponding matrix
Bi has norm less than α. Suppose not; that is, every Bi has norm greater than α. This
implies that on each T f i (x)|Es , the image of eigenvectors has angle less than τ . Then
Lemma 5.5 (used inductively) implies that if u and v are eigenvectors in V0, then for
each i we have exp((χ/4)i) < ‖(Ai−1 · · · A0)(v)‖/‖(Ai−1 · · · A0)(u)‖< exp(−(χ/4)i),
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but this contradicts the hypotheses on the Lyapnov exponents of the first return map
An−1 · · · A0. �

5.5.2. Creating the homothety. The next lemma, inspired by [BDP] or [S], provides the
announced homothety which is used to realize the division of perturbations.

LEMMA 5.6. Let f ∈ Diff1(M) and 3 be a non-trivial basic set of stable index two.
Suppose that there exists a hyperbolic periodic point q ∈3 which has a contracting
complex eigenvalue. Then, C1-arbitrarily close to f , there exists g ∈ Diff1(M) which
has a periodic point r whose differential dgper(r) restricted to the stable direction is a
contracting homothety. Furthermore, the support of the perturbation from f to g can be
taken arbitrarily close to an orbit of some periodic point of f in 3.

The proof of Lemma 5.6 is essentially done in [BDP] (see [BDP, Proposition 2.5])
or [S] (see [S, Lemma 3.3]). Thus we only sketch the proof.

Sketch of the proof. The proof is a direct consequence of Lemma 5.2 and a variant of
Lemma 5.1. The idea of Lemma 5.1 is that there are periodic orbits whose differential
restricted to the stable direction is an arbitrarily small perturbation of a product of a
fixed transition matrix T with an arbitrarily large power of the differential of the point
q , which has a complex stable eigenvalue. Large powers of a matrix in GL(2, R) with a
complex eigenvalue admit perturbations so that the product is a homothety. Therefore, 3
contains periodic orbits whose stable differential is, up to an arbitrarily small perturbation,
arbitrarily close to the product of the transition matrix T and an arbitrarily large power
of a homothety. Now Lemma 5.2 allows us to perform a small perturbation along the
orbit to cancel the fixed intermediate differentials. As a result, such a periodic orbit has a
contracting homothety in the stable direction. �

5.5.3. Creating flexible points. We are now ready for the proof of Proposition 5.2.

Proof of Proposition 5.2. Let C > 1 and χ < 0 be given, and let 3 be the hyperbolic
basic of stable index two containing periodic points p and q as in the hypothesis of
Proposition 5.2.

According to Lemma 5.4, we can fix coordinates on TO(p)|Es so that we may assume
that:
• at the periodic point p of period π(p) the first return map has the form of diagonal

matrix

D f π(p)|Es (p)= P :=
(
λ1 0
0 λ2

)
with |λ1| ∈ [1− ν, 1), and the smaller Lyapunov exponent (1/π(p)) log |λ2| is less
than χ .

Furthermore, according to Lemma 5.6, by giving an arbitrarily small perturbation whose
support is away from some neighborhood of O(p) and changing r to q, we can assume
that:
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• at the periodic point q, the first return map is a contracting homothety, that is,

D f π(q)|Es (q)= Q :=
(

r 0
0 r

)
,

where π(q) denotes the period of q and r ∈ (0, 1).
We choose ν so that multiplying D f by the homothety of ratio (1− ν)−2 is an ε/2-

perturbation. Note that the choice of ν can be determined only from the value of C and
χ .

To prove Proposition 5.2, it remains to show that an arbitrarily small perturbation of f
may create an ε-flexible point in 3. We apply Lemma 5.1: there are transition matrices
T1, T2 so that given any L = (l1, l2, l3, l4) with (l1, l2) 6= (l3, l4), we can find a periodic
point xL whose first return map of differential cocycle restricted to the stable direction
admits a small perturbation so that the first return map is equal to

T2 Ql4 T1 P l3 T2 Ql2 T1 P l1 .

Indeed, by fixing ε2 in the statement of Lemma 5.1 (which can be taken arbitrarily small),
we can assume, by performing an ε2-perturbation, that the differential along xL is indeed
given by this matrix. Now, let us choose L so that the point xL can be perturbed to an
ε-flexible point.

5.5.4. First case: Ti ∈ GL+(2, R) and λi > 0. From here the proof bifurcates
depending on the signature of det(Ti ) and λi . First, we consider the case T1, T2 ∈

GL+(2, R) and λ1, λ2 > 0. The case where some of the Ti are in GL−(2, R) or λi < 0
can be treated similarly. We will explain how one can modify the proof for the other cases
after the end of the proof of this case.

Let us continue the proof. First, we apply Lemma 5.2 (letting Q = Q and T1 = T ).
Then we can find a sequence of matrices (L i ) (i = 0, . . . , i1 − 1) such that each L i is
arbitrarily close to the homothety Q and T2(

∏i1−1
i=0 L i )= c1Id. Similarly, we take (Ji )

(i = 0, . . . , i2 − 1) so that each Ji is arbitrarily close to Q and (
∏i2−1

i=0 Ji )T1 = c2Id holds.
We also fix an integer i3 such that the multiplication of the rotation R(π t/2i3) by the matrix
Q is a small perturbation of Q for every t ∈ [−1, 1].

Then let us fix L = (l1, l2, l3, l4) as follows:
• l1 = l3 are sufficiently large integers that O(xL) contains O(γn) in its ε/2-

neighborhood with respect to the Hausdorff distance (see Remark 5.1);
• l2 6= l4 and l2, l4 > i1 + i2 + i3;
•

µL := exp
(

1
π(xL)

· log((c1c2)
2r l2+l4−2(i1+i2)λ

l1+l3
1 )

)
> 1− ν.

We can take such L as follows: first take l2, l4 satisfying the second condition and then
take l1 and l3 sufficiently large that the rest of the conditions are satisfied (remember that
π(xL)= (l1 + l3)π(p)+ (l2 + l4)π(q)+ 2( j1 + j2), thus just by taking large l1, l3 we
can obtain the inequality in the third condition).

First, we perform a preliminary perturbation along xL so that (denoting the perturbed
map also by f ):
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• for k = Kπ(q)+ l1π(p)+ j1 or k = Kπ(q)+ (l1 + l3)π(p)+ l2π(q)+ 2 j1 + j2
(K = 0, . . . , i1 − 1),

π(q)−1∏
i=0

D f ( f k+i (xL))= Lk;

• for k = Kπ(q)+ l1π(p)+ j1 or k = Kπ(q)+ (l1 + l3)π(p)+ l2π(q)+ 2 j1 + j2
(K = i1, . . . , i1 + i2 − 1),

π(q)−1∏
i=0

D f ( f i (x))= Jk .

Now, by using the equalities (
∏

Ji )T1 = c2Id, T2(
∏

L i )= c1Id and the commutativity of
homothetic transformations, we can check that the first return map of the derivative of f
along xL has the form

(c1c2)
2 Ql4−i1−i2 P l3 Ql2−i1−i2 P l1 = (c1c2)

2 Ql2+l4−2(i1+i2)P l1+l3; (†)

in particular, xL has two real contracting eigenvalues (c1c2)
2r l2+l4−2(i1+i2)λ

l1+l3
j , j = 1, 2.

We show that xL is an ε-flexible point by constructing the path of linear cocycles in the
definition of the flexibility. Recall that the path At we need to construct is the one which
joins the cocycle A0 induced by D f on the stable bundle to a cocycle A−1 whose return
map is a homothety, and to a cocycle A1 having an eigenvalue equal to unity.

First we construct the path from A0 to A1. For that we only need to multiply A0 along
the orbit of xL by a homothety of ratio µ−t

L . We put At := µ
−t
L A0. By construction, there

exists a moment t = t0 for which At0 has an eigenvalue equal to unity. This gives a path of
contracting cocycles between the original one and the one with a neutral saddle. Indeed,
our second condition on the choice of L implies that the ratio of this homothety is always
less than (1− ν)−2 (and greater than one). Furthermore, our choice of ν implies that the
multiplication by such a homothety remains an ε-perturbation of A0.

Now let us construct the path At for t ∈ [−1, 0]. For that purpose, we rewrite the
product of the differential as

T2

(i1−1∏
k=0

Lk

)
Ql4−i1−i2

(i2−1∏
k=0

Jk

)
T1 P l3 T2

( i1−1∏
k=0

Lk

)
Ql2−i1−i−2

(i2−1∏
k=0

Jk

)
T1 P l1

= (c1Id) (Qi3)︸ ︷︷ ︸
(∗∗)

Ql4−i1−i2−i3(c2Id)P l1(c1Id) (Qi3)︸ ︷︷ ︸
(∗)

Ql2−i1−i2−i3(c2Id)P l1 .

In this product, we replace each homothetic matrix Q in the second Qi3 (indicated by (∗))
by R(π t/2i3) ◦ Q and each Q in the first one (indicated by (∗∗)) by R(−π t/2i3) ◦ Q.
By the choice of i3, this perturbation can be made very small for every t ∈ [−1, 0]; in
particular, it can be made with size less than ε. The effect of this perturbation on the
product matrix is to replace the whole product (†) with

(c1c2)
2 Ql2+l4−2(i1+i2)R

(
−
π

2
t
)

P l1 R
(
π

2
t
)

P l3 .

Now Lemma 5.3 ensures (remember that l1 = l3) that the product matrix of At has two
different real contracting positive eigenvalues for t 6= −1 and is a homothety for t =−1.

Thus combining these two paths, we obtain the desired path, which completes the
proof. �
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5.5.5. Other cases: matrices in GL−(2, R) or negative eigenvalues. Finally, let us
consider the case where some of the signs of det(Ti ), λi are negative.

First, in the case where λ1 or λ2 is negative, we just need to take l1, l3 to be even
numbers: this replaces the matrix P by P2 everywhere in the proof, and the proof works
identically.

For the case where one and only one of the transitions Ti , say T1, reverses the
orientation, the argument in [BDP] allows us to consider the matrix T̃1 = T1 P i T2 Q j T1

as a new transition substituting T1 (keeping T2 unchanged as the other transition matrix),
and now T̃1 and T2 are both in GL+(2, R).

Let us consider the case where T1 and T2 are both orientation reversing. In this case, we
apply Lemma 5.2 to the matrix

Ti

(
1 0
0 −1

)
,

which provides a sequence of matrices (L i ) (i = 0, . . . , i1 − 1) arbitrarily close to the
homothety Q so that

T2

(i1−1∏
i=0

L i

)
= (c1Id) ◦

(
1 0
0 −1

)
.

Similarly, we take (Ji ) (i = 0, . . . , i2 − 1) arbitrarily close to Q so that(i2−1∏
i=0

Ji

)
T1 = (c2Id) ◦

(
1 0
0 −1

)
.

Then the proof works identically, just noticing that the matrix
( 1 0

0 −1
)

is an involution
which commutes with P and Q.

Remark 5.2. In the proof, we can assume that the differential of the first return map
restricted to the unstable direction is also orientation preserving, by adjusting the number
li appropriately.
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