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Adjoint methods can speed up stellarator optimisation by providing gradient information
more efficiently compared with finite-difference evaluations. Adjoint methods are herein
applied to vacuum magnetic fields, with objective functions targeting quasi-symmetry
and a rotational transform value on a surface. To measure quasi-symmetry, a novel way of
evaluating approximate flux coordinates on a single flux surface without the assumption
of a neighbourhood of flux surfaces is proposed. The shape gradients obtained from
the adjoint formalism are evaluated numerically and verified against finite-difference
evaluations.
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1. Introduction

The stellarator concept (Spitzer 1958) offers a path to a steady-state and disruption-free
fusion reactor with low recirculating power, but its complex three-dimensional geometry
must be carefully designed to guarantee good plasma properties. In particular, the
stellarator does not generally guarantee confinement of particles on collisionless
trajectories due to its lack of continuous symmetry, leading to large neoclassical transport
(Helander 2014). However, the use of numerical optimisation techniques has led to
advanced stellarator designs with good confinement properties, culminating in the design
and construction of the HSX (Anderson et al. 1995) and W7-X (Beidler et al. 1990)
stellarators.

Although gradient-based optimisation algorithms are generally more efficient than
gradient-free algorithms, because of the large number of parameters (e.g. to represent the
plasma boundary) they can be prohibitively expensive computationally if the gradients are
evaluated via finite differences. A more efficient way of obtaining gradient information
is provided by adjoint methods, which were recently introduced in the stellarator
optimisation field and have already found widespread application (Landreman & Paul
2018; Paul et al. 2018; Antonsen, Paul & Landreman 2019; Paul et al. 2019, 2020; Giuliani
et al. 2020; Paul 2020; Geraldini, Landreman & Paul 2021; Paul, Landreman & Antonsen
2021).

Previous work (Antonsen et al. 2019; Paul et al. 2020, 2021) applied adjoint methods
to ideal magnetohydrostatic (MHS) equilibria, building in the assumption of integrability,
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i.e. the existence of a set of nested flux surfaces. However, three-dimensional magnetic
fields are generally not integrable due to the lack of continuous symmetry. Moreover,
singularities arise at rational surfaces for linearised ideal MHS equilibria, making the
computation of derivatives challenging (Paul et al. 2021). To overcome these challenges,
different equilibrium models can be considered, such as vacuum or force-free fields. We
herein apply adjoint methods to vacuum magnetic fields, relinquishing the assumption of
global integrability, and avoiding the singular behaviour of MHS equilibria. Modelling
the plasma magnetic field as a vacuum field is justified in the limit of vanishing plasma
current and β, the ratio of thermal pressure to magnetic pressure. Vacuum fields are thus
broadly relevant for stellarator configurations, which tend to operate at low β and low
plasma current, as non-axisymmetric shaping of the coils is used to generate rotational
transform. Moreover, optimised vacuum solutions can serve as useful starting points for
the optimisation of finite-pressure equilibria (Boozer 2019).

We consider two objective functions, one targeting a rotational transform value on
the boundary and another targeting quasi-symmetry on the boundary. As a subset of
the larger class of omnigenous fields (Hall & McNamara 1975), for which particles are
confined on collisionless trajectories, quasi-symmetric fields (Nührenberg & Zille 1988)
have attracted strong interest, notably leading to the designs of the HSX (Anderson et al.
1995) and NCSX (Zarnstorff et al. 2001) stellarators. The existence of a continuous
set of nested flux surfaces is a necessary condition for quasi-symmetry (Rodríguez,
Helander & Bhattacharjee 2020). In particular, quasi-symmetry is typically formulated
in flux coordinates (Helander 2014; Burby, Kallinikos & MacKay 2020; Rodríguez et al.
2020), the construction of which is, however, not generally possible for three-dimensional
magnetic fields. We propose a method of constructing approximate flux coordinates on an
isolated flux surface, on which quasi-symmetry can then be defined and optimised for. The
existence of at least one isolated flux surface will be guaranteed, by imposing the boundary
condition that the magnetic field be tangential on a prescribed boundary. Note that we do
not consider whether this boundary condition can actually be realised with a set of coils,
a task pursued by codes like FOCUS (Zhu et al. 2018).

With the exception of Landreman & Paul (2021), previous optimisation studies targeted
quasi-helical symmetry (Nührenberg & Zille 1988; Ku & Boozer 2011; Bader et al.
2019) or quasi-axisymmetry (Drevlak et al. 2013; Henneberg et al. 2019; Henneberg,
Drevlak & Helander 2020; Landreman, Medasani & Zhu 2021) by minimising the
symmetry-breaking components of the magnetic field strength in Boozer coordinates
(typically the L2-norm), often for vacuum magnetic fields. The aforementioned studies
either relied on derivative-free optimisation algorithms (Drevlak et al. 2013; Bader et al.
2019; Henneberg et al. 2019, 2020) or computed derivatives using finite differences
(Landreman & Paul 2021; Landreman et al. 2021). The most widely used magnetic field
solver, whether for vacuum fields or plasmas with finite pressure, is the VMEC code
(Hirshman, van RIJ & Merkel 1986), which notably assumes the existence of nested flux
surfaces. We compute the vacuum magnetic field through single-volume SPEC (Hudson
et al. 2012) calculations, making no assumptions on integrability. Furthermore, in contrast
to most previous studies, we use a formulation of quasi-symmetry that does not rely on a
Boozer coordinate transformation, although it still enables the specification of a desired
helicity of the magnetic field strength. A comparison of various quasi-symmetry targets
can be found in Rodriguez, Paul & Bhattacharjee (2021).

Previous studies have sought to optimise for quasi-symmetry either on a single flux
surface (e.g. Henneberg et al. 2020) or on multiple flux surfaces (e.g. Landreman &
Paul 2021) with the aim of approximating quasi-symmetry in a finite volume. We herein
consider quasi-symmetry on a single flux surface only. Note that, away from a surface with
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exact quasi-symmetry, the deviation from quasi-symmetry will generally increase linearly
in the flux difference (Sengupta et al. 2021).

This paper is structured as follows. We begin with a brief introduction to adjoint
methods in § 2. A method of constructing approximate flux coordinates on a single flux
surface is introduced in § 3. The derived adjoint equations for vacuum fields are presented
in § 4, first for a simpler objective function targeting a given rotational transform value on
the boundary in § 4.1, then for one targeting quasi-symmetry on the boundary with a given
helicity in § 4.2. The resulting shape gradients are evaluated numerically and benchmarked
against finite-difference calculations.

2. Basics of adjoint methods

This section aims to briefly introduce adjoint methods, without delving deeply in
the mathematical formalism. More details can be found in, for example, Delfour &
Zolésio (2011) and Paul et al. (2020). Note that here we exclusively consider volumes
V with closed, smooth, connected and orientable boundaries S = ∂V , such that there
is a one-to-one correspondence between V and S , a proof of which can be found in
McGrath (2016). For the specific case of closed S , it is therefore equivalent to denote
shape functionals as depending either on the volume, e.g. J(V), or on the surface,
e.g. J(S). We choose the latter approach for greater clarity to the reader, as the boundary
is the object that will ultimately be optimised over. However, note that the mathematical
literature (Delfour & Zolésio 2011) would emphasise the dependence on volumes instead.

We are interested in obtaining derivative information for a shape functional J(S) =
f (S, u(S)), called hereafter the objective function. This functional depends on the closed
surface S explicitly and also implicitly through the solution u(S) to a partial differential
equation (PDE) P(S, u(S)) = 0 on S . Here, we consider u to be a scalar function on the
boundary S , with a sufficient number of continuous derivatives for the operator P under
consideration. The differential operator P can be linear or nonlinear, and is assumed to
map back to a space of scalar functions on the boundary.

Consider a displacement of the surface S in the direction δx with magnitude ε, resulting
in a perturbed surface Sε = {x0 + εδx(x0) : x0 ∈ S}. The shape derivative of an arbitrary
function g(S) in the direction δx is now defined as

δg(S)[δx] = lim
ε→0

g(Sε)− g(S)
ε

. (2.1)

If g(S) depends only on the geometrical shape of the surface, the shape derivative
δg(S)[δx] will be a function of only the normal component δx · n̂ of the displacement,
as any tangential component of δx leaves the shape of S unchanged to first order. Here, n̂
is a normal vector on S .

Obtaining the shape derivative of the objective function is non-trivial due to the implicit
dependence on S through u(S). Let us consider instead the Lagrangian

L(S, u, q) = f (S, u)+
∫
S

dS q P(S, u), (2.2)

with the Lagrange multiplier q. Note that S , u and q are independent variables in
the above definition. When u = u(S) such that the PDE constraint P(S, u(S)) = 0 is
satisfied, the Lagrangian is equal to the objective function for any choice of q, i.e.
L(S, u(S), q) = f (S, u(S)) = J(S). It then follows from (2.1) that δL(S, u(S), q)[δx] =
δJ(S)[δx], i.e. we can obtain the objective function’s shape derivative by computing that
of the Lagrangian. The adjoint method now makes use of the freedom in q to cancel
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the contribution δu(S)[δx] contained in δL(S, u(S), q)[δx], i.e. q is chosen such that the
Lagrangian is stationary with respect to u(S). This leads to an adjoint PDE for q, the
solution of which we denote by q(S).

Due to the Hadamard–Zolésio structure theorem (Delfour & Zolésio 2011), the shape
derivative of our objective function can ultimately be expressed as

δJ(S)[δx] = δL(S, u(S), q(S))[δx] =
∫
S

dS (δx · n̂) G(S, u(S), q(S)), (2.3)

where G is called the shape gradient, and can be interpreted as the local sensitivity of the
objective function to perturbations of S .

In practice, the surface S is typically represented by a finite set of parameters
Ω = {Ωi, i = 1, 2, . . .N}, e.g. Fourier coefficients {Rm,n,Zm,n}. The functional J(S) is
approximated by a function J(Ω), and similarly for G, u(S) and q(S). The derivative of
J(Ω) with respect to a parameter Ωi is then approximated as

∂J(Ω)
∂Ωi

=
∫
S

dS
∂x
∂Ωi

· n̂ G(Ω, u(Ω), q(Ω)). (2.4)

When evaluating the parameter derivatives numerically through (2.4), errors are
introduced from the inexact solutions to the original and adjoint PDEs. Indeed, these PDEs
are assumed to be exactly satisfied in the preceding derivation, and also typically when
deriving an expression for the shape gradient G.

The formalism presented above can be generalised to multiple PDE constraints. We can
also consider PDEs satisfied not on S but in the volume enclosed by it, in which case
u would be a scalar function in the volume, the second term on the right-hand side of
(2.2) would be a volume integral and the Hadamard–Zolésio structure theorem (Delfour
& Zolésio 2011) would still guarantee that we can ultimately express the shape derivative
of the objective as the boundary integral (2.3). In § 4, we consider two PDE constraints:
the Laplace equation for the vacuum field and the straight field line equation, respectively
valid in the volume and on the boundary, with two corresponding adjoint variables.

3. Evaluating approximate flux coordinates on an isolated flux surface

The existence of toroidally nested flux surfaces (closed orientable surfaces on which
the magnetic field is everywhere tangent and non-vanishing) is commonly assumed in
theoretical studies of magnetically confined plasmas. In particular, many formulas involve
∇ψ , where the toroidal flux ψ is a global flux surface label. However, three-dimensional
magnetic fields lacking a continuous symmetry are not generally integrable. It is desirable
to generalise ∇ψ to the case of an isolated flux surface, i.e. a flux surface in whose
neighbourhood the field is generally non-integrable.

Consider a toroidal flux surface S with a magnetic field that is nowhere vanishing. On
S , the magnetic field’s normal component vanishes by definition, i.e. B · n̂ = 0 with n̂ the
unit normal vector on S . The field line label α on S is defined through the straight field line
equation B · ∇Γ α = 0. Here, the tangential gradient ∇Γ , defined in Appendix A.1, is the
component of the three-dimensional gradient tangential to the surface (A 1). Uniqueness
of ∇Γ α is guaranteed by fixing the secular component in the poloidal angle θ to be
unity, i.e. α = θ − ιφ + λ(θ, φ), with arbitrary poloidal and toroidal angles θ and φ on
S , the rotational transform ι and the single-valued function λ. We here assume the toroidal
component of the field B · ∇φ is nowhere vanishing, as this allows the construction of
an area-preserving mapping, from a toroidal cut of the boundary onto itself (Meiss 1992).
This mapping can be associated with a rotation number (Greene, Mackay & Stark 1986)
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equivalent to the rotational transform ι, implying that the straight field line equation can
be solved.

In the integrable case, ∇ψ is normal to the flux surfaces, and the magnetic field satisfies
B = ∇ψ × ∇α. We now define the generalisation gψ on S of the toroidal flux gradient
∇ψ , by setting gψ normal to S , and by requiring B = gψ × ∇α to be satisfied on S .
Squaring the latter equality and using gψ = n̂|gψ | yields

gψ = n̂
B

|∇Γ α| , (3.1)

where B = |B| is the magnetic field strength.
The defining expression for gψ (3.1) can be evaluated on any flux surface without

requiring nested flux surfaces in its neighbourhood, and will revert to gψ = ∇ψ when
the field is integrable in the neighbourhood of that flux surface. In practice, one might
couple objective functions relying on (3.1) with a figure of merit targeting integrability,
aiming for a final plasma shape for which the field is integrable, such that gψ = ∇ψ and
the minimised objective function represents the physical quantity of interest.

The generalised toroidal flux gradient (3.1) is evaluated in figure 1(b) for a rotating
ellipse configuration, with the magnetic field computed using the SPEC code and the
straight field line equation solved using a Fourier–Galerkin spectral solver. It agrees
excellently with the toroidal flux gradient evaluated by VMEC, which can be calculated
directly due to the imposed nestedness of flux surfaces, shown in figure 1(a). The relative
difference between the two is below a percentage point in this case, as shown in figure 1(c).
The difference is expected to be small when integrability is satisfied, which indeed seems
to hold here, as attested by the absence of islands and chaotic regions in the SPEC Poincaré
plot shown in figure 1(d). Note that SPEC solves for a vacuum magnetic field, while
VMEC computes an ideal MHS equilibrium with vanishing thermal pressure, and with
a plasma current that is small but finite due to the constraint of integrability.

The generalised toroidal flux gradient gψ can be applied generally in any situation
where local flux coordinates need to be evaluated, e.g. in calculations of perpendicular
transport or magnetohydrodynamic stability. Isolated flux surfaces occur, for example, in
fixed-boundary equilibrium calculations, where the plasma outer boundary is constrained
to be a flux surface as a boundary condition on the magnetic field, or at the interfaces
of multi-region relaxed magnetohydrodynamic (MRxMHD) equilibria computed by, for
example, SPEC (Hudson et al. 2012) or BIEST (Malhotra et al. 2019). In the following, we
employ (3.1) specifically for a fixed-boundary vacuum field to formulate quasi-symmetry
on the boundary.

4. Application of adjoint formalism to vacuum fields

Consider a vacuum magnetic field B in a toroidal domain V bounded by the surface
S = ∂V . As the vacuum magnetic field is curl-free, it can be expressed as B = ∇Φ, with
the scalar potential Φ. Because we consider a simple torus V , the most general form for
the scalar potential is Φ = G(ω + φ), where G is a constant, ω is a single-valued function
on S and φ is an arbitrary toroidal angle. By integrating the magnetic field along a toroidal
loop around the torus, the constant G is found to be proportional to the net external current
through the ‘hole’ of the torus.

As the magnetic field is divergence-less, the magnetic scalar potential satisfies the
Laplace equation. The field’s normal component is constrained to vanish on S by imposing
a Neumann boundary condition on the magnetic scalar potential. Further prescribing, for
example, G, or the toroidal flux, guarantees a unique solution to Laplace’s equation. We
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(a) (b)

(c) (d)

FIGURE 1. Comparison of (a) the toroidal flux gradient |∇ψ | evaluated using VMEC with
(b) the generalised toroidal flux gradient |gψ | (3.1) obtained in SPEC, for a 5-period rotating
ellipse case with half a rotation per field period, major radius at the ellipse centre R0 = 5 m and
ellipse major and minor axes values of 2 and 1 m, respectively. The relative difference between
the two quantities is below 1 %, as shown in (c). A small difference is to be expected in this case,
where integrability is well satisfied, as attested in (d) by the Poincaré plot at toroidal angle φ = 0
from the SPEC calculation, which agrees well with the flux surfaces computed by VMEC. All
data generated in this paper can be obtained from Nies (2021).

herein opt to hold the toroidal flux fixed, although the shape derivative δG[δx] will not
appear in this study due to our normalisation of the figure of merit for quasi-symmetry
(4.18). A different choice of normalisation would lead to an additional contribution
proportional to δG[δx] in the shape derivative of the Lagrangian.

For convenience, we define the normalised magnetic field B̆ as

B̆ ≡ B/G = ∇ (ω + φ) . (4.1)

Let us further assume the toroidal angle φ to be the azimuthal angle in cylindrical
coordinates, satisfying �φ = 0 in the domain of interest. We can thus write

∇ · B̆ = �ω = 0, in V, (4.2a)

B̆ · n̂ = ∇(ω + φ) · n̂ = 0, on S, (4.2b)

with n̂ the normal unit vector on S . Furthermore, the shape derivative δω[δx] satisfies

�(δω[δx]) = 0, in V, (4.3a)

B̆ · δn̂[δx] + ∇(δω[δx]) · n̂ + (δx · n̂)n̂ · ∇B̆ · n̂ = 0, on S, (4.3b)
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where the Laplace equation is obtained from noting the commutative property of shape
and spatial derivatives, and the normal boundary condition on δω was derived in, for
example, Sokołowski & Zolésio (1992, § 3.2). The shape derivative of the normal vector
δn̂[δx] = −∇Γ (δx · n̂) is derived in Appendix A.3.

Evaluating the rotational transform and quasi-symmetry figures of merit further requires
the solution to the straight field line equation

0 = B · ∇Γ α, on S, (4.4)

with the field line label
α ≡ θ − ιφ + λ(θ, φ), (4.5)

where θ is a general poloidal angle, λ is a single-valued function of θ and φ and ι is a
scalar. Note that both λ and ι are defined on the boundary S only, through (4.5).

Let us define the Lagrangian corresponding to an arbitrary objective function
f (S, ω, ι, λ):

L(S, ω, qω, ι, λ, qα) = f (S, ω, ι, λ)+ M(S, ω, qω)+ N (S, ω, ι, λ, qα), (4.6)

with the weak form of the Laplace equation (4.2a):

M(S, ω, qω) =
∫
V

dV qω�ω (4.7)

and the weak form of the straight field line equation (4.4) normalised by G:

N (S, ω, ι, λ, qα) =
∫
S

dS qαB̆ · ∇Γ α. (4.8)

Here, the Lagrange multipliers qα and qω are single-valued functions on the surface S and
in the volume V , respectively.

In the following, we assume that ω = ω(S) satisfies (4.2a) and α = α(S) satisfies
(4.4). For ease of notation, we do not write out the dependencies on S explicitly, and
we also omit writing the arguments of, for example, f , M, N and L. This means that
the shape derivative δM[δx] (4.9) should be understood as δM(S, ω(S), qω)[δx], with
contributions from δω(S)[δx]; and similarly for other shape derivatives.

To evaluate the shape derivative of the Lagrangian (4.6), we first compute the shape
derivatives of M and N , before turning to the shape derivatives of our objective functions
in §§ 4.1 and 4.2. First, the shape derivative of M (4.7), derived in Appendix B.1, is

δM[δx] =
∫
V

dV δω[δx]�qω −
∫
S

dS
[
δω[δx]∇qω · n̂ − (δx · n̂)B̆ · ∇qω

]
. (4.9)

Second, the shape derivative of N (4.8), derived in Appendix B.2, is

δN [δx] =
∫
S

dS
[
−δω[δx]∇Γ · (qα∇Γ α)− δι[δx]qαB̆ · ∇φ

−δλ[δx]∇Γ ·
(

qαB̆
)

+ (δx · n̂)qα
(

n̂ · ∇B̆ · ∇Γ α − B̆ · ∇n̂ · ∇Γ α
)]
.

(4.10)

The tangential gradient ∇Γ (·) and tangential divergence ∇Γ · (·) operators are defined in
Appendix A.1.
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We now proceed by computing the shape derivatives of two objective functions,
first targeting a given rotational transform value on S (§ 4.1) and second targeting
quasi-symmetry on S with a given helicity value (§ 4.2). We will then be able to evaluate
the shape derivative of the Lagrangian (4.6), yielding the adjoint equations and shape
gradient formulas. Numerical verification and example shape gradients are shown for each
figure of merit.

4.1. Rotational transform objective function
Before evaluating the more complicated shape gradient for the quasi-symmetry figure of
merit in § 4.2, we consider a simple figure of merit targeting a given target rotational
transform ιT on the surface S . We thus define

fι = 1
2(ι− ιT)

2, (4.11)

where ι is the rotational transform on S , obtained by solving the straight field line equation
(4.4). The shape derivative of fι is simply

δfι[δx] = δι[δx](ι− ιT). (4.12)

By combining (4.9), (4.10) and (4.12), we obtain the shape derivative of the Lagrangian
Lι ((4.6) with f = fι):

δLι[δx] =
∫
V

dV δω[δx]�qω −
∫
S

dS δω[δx]
[∇qω · n̂ + ∇Γ · (qα∇Γ α)

]
− δι[δx]

[∫
S

dS qαB̆ · ∇φ − (ι− ιT)

]
−
∫
S

dS δλ[δx]∇Γ ·
(

qαB̆
)

+
∫
S

dS(δx · n̂)
[
∇qω · B̆ + qα

(
n̂ · ∇B̆ · ∇Γ α − B̆ · ∇n̂ · ∇Γ α

)]
. (4.13)

First, we obtain the adjoint equation for qα by requiring the second line of (4.13) to
vanish:

∇Γ ·
(

qαB̆
)

= 0, (4.14a)∫
S

dS qαB̆ · ∇φ − (ι− ιT) = 0, (4.14b)

with both equations defined on S . Using (A 3), the surface integral of (4.14a) yields
0 = B̆ · n̂, which is consistent with the boundary condition on the magnetic field (4.2b).
The first equation (4.14a) can be recast in the form of a magnetic differential equation
B · ∇qα = −qα∇Γ · B, while the second equation (4.14b) is an integral condition on qα
that ensures uniqueness of the solution.

Second, the adjoint equation for qω is obtained by requiring the first line of (4.13) to
vanish:

�qω = 0, in V, (4.15a)

∇qω · n̂ = −∇Γ · (qα∇Γ α) , on S. (4.15b)

Like the magnetic potential ω, the adjoint variable qω satisfies the Laplace equation in
V (4.15a). However, contrary to ω, qω has a non-zero normal boundary condition on S
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(4.15b), which notably depends on the straight field line adjoint variable qα. Equations
(4.15b) and (4.15a) are consistent, as

∫
V dV �qω = ∫

S dS ∇qω · n̂ = 0, by (A 3).
Finally, the remaining contribution from the last line of (4.13) yields the shape gradient

Gι = 1
G

[
B · ∇qω + qα

(
n̂ · ∇B − B · ∇n̂

) · ∇Γ α
]
, (4.16)

with δLι[δx] = ∫
S dS(δx · n̂)Gι.

We now calculate the shape gradient numerically and verify it against a finite-difference
evaluation. The solutions to Laplace’s equation for the vacuum magnetic field (4.2a) and
adjoint equation for qω (4.15a) are calculated with the SPEC code (Hudson et al. 2012),
employing the new Zernike polynomial implementation (Qu et al. 2020). In all results
shown, the radial resolution Lrad in SPEC is tied to the poloidal Fourier resolution Mpol
through Lrad = Mpol + 4. The solutions to the straight field line and qα adjoint equations
are obtained with a Fourier–Galerkin spectral solver.

The shape gradient (4.16) is shown in figure 2(a) for the example rotating ellipse
case introduced in figure 1. The localisation at the ellipse tips is unsurprising, as
near-axis expansions show that ellipticity of the flux surfaces generates rotational
transform (Mercier 1964). This shape gradient Gadjoint can be verified against the direct
finite-difference evaluation GFD shown in figure 2(b), obtained by evaluating the parameter
derivatives ∂f /∂Ωi through finite differences and inverting (2.4) (see Landreman & Paul
2018). On the scale of the figure, the two shape gradients seem identical. The relative
error is shown in figure 2(c) to be small, limited to ∼2 % at the ellipse tips, and exhibits
oscillations typical of a truncated Fourier resolution. The relative error is here defined as
the absolute error normalised by the L∞-norm of Gadjoint, i.e. its maximum absolute value.
This choice is preferable to, for example, the L2-norm, as the shape gradient and the error
thereof have small average values on the boundary compared withtheir large values at the
ellipse tips, such that unreasonably high relative errors would result at these locations if
using the L2-norm as normalisation.

Furthermore, we test convergence of the shape gradient by evaluating a parameter
derivative (2.4) for a random direction in Ω . The parameter derivative is evaluated both
through the adjoint shape gradient and by a forward finite-difference scheme. The relative
error is shown in figure 2(d) as a function of the finite-difference step size εFD and the
Fourier resolution, which is used in both SPEC and the Fourier–Galerkin spectral solver.
As εFD is reduced, the error initially decreases linearly with εFD, as expected from the
employed forward finite-difference scheme, until it plateaus at a value governed by the
finite Fourier or radial resolution. As mentioned in § 2, errors in the adjoint shape gradient
are introduced by the assumption that the constraint and adjoint PDEs are exactly satisfied.
In practice, these PDEs are solved only approximately, limited by the finite Fourier and
radial resolution, such that a reduction of the error with increasing resolution is to be
expected.

4.2. Quasi-symmetry objective function
For a general (non-vacuum) magnetic field with nested flux surfaces, quasi-symmetry can
be expressed as

B · ∇ψ × ∇B
B · ∇B

= −MG + NI
N − ιM

, (4.17)

where I is the net toroidal plasma current and N/M is the helicity of the field strength in
Boozer coordinates (see e.g. Helander 2014). For the vacuum field considered here, I = 0.
In the following, we do not consider quasi-poloidal symmetry, i.e. we assume M �= 0.
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(a) (b)

(c) (d)

FIGURE 2. Shape gradient for the rotational transform objective function with ιT = 1, evaluated
through (a) adjoint methods and (b) a forward finite-difference scheme with step size εFD =
10−7, for the example rotating ellipse case introduced in figure 1, with Fourier resolution
(Ntor,Mpol) = (16, 16). The relative error, defined as the absolute error normalised by the
maximal absolute value of the adjoint shape gradient, is shown in (c). The convergence of the
relative error in the parameter derivative (2.4) for a random direction in Ω is shown in (d) as a
function of the step size εFD and Fourier resolution (Ntor,Mpol). The black dashed line indicates
the linear scaling in εFD expected from the employed forward finite-difference scheme.

If desired, it would be straightforward to extend the derived results to include the case
M = 0.

For magnetic fields with globally nested flux surfaces labelled by ψ , (4.17) is defined
globally. However, we are considering a generally non-integrable field, assuming only that
the boundary S is a flux surface. Using the generalised toroidal flux gradient defined in
(3.1), we are able to define quasi-symmetry on the isolated flux surface S , leading to the
quasi-symmetry objective function

fQS = 1
2

∫
S

dS v2
QS, (4.18)

with

vQS = B̆ · ∇B̆ − B̆ × ğψ · ∇B̆ (ι− N/M) , (4.19)

where we defined ğψ ≡ gψ/G. If fQS = 0 and the field is integrable in the neighbourhood
of S , (4.17) will be satisfied on S , i.e. the field is quasi-symmetricon the boundary.
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The shape derivative of fQS is derived in Appendix B.3, with the final expression given in
(B 24). Combined with the shape derivatives of M (4.9) and N (4.10), the shape derivative
of the Lagrangian (4.6) with the quasi-symmetric figure of merit follows (B 26).

Requiring the Lagrangian to be stationary with respect to variations in ι and λ, the first
two lines of (B 26) yield the adjoint equations for qα:

∇Γ ·
(

qαB̆
)

= −∇Γ ·
[
∇Γ α

(
vQS B̆ × ğψ · ∇B̆

ι− N/M
|∇Γ α|2

)]
, (4.20a)

0 =
∫
S

dS
{

qαB̆ · ∇φ + vQS B̆ × ğψ · ∇B̆
[∇Γ α · ∇Γ φ

|∇Γ α|2 (ι− N/M)+ 1
]}
. (4.20b)

Similarly to the rotational transform objective function case, qα satisfies a magnetic
differential equation (4.20a) on S , with integral condition (4.20b). By (A 3), the surface
integral of (4.20a) is consistent with the magnetic field’s normal component vanishing on
the boundary (4.2b).

Furthermore, requiring the Lagrangian to be stationary with respect to variations in ω,
we obtain the adjoint equations for qω from the third and fourth lines of (B 26):

�qω = 0, in V, (4.21a)

∇qω · n̂ = −∇Γ ·
{

qα∇Γ α + vQS ∇Γ B̆ − B̆

B̆
∇Γ · (vQS B̆)

+ (ι− N/M)
[
vQS ğψ × ∇Γ B̆ − B̆ ∇Γ ·

(
1

B̆
vQSB̆ × ğψ

)]}
, on S. (4.21b)

Again, qω satisfies the Laplace equation in V (4.21a), with a normal boundary condition
on S that is the tangential divergence of a vector tangential to the surface (4.21b). The
boundary condition (4.21b) is consistent with the Laplace equation, as

∫
V dV �qω =∫

S dS ∇qω · n̂ = 0, by (A 3).
Finally, we obtain the shape gradient from the last three lines of (B 26):

GQS = −(n̂ · ∇B̆)∇Γ ·
(
vQSB̆

)
− vQS

(
B̆ · ∇n̂ − n̂ · ∇B̆

)
· ∇Γ B̆

+ (ι− N/M)
∣∣ğψ ∣∣ B̆ × ∇B̆ ·

[
|∇Γ α|∇Γ

(
vQS

|∇Γ α|
)

+ n̂ vQS

(∇Γ α · ∇n̂ · ∇Γ α

|∇Γ α|2 − h
)]

+ B̆ · ∇qω + qα
(

n̂ · ∇B̆ − B̆ · ∇n̂
)

· ∇Γ α + h
2
v2

QS, (4.22)

with δLQS[δx] = ∫
S dS (δx · n̂) GQS and h the summed curvature (A 4).

The shape gradient (4.22) for targeted quasi-helical symmetry with helicity N/M =
5 is shown in figure 3(a) for the example rotating ellipse case introduced in figure 1.
The shape gradient obtained through adjoint methods is verified against a finite-difference
evaluation in figure 3(b). The error is visibly small, as is attested by the small relative
error of the shape gradient shown in figure 3(c). Convergence of the relative error for
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(a) (b)

(c) (d)

FIGURE 3. Shape gradient for the quasi-symmetry objective function with helicity N/M = 5,
evaluated through (a) adjoint methods and (b) a forward finite-difference scheme with step
size εFD = 10−9, for the example rotating ellipse case introduced in figure 1, with Fourier
resolution (Ntor,Mpol) = (16, 16). The relative error, defined as the absolute error normalised
by the maximal absolute value of the adjoint shape gradient, is shown in (c). The convergence
of the relative error in the parameter derivative (2.4) for a random direction in Ω is shown in
(d) as a function of the step size εFD and Fourier resolution (Ntor,Mpol). The black dashed line
indicates the linear scaling in εFD expected from the employed forward finite-difference scheme.

a parameter derivative in a random direction in Ω , evaluated with the adjoint method
and with a forward finite-difference scheme, is shown in figure 3(d). Akin to the rotational
transform figure of merit convergence study in figure 2(d), the error decreases linearly with
εFD until it plateaus due to finite Fourier or radial resolution. While the lowest resolution
of (Ntor,Mpol) = (8, 8) seemed reasonable for the rotational transform figure of merit in
figure 2(d), a higher resolution is clearly required for the quasi-symmetry figure of merit.
This could be due to the fact that higher derivatives of the magnetic field are involved in
the shape gradient for quasi-symmetry (4.22) than in that for rotational transform (4.16),
through derivatives of vQS. The resulting fine-scale structure of G is harder to resolve with
a truncated Fourier series. However, the relative errors in figures 2(d) and 3(d) are similarly
small at the highest Fourier resolutions employed.

5. Conclusions

In this work, we have derived the adjoint equations and shape gradient for the rotational
transform and quasi-symmetry of a vacuum field on a surface. The shape gradients allow
fast computation of derivatives with respect to the parameters that describe the geometry
of the surface, which are used in optimisation and sensitivity analyses. For a boundary
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represented by N parameters, the speed-up from the adjoint method is O(N) compared to
a finite-difference evaluation.

This should enable future use of codes such as SPEC (Hudson et al. 2012) in
optimisation calculations, which was hitherto neglected in favour of the more widely
used VMEC code (Hirshman et al. 1986). Contrary to VMEC, SPEC does not rely on
the assumption of nested flux surfaces and can therefore model stochastic and island
regions. In practice, employing adjoint methods and computing derivatives of quantities
arising from ideal MHS equilibria are challenging, as the linearised MHS equilibrium
equations possess regular singular points at every rational surface that resonates with
the perturbation. These challenges can be avoided by the use of alternative equilibrium
models, such as force-free magnetic fields, or the vacuum fields considered in this work.
The generality of the results presented herein would also allow for their implementation
in other solvers such as BIEST (Malhotra et al. 2019). It is left for future work to extend
the vacuum field results presented herein to the more general force-free fields modelled by
SPEC. In particular, it will be of interest to extend the present work on vacuum fields to
MRxMHD equilibria (Dewar et al. 2008; Hudson et al. 2012). In this model, the interfaces
between force-free regions are flux surfaces, such that quasi-symmetry can be optimised
for on multiple flux surfaces. Finally, the adjoint methods for vacuum fields introduced in
this work could be fruitfully applied to other optimisation problems, e.g. in neoclassical
transport calculations.

It is generally believed that exact quasi-symmetry cannot be obtained exactly in a finite
volume as near-axis expansions lead to an an overdetermined system of equations (Garren
& Boozer 1991), although that can be resolved by allowing for an anisotropic plasma
pressure (Rodríguez & Bhattacharjee 2021a, b). Exact quasi-symmetry on a surface is
thought generally possible (Garren & Boozer 1991; Plunk & Helander 2018); and indeed,
a vacuum solution near axisymmetry was recently found (Sengupta et al. 2021). The shape
gradient for quasi-symmetry derived in this work could be used to numerically probe the
existence of quasi-symmetric solutions on a surface that are not close to axisymmetry.
For this purpose, the shape gradient for the rotational transform objective function (4.16)
could be used to avoid the axisymmetric solution at ι = 0, or also to avoid low-order
rationals. Furthermore, the shape gradients derived herein could be used to investigate if
and how optimisation for quasi-symmetry and for the rotational transform compete with
each other. Finally, combining the derivatives of quasi-symmetry and rotational transform
with previously obtained derivatives of coil shapes (Hudson et al. 2018) and island size
(Geraldini et al. 2021) should, in principle, allow for the efficient search for a stellarator
configuration with significant rotational transform, good integrability and neoclassical
confinement at the boundary, realised by simple coils.
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Appendix A. Basics of shape differential calculus

This appendix aims to provide a brief introduction to calculus on surfaces, mainly
providing useful identities required in the derivation of the adjoint equations. For more
details of the subject, we refer the interested reader to Walker (2015) for a practical
introduction and to Delfour & Zolésio (2011) for a more thorough treatment.

In this section, we take S = ∂V to be a closed two-dimensional surface bounding the
volume V . Let f and v be respectively scalar and vector functions defined on S . The
extensions of these functions to a neighbourhood of S are denoted by f̃ and ṽ. Note that f
and v can also be functions defined in V , in which case f̃ and ṽ are chosen to be equal to f
and v, respectively; the tangential gradient ∇Γ f and tangential divergence ∇Γ · v remain
defined on S .

A.1. Differential operators on surfaces
The tangential gradient ∇Γ can be defined in terms of an extension as

∇Γ f ≡ ∇f̃ − n̂
(

n̂ · ∇f̃
)
, (A 1)

where n̂ is the unit normal vector on S . The tangential gradient can thus simply be viewed
as the component of the three-dimensional gradient tangential to the surface, satisfying
n̂ · ∇Γ f = 0.

Similarly to the tangential gradient, the tangential divergence ∇Γ · can be defined in
terms of an extension as

∇Γ · v = ∇ · ṽ − n̂ · ∇ṽ · n̂. (A 2)

The related divergence theorem is particularly useful in our derivation of the adjoint
equations: ∫

S
dS ∇Γ · v =

∫
S

dS h n̂ · v, (A 3)

where v is assumed to be single-valued, and the summed curvature h can be obtained from
the unit normal vector through

h = ∇Γ · n̂. (A 4)

It follows from (A 3) that
∫
S dS ∇Γ · v = 0 for a single-valued v with n̂ · v = 0.

A.2. Transport theorems
To evaluate the shape derivative of the Lagrangian (see § 2) and obtain the adjoint
equations, we need expressions for the shape derivatives of volume and surface integrals.
These are called transport theorems. First, for a volume functional

JV =
∫
V

dV f , (A 5)

the shape derivative of JV is given by

δJV[δx] =
∫
V

dV δf [δx] +
∫
S

dS(δx · n̂)f . (A 6)

Second, for a surface functional

JS =
∫
S

dS f , (A 7)
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the shape derivative of JS is

δJS[δx] =
∫
S

dS
[
δf [δx] + (δx · n̂)

(
n̂ · ∇f̃ + hf

)]
. (A 8)

In both (A 6) and (A 8), the first term originates from the direct perturbation of the
integrand while the second term accounts for the change of the boundary.

A.3. Normal extension and the normal vector’s shape derivative
The signed distance function b is defined in a sufficiently small neighbourhood of S as

b(r) =
⎧⎨⎩dist(r,S), r ∈ R

3 \ V,
0, r ∈ S,
−dist(r,S), r ∈ V .

(A 9)

Here, dist(r,S) is the closest distance from a point r to the surface S .
For quantities defined only on the surface S , like the normal vector n̂ or the field line

label α, one is free to choose an arbitrary extension to the neighbourhood of S . Any final
result (e.g. the shape gradient or adjoint equations) should be independent of this choice.
A particularly convenient choice is the normal extension f̃ (x) = f (x − b(x)∇b(x)), as it
implies n̂ · ∇f̃ = 0 on S . Vector functions v can be similarly extended.

The signed distance function can also be used to express the unit normal vector on S as
n̂ = ∇b. Let us define

Jn =
∫
S

dS χ b = 0, (A 10)

with an arbitrary function χ . The transport theorem (A 8) then yields

0 = δJn[δx] =
∫
S

dS χ
[
δb[δx] + (δx · n̂)

]
, (A 11)

which must hold for any χ , such that δb[δx] = −δx · n̂. Then, the shape derivative of the
normal vector follows as δn̂[δx] = ∇(δb[δx]) = −∇(δx · n̂). If the unit normal vector is
normally extended off S , as is assumed in the remainder of this paper, it follows from
(A 1) that

δn̂ = −∇Γ (δx · n̂). (A 12)

Appendix B. Derivations of shape derivatives

For ease of notation, we will in the following derivations write shape derivatives without
the [δx] bracket, e.g. δω[δx] → δω, and drop tildes for extensions off the surface S .
Furthermore, we will take the field line label α (4.5) and the normal vector n̂ to be normally
extended off S , such that n̂ · ∇α̃ = 0 and n̂ · ∇ ˜̂n = 0. See Appendix A.3 for more details
on normal extensions.
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B.1. Weak form of the Laplace equation
The weak form of the Laplace equation, previously given in (4.7), can be partially
integrated to facilitate the calculation of the shape derivative:

M =
∫
V

dV qω�ω =
∫
V

dV ω�qω +
∫
S

dS (qω∇ω − ω∇qω) · n̂

=
∫
V

dV ω�qω −
∫
S

dS (qω∇φ + ω∇qω) · n̂, (B 1)

where the boundary condition on the magnetic field (4.2b) was used in the last equality.
Using the transport theorems (A 6) and (A 8), the shape derivative of (B 1) is computed
to be

δM =
∫
V

dV δω�qω +
∫
S

dS
{−δω∇qω · n̂ − (qω∇φ + ω∇qω) · δn̂

+ (δx · n̂)
[
ω�qω − (n̂ · ∇ + h)

(
qω∇φ · n̂ + ω∇qω · n̂

)]}
. (B 2)

The term involving the normal vector’s shape derivative δn̂ can be further simplified using
(A 12):

−
∫
S

dS(qω∇φ + ω∇qω) · δn̂ =
∫
S

dS
[−(δx · n̂)∇Γ · (qω∇Γ φ + ω∇Γ qω)

]
=
∫
S

dS(δx · n̂)
[
hn̂ · (qω∇φ + ω∇qω)+ n̂ · (qω∇∇φ

+ω∇∇qω) · n̂ − ω�qω − ∇qω · B̆
]
, (B 3)

where the surface divergence theorem (A 3) was used in the second equality. Inserting this
expression back into (B 2), the shape derivative of M simplifies to

δM =
∫
V

dV δω�qω −
∫
S

dS
[
δω∇qω · n̂ − (δx · n̂)B̆ · ∇qω

]
, (B 4)

where we used (4.1).

B.2. Weak form of the straight field line equation
The shape derivative of the straight field line equation’s weak form (4.8) follows from
the transport theorem (A 8), as well as the shape derivatives of the field line label
δα = −φ δι+ δλ and the normalised magnetic field δB̆ = ∇(δω):

δN =
∫
S

dS
[
qα∇(δω) · ∇α + qαB̆ · (∇(δλ)− δι∇φ)+ (δx · n̂)n̂ · ∇

(
qαB̆ · ∇α

)]
,

(B 5)
where the summed curvature term in (A 8) vanishes here due to the straight field line
equation (4.4). The first term is partially integrated using (A 3):∫

S
dS qα∇(δω) · ∇α =

∫
S

dS qα∇Γ (δω) · ∇Γ α =
∫
S

dS
[−δω∇Γ · (qα∇Γ α)

]
,

(B 6)
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as well as the δλ term:∫
S

dS qαB̆ · ∇(δλ) =
∫
S

dS qαB̆ · ∇Γ (δλ) = −
∫
S

dS δλ ∇Γ ·
(

qαB̆
)
. (B 7)

The last term in (B 5) can also be simplified using (4.4):

n̂ · ∇
(

qαB̆ · ∇α
)

= qα
(

n̂ · ∇B̆ · ∇α + B̆ · ∇∇α · n̂
)

= qα
(

n̂ · ∇B̆ − B̆ · ∇n̂
)

· ∇Γ α.

(B 8)
The shape derivative of N (B 5) finally reduces to

δN =
∫
S

dS
[
−δω ∇Γ · (qα∇Γ α)− δι qαB̆ · ∇φ − δλ ∇Γ ·

(
qαB̆

)
+(δx · n̂)qα

(
n̂ · ∇B̆ − B̆ · ∇n̂

)
· ∇Γ α

]
. (B 9)

B.3. Quasi-symmetry figure of merit
Using the transport theorem (A 8), we can express the shape derivative of the
quasi-symmetry figure of merit (4.18) as

δfQS =
∫
S

dS
{
vQS δvQS + 1

2
(δx · n̂)(n̂ · ∇ + h)v2

QS

}
. (B 10)

First, note δB̆ = ∇(δω), which also gives the shape derivative of the normalised magnetic
field strength as

δB̆ = δ
(√

B̆ · B̆
)

= B̆ · ∇(δω)
B̆

. (B 11)

Furthermore, recalling |gψ |/G = B̆/|∇Γ α| from (3.1), we obtain

δ
(∣∣ğψ ∣∣) = ∣∣ğψ ∣∣

[
B̆ · ∇(δω)

B̆2
− ∇Γ α · (−δι∇Γ φ + ∇Γ (δλ))

|∇Γ α|2
]
. (B 12)

Using (B 11), (B 12), (4.3b) and (A 12), the shape derivative of vQS (4.19) can be written
as

δvQS = ∇Γ (δω) · ∇Γ B̆ + (n̂ · ∇B̆)
[
−(δx · n̂)n̂ · ∇B̆ · n̂ + B̆ · ∇Γ (δx · n̂)

]
+ B̆ · ∇Γ

(
B̆ · ∇Γ (δω)

B̆

)
− δι B̆ × n̂ · ∇Γ B̆

∣∣ğψ ∣∣− (ι− N/M)
∣∣ğψ ∣∣

×
[
∇Γ (δω)×n̂ · ∇Γ B̆−B̆×∇Γ (δx · n̂) · n̂(n̂ · ∇B̆)+B̆×n̂ · ∇Γ

(
B̆ · ∇Γ (δω)

B̆

)

+
(

B̆ · ∇Γ (δω)

B̆2
− ∇Γ α · (−δι∇Γ φ + ∇Γ (δλ))

|∇Γ α|2
)

B̆ × n̂ · ∇Γ B̆

]
. (B 13)
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The first term in (B 10) can then be partially integrated to

∫
S

dS vQS δvQS =
∫
S

dS

{
δω ∇Γ ·

[
−vQS∇Γ B̆ + B̆

B̆
∇Γ · (vQSB̆)

+ (ι− N/M)

(∣∣ğψ ∣∣ vQS n̂ × ∇Γ B̆ − B̆

B̆
∇Γ ·

(∣∣ğψ ∣∣ vQSB̆ × n̂
)

+ vQS

∣∣ğψ ∣∣ B̆

B̃2
B̆ × n̂ · ∇Γ B̆

)]
−δι vQS

∣∣ğψ ∣∣B̆ × n̂ · ∇Γ B̆
[
(ι− N/M)

∇Γ α · ∇Γ φ

|∇Γ α|2 +1
]

− δλ (ι− N/M) ∇Γ ·
[
vQS

∣∣ğψ ∣∣ ∇Γ α

|∇Γ α|2 B̆ × n̂ · ∇Γ B̆
]

− (δx · n̂)
[
B̆ · ∇Γ

(
vQS n̂ · ∇B̆

)
−(ι−N/M) ∇Γ ·

(
vQS

∣∣ğψ ∣∣B̆ × (∇B̆−∇Γ B̆)
)] B̆

B̆

}
,

(B 14)

with repeated use of the surface divergence theorem (A 3), and using ∇Γ · B̆ = −n̂ · ∇B̆ ·
n̂ from the magnetic field being divergence-less and (A 2). The terms in the last line can
be simplified, first using

B̆ · ∇Γ

(
vQS n̂ · ∇B̆

)
= (n̂ · ∇B̆)B̆ · ∇vQS + vQS

(
B̆ · ∇n̂ · ∇B̆ + B̆ · ∇∇B̆ · n̂

)
.

(B 15)
Furthermore, note that

∇Γ · (B̆ × ∇B̆) = −n̂ · ∇(B̆ × ∇B̆) · n̂, (B 16)

where we used (A 2), ∇ × B̆ = 0 and ∇ × ∇B̆ = 0; and

B̆ × ∇B̆ · ∇Γ

∣∣ğψ ∣∣ = −∣∣ğψ ∣∣B̆ × ∇B̆ ·
(

1

B̆
n̂(n̂ · ∇B̆)+ 1

|∇Γ α|∇Γ |∇Γ α|
)
, (B 17)

using (A 1). The terms of the last parenthesis in (B 14) now simplify to

∇Γ ·
(
vQS

∣∣ğψ ∣∣ B̆ × ∇B̆
)

= ∣∣ğψ ∣∣
[

B̆ × ∇B̆ ·
(

|∇Γ α|∇Γ

(
vQS

|∇Γ α|
)

−vQS n̂
n̂ · ∇B̆

B̆

)
−vQS n̂ · ∇(B̆ × ∇B̆) · n̂

]
,

(B 18)

and

∇Γ ·
(
vQS

∣∣ğψ ∣∣ B̆ × ∇Γ B̆
)

= h vQS

∣∣ğψ ∣∣ n̂ · B̆ × ∇Γ B̆, (B 19)

where we used the fact that B̆ × ∇Γ B̆ is normal to the surface, and ∇Γ · n̂ = h.
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We now turn to the normal derivative of vQS, the second term in (B 10). Using the fact
that n̂ and α are normally extended, we can write

n̂ · ∇(B̆ × n̂ · ∇B̆) = −n̂ · ∇(B̆ × ∇B̆) · n̂ (B 20)

and

n̂ · ∇|∇Γ α| = n̂ · ∇∇Γ α · ∇Γ α

|∇Γ α| = n̂ · ∇∇α · ∇Γ α

|∇Γ α| = −∇Γ α · ∇n̂ · ∇Γ n̂
|∇Γ α| , (B 21)

such that

n̂ · ∇ (∣∣ğψ ∣∣) = ∣∣ğψ ∣∣
[

n̂ · ∇B̆

B̆
+ ∇Γ α · ∇n̂ · ∇Γ α

|∇Γ α|2
]
. (B 22)

This allows us to express the normal derivative of vQS as

n̂ · ∇vQS = n̂ · ∇B̆ · ∇B̆ + n̂ · ∇∇B̆ · B̆

− (ι−N/M)
∣∣ğψ ∣∣

[
−n̂ · ∇(B̆ × ∇B̆) · n̂+

(
n̂ · ∇B̆

B̆
+ ∇Γ α · ∇n̂ · ∇Γ α

|∇Γ α|2
)

B̆×n̂ · ∇B̆

]
.

(B 23)

Combining (B 10), (B 14) (and simplifications thereafter) and (B 23), the shape derivative
of fQS can finally be expressed as

δfQS =
∫
S

dS

{
δω ∇Γ ·

[
−vQS∇Γ B̆ + B̆

B̆
∇Γ · (vQSB̆)

+ (ι− N/M)
(
vQS ğψ × ∇Γ B̆ − B̆ ∇Γ ·

(
1

B̆
vQSB̆ × ğψ

))]

− δι vQSB̆ × ğψ · ∇Γ B̆
[
(ι− N/M)

∇Γ α · ∇Γ φ

|∇Γ α|2 + 1
]

− δλ (ι− N/M) ∇Γ ·
[
vQS

∇Γ α

|∇Γ α|2 B̆ × ğψ · ∇Γ B̆
]

+ (δx · n̂)
[
(ι− N/M)

∣∣ğψ ∣∣ B̆ × ∇B̆ ·
(

∇Γ vQS − vQS
∇Γ |∇Γ α|

|∇Γ α|
)

+ h
2
v2

QS − (n̂ · ∇B̆)∇Γ ·
(
vQSB̆

)
− vQS

(
B̆ · ∇n̂ − n̂ · ∇B̆

)
· ∇Γ B̆

− vQS B̆ × ğψ · ∇B̆ (ι− N/M)
(∇Γ α · ∇n̂ · ∇Γ α

|∇Γ α|2 − h
)]}

, (B 24)

where we used

B̆ · ∇n̂ · ∇B̆ − n̂ · ∇B̆ · ∇B̆ =
(

B̆ · ∇n̂ − n̂ · ∇B̆
)

· ∇Γ B̆ + ∇Γ · B̆ (n̂ · ∇B̆). (B 25)
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Combining (B 4), (B 9) and (B 24), and rearranging, the shape derivative of the
Lagrangian for the quasi-symmetric figure of merit can be written as

δLQS = −
∫
S

dS δλ ∇Γ ·
[

qαB̆ + (ι− N/M) vQS
∇Γ α

|∇Γ α|2 B̆ × ğψ · ∇Γ B̆
]

− δι

∫
S

dS
{

qαB̆ · ∇φ + vQSB̆ × ğψ · ∇Γ B̆
[
(ι− N/M)

∇Γ α · ∇Γ φ

|∇Γ α|2 + 1
]}

+
∫
V

dV δω �qω −
∫
S

dS δω

{
n̂ · ∇qω + ∇Γ ·

[
−vQS∇Γ B̆ + B̆

B̆
∇Γ · (vQSB̆)

+ (ι− N/M)
(
vQS ğψ × ∇Γ B̆ − B̆ ∇Γ ·

(
1

B̆
vQSB̆ × ğψ

))]}

+
∫
S

dS(δx · n̂)
{
− (n̂ · ∇B̆)∇Γ ·

(
vQSB̆

)
− vQS

(
B̆ · ∇n̂ − n̂ · ∇B̆

)
· ∇Γ B̆

+ (ι− N/M)
∣∣ğψ ∣∣B̆ × ∇B̆ ·

[
|∇Γ α|∇Γ

(
vQS

|∇Γ α|
)

+ n̂ vQS

(∇Γ α · ∇n̂ · ∇Γ α

|∇Γ α|2 − h
)]

+ B̆ · ∇qω + qα
(

n̂ · ∇B̆ − B̆ · ∇n̂
)

· ∇Γ α + h
2
v2

QS,

}
. (B 26)

The shape derivative of the Lagrangian directly provides the adjoint equations for qω and
qα, as well as the shape gradient, as shown in § 4.2.
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