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Abstract

We give a setting of the Diaconis–Freedman chain in a multi-dimensional simplex and
consider its asymptotic behavior. By using techniques from random iterated function
theory and quasi-compact operator theory, we first give some sufficient conditions which
ensure the existence and uniqueness of an invariant probability measure and, in particular
cases, explicit formulas for the invariant probability density. Moreover, we completely
classify all behaviors of this chain in dimension two. Some other settings of the chain
are also discussed.
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1. Introduction

The main motivation for this article is to propose a general setting for the so-called
Diaconis–Freedman chain in R

d, d ≥ 2. First, we give the most natural setting of this chain
on a d-dimensional simplex and consider its asymptotic behavior by using techniques from
random iterated function theory and quasi-compact operator theory (see [20] in dimension
one). We have recently learned that this multi-dimensional setting is also considered in [23],
where the authors used another approach and only considered the cases of ergodicity. We also
discuss here some other possible extensions, with several invariant probability measures.

Markov chains generated by compositions of independent random iterated functions have
been the object of numerous works for more than 60 years. We refer to [5, 19] for the first mod-
els designed for analyzing data in learning, and to [8, 11, 21, 22, 31] and references therein; see
also [26, 27] for such processes with weak contraction assumptions on the random functions
involved.

In [7], Diaconis and Freedman focused on the Markov chain (Zn)n≥0 on [0, 1] ran-
domly generated by the two families of maps H := {ht : [0, 1] → [0, 1], x �→ tx}t∈[0,1] and
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A := {at : [0, 1] → [0, 1], x �→ tx + 1 − t}t∈[0,1]; at each step, a map is randomly chosen with
probability p in the set H and q = 1 − p in the set A, then uniformly with respect to the
parameter t ∈ [0, 1]. They also considered the case when the weights p and q = 1 − p may
vary with respect to the position x. When p is constant, the random maps (see Section 3 for
a detailed introduction) which control the transitions of (Zn)n≥0 are independent and identi-
cally distributed (i.i.d.), otherwise the process is no longer in the framework of compositions
of independent random functions. This class of such processes has been studied for a few
decades, with various assumptions put on the state space (e.g. compactness) and the regularity
of the weight functions. We refer, for instance to [17] at the beginning of the 1980s, [1, 2, 3]
with connections to image encoding a few years later, and [18] more recently. All these works
concerned sufficient conditions for the unicity of the invariant measure and did not explore
the case when there are several invariant measures. As far as we know, the coupling method
does not seem to be relevant to studying this type of Markov chain when there are further
invariant measures, or, equivalently, when the space of harmonic functions is not reduced to
constant.

For the Diaconis–Freedman chain in dimension 1, a systematic approach was developed in
[20] based on the theory of quasi-compact operators (also described in [13, 25]); the authors
completely described the peripheral spectrum of the transition operator P of (Zn)n≥0 and used
a precise control of the action of the family of functions generated by the sets H and A.
The main tool for carrying out this study is to describe the family of compact subsets of �d

invariant under the action of elements of the set of functions H and A, according to the varying
weight functions. Some compositions of maps are forbidden when these weights vanish on �d;
the main consequence is the emergence of several invariant sets (see Section 5), which induces
the existence of several harmonic functions, then several invariant probability measures, for the
chain (Zn)n≥0. This mechanism was studied in [14], with deep applications to transfer operators
on the interval [0, 1], corresponding to the maps x �→ x/2 and x �→ (x + 1)/2; these opera-
tors occur naturally in wavelet theory to characterize scaling filters used in multi-resolution
analysis.

This model is also known in the literature as a ‘stick-breaking process’ or a ‘stochastic give-
and-take’, with applications in other fields such as human genetics, robot coverage, random
search, etc. We refer to [6] for more explanations in population genetics.

On a side note, instead of ‘robot control’ purposes, we mention a fairly rare scope of appli-
cation in mathematics: the illustration of a paradox in philosophy in the conception of free will,
through the sad and well-known story of Buridan’s donkey:

An equally hungry and thirsty donkey is placed just in the middle between a stack of
grass and a bucket of water and hesitates to choose between the grass and the water;
once this choice is done, possibly randomly, the donkey has to move towards the
selected site, once again either in a deterministic or a random procedure to be defined.

The Diaconis–Freedman chain in dimension 1 is considered as a model of the behav-
ior of Buridan’s donkey: we refer to [28] for the various (deterministic or random) models
describing the story and some partial results, and to [24] for generalizations of the Diaconis–
Freedman chain in such a way that the stationary distribution is always of beta type.
Theorem 3.1 in [20] offers a strategy for Buridan’s donkey to reach either the stack of grass or
the bucket of water: it is necessary and sufficient to choose weight functions p and q which are
not constant, with suitable boundary conditions! By contrast, constant weights lead to erratic
behavior for ever between the two final expected positions (the ‘stack of grass’ or the ‘bucket
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of water’)! The reader may easily imagine some variations of this story with several stacks
of food instead of the unique stack of grass, naturally modeled by the d-dimensional chain
studied here.

The multi-dimensional setting for such problems has not been touched; it is our aim to
introduce and analyze it here, and the Diaconis–Freedman chain appears as a rich ‘toy model’
for this extension.

The paper is organized as follows. In Section 2 we give our setting of the Diaconis–
Freedman chain in dimension d ≥ 2. Some properties of the transition operator and its dual
operator are considered, and the uniqueness of the stationary density function is shown
(Corollary 2.1). In Section 3 we give some results on uniqueness of invariant measures
(Theorems 3.2 and 3.4) based on iterated function systems theory. Some special cases with
explicit formulas for the unique invariant density are considered in Section 4. Section 5
contains our main result (Theorem 5.2): we classify the invariant probability measures and
consider the asymptotic behavior of (Zn)n≥0. We discuss some future research directions in
Section 6.

2. The Diaconis–Freedman chain in dimensions ≥ 2

In this section we consider a particular setting for the multi-dimensional problem of the
Diaconis–Freedman chain; there are many ways to set it based on different application models
(see, for instance, [28]). Our setting here is fit for robot control applications.

Denote by �d := {x = (xi)1≤i≤d ∈R
d
≥0 : |x| = x1 + · · · + xd ≤ 1} = co{e0, e1, . . . , ed} a

closed d-dimensional simplex with vertices e0, e1, . . . , ed, where e0 = (0, . . . , 0) and ei =
(0, . . . , 1︸︷︷︸

ith

, . . . , 0) for 1 ≤ i ≤ d. From now on, for any x ∈ �d, we set x0 = 1 − |x|; we have

that x = x0e0 + x1e1 + · · · + xded with xi ≥ 0 and x0 + · · · + xd = 1.
We consider the Markov chain (Zn)n≥0 on the simplex �d corresponding to the successive

positions of the robot, according to the following rules:

• The robot is put randomly at a point Z0 in �d.

• If, at time n ≥ 0, it is located at Zn = x ∈ �d, then it chooses the vertex ei, 0 ≤ i ≤ d, with
probability pi(x) for the next moving direction and uniformly randomly moves to some
point on the open line segment (x, ei) := {tx + (1 − t)ei | t ∈ (0, 1)}.

We assume that the functions pi, 0 ≤ i ≤ d, are continuous and non-negative on �d and satisfy∑n
i=0 pi(x) = 1 for any x ∈ �d.
Let us make this description more rigorous. For any i = 0, . . . , d and x ∈ �d, denote by

Ui(x, ·) the uniform distribution on (x, ei); it is defined on open intervals (y1, y2) ⊂ (x, ei)
as Ui(x, (y1, y2)) := |t(x, y2, ei) − t(x, y1, ei)|, where the real number t = t(x, y, ei) ∈ (0, 1)
solves the equality y = tx + (1 − t)ei. The one-step transition probability function P of
(Zn)n≥0 is

P(x, dy) =
d∑

i=0

pi(x)Ui(x, dy), x ∈ �d. (2.1)

We illustrate this setting in �2 in Figure 1.
We want to classify the invariant probability measures of the chain (Zn)n≥0 and to describe

its behavior as n → +∞. Our approach is based on the description of the spectrum, on
some suitable space (to be specified), of the operator corresponding to the one-step transition
probability function P, also denoted by P. Let us first introduce this transition operator.
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FIGURE 1. The Diaconis–Freedman chain in �2.

We denote by dx the Lebesgue measure on �d and by L
∞(�d) the space of all bounded

Lebesgue-measurable functions f : �d →C; the dual space of L
∞(�d) with respect to the

Lebesgue measure is L
1(�d, dx), the space of Lebesgue-measurable functions from �d

to C which are integrable with respect to dx. The spaces L
∞(�d) and L

1(�d, dx) are
Banach spaces, endowed respectively with the norms ‖f ‖∞ := supx∈�d

|f (x)| and ‖g‖1 :=∫
�d

|g(x)| dx.

We also denote by Den(�d, dx) = {g ∈L
1(�d, dx) : g ≥ 0 and

∫
�d

g(x) dx = 1} the space
of all probability densities on �d with respect to the reference Lebesgue measure dx. The set
(Den(�d, dx), d) is a complete metric space for the distance d(f , g) := ‖f − g‖1; furthermore,
Den(�d, dx) is a non-empty closed convex subset of the Banach space L

1(�d, dx), and it
contains the constant function g(x) ≡ d!.

The transition operator of the chain (Zn)n≥0 is defined by

P : L∞(�d) →L
∞(�d), f �→

(
Pf : x →

∫
�d

f (y)P(x, dy)

)
.

Its dual operator P∗ : L
1(�d, dx) →L

1(�d, dx) with respect to the Lebesgue measure is
defined by

∫
�d

Pf (x)g(x) dx = ∫
�d

f (x)P∗g(x) dx.
Let us be explicit about the form of these two operators.

Lemma 2.1. Let P be the transition operator of (Zn)n≥0, acting on L
∞(�d), and P∗ its dual

operator on L
1(�d, dx). Then, for any f ∈L

∞(�d) and x ∈ �d,

Pf (x) =
d∑

i=0

pi(x)
∫ 1

0
f (tx + (1 − t)ei) dt, (2.2)

and, for any g ∈L
1(�d, dx) and y ∈ �d,

P∗g(y) =
d∑

i=0

∫ 1

1−yi

t−dGi

(
1

t
y +

(
1 − 1

t

)
ei

)
dt

=
d∑

i=0

∫ 1
1−yi

1
sd−2Gi

(
sy +

(
1 − s

)
ei

)
ds, (2.3)

where Gi(y) = g(y)pi(y).
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Proof. The equality (2.1) yields

Pf (x) =
∫

�d

f (y)P(x, dy) =
d∑

i=0

pi(x)
∫

(x,ei)
f (y)Ui(x, dy)

=
d∑

i=0

pi(x)
∫ 1

0
f (tx + (1 − t)ei) dt.

For the computation of P∗, we assume d = 2; the same argument holds for any d. For all
f ∈L

∞(�d) and g ∈L
1(�d, dx),∫

�2

f (x)P∗g(x) dx =
∫

�2

Pf (x)g(x) dx

=
2∑

i=0

∫
�2

(
pi(x)

∫ 1

0
f (tx + (1 − t)ei) dt

)
g(x) dx

=
2∑

i=0

∫
�2

(
Gi(x)

∫ 1

0
f (tx + (1 − t)ei) dt

)
dx.

Let us detail the computation of the term
∫
�2

(
G0(x)

∫ 1
0 f (tx) dt

)
dx which corresponds to

i = 0; the same calculation holds for the other terms:∫
�2

(
G0(x)

∫ 1

0
f (tx) dt

)
dx =

∫ 1

0

[ ∫ 1−x1

0

(
G0(x)

∫ 1

0
f (tx) dt

)
dx2

]
dx1

=
∫ 1

0

[ ∫ 1

0

( ∫ 1−x1

0
G0(x)f (tx) dx2

)
dt

]
dx1

=
∫ 1

0

[ ∫ 1

0

( ∫ 1−x1

0
G0(x)f (tx) dx2

)
dx1

]
dt

y2=tx2=
∫ 1

0

[ ∫ 1

0

( ∫ (1−x1)t

0
G0

(
x1,

y2

t

)
f (tx1, y2)

dy2

t

)
dx1

]
dt

y1=tx1=
∫ 1

0

[ ∫ t

0

( ∫ t−y1

0
G0

(
y1

t
,

y2

t

)
f (y1, y2)

dy2

t

)
dy1

t

]
dt

=
∫ 1

0

[ ∫ 1

y1

( ∫ t−y1

0

1

t2
G0

(
y1

t
,

y2

t

)
f (y1, y2) dy2

)
dt

]
dy1

=
∫ 1

0

[ ∫ 1−y1

0

( ∫ 1

y1+y2

1

t2
G0

(
y1

t
,

y2

t

)
f (y1, y2) dt

)
dy2

]
dy1

=
∫

�2

f (y)

( ∫ 1

1−y0

t−2G0

(
1

t
y
)

dt

)
dy.
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Similarly,

∫
�2

(
Gi(x)

∫ 1

0
f (tx + (1 − t)ei) dt

)
dx =

∫ 1
1−yi

1
Gi
(
sy + (1 − s)ei

)
ds

for i = 1, 2, and (2.3) follows. �
Remark 2.1. In dimension d = 1, Lemma 2.1 is still valid and corresponds to the expression
for P∗ given in [20]:

P∗g(y) =
∫ 1

1−y
t−1G1

(
1

t
y +

(
1 − 1

t

))
dt +

∫ 1

y
t−1G0

(
1

t
y

)
dt =

∫ y

0

G1(s)

1 − s
ds +

∫ 1

y

G0(s)

s
ds.

Let us summarize some simple properties of P and P∗.

Proposition 2.1.

(a) The operator P is a Markov operator on L
∞(�d), i.e.

(i) Pf ≥ 0 whenever f ∈L
∞(�d) and f ≥ 0;

(ii) P1 = 1.
In particular, ‖Pf ‖∞ ≤ ‖f ‖∞ for any f ∈L

∞(�d). Furthermore, P is a Feller operator
on �d, i.e. Pf ∈ C(�d) for all f ∈ C(�d).

(c) P∗ acts on L
1(�d, dx) and, for any non-negative function g ∈L

1(�d, dx), P∗g ≥ 0
and ‖P∗g‖1 = ‖g‖1. Furthermore, P∗ acts on Den(�d, dx), i.e. P∗ : Den(�d, dx) →
Den(�d, dx) and, for all g1 �= g2 ∈ Den(�d, dx),

‖P∗g1 − P∗g2‖1 < ‖g1 − g2‖1. (2.4)

Proof. The properties of P are quite obvious; in particular, the fact that P is a Feller operator
is easily checked from the representation (2.2) of P. Similarly, the first properties of P∗ follow
from the definition.

To establish (2.4), we fix g1 �= g2 ∈ Den(�d, dx) and set h = g1 − g2. We first note from
(2.3) that |P∗h| ≤ P∗|h| on �d, which implies ‖P∗g1 − P∗g2‖1 = ‖P∗h‖1 ≤ ‖P∗|h|‖1 = ‖h‖1 =
‖g1 − g2‖1. In fact, the inequality above is strict because both functions g1 and g2 belong to
Den(�d, dx). Ad absurdum, let us assume ‖P∗h‖1 = ‖h‖1. This implies ‖P∗h‖1 = ‖P∗|h|‖1,
and hence |P∗h(x)| = P∗(|h|)(x) Lebesgue almost surely (a.s.), since |P∗h| ≤ P∗(|h|) on �d. In
other words, for Lebesgue almost all x ∈ �d,

∣∣∣∣∣
d∑

i=0

∫ 1
1−xi

1
sd−2pi(sx + (1 − s)ei)h(sx + (1 − s)ei)

∣∣∣∣∣
=

d∑
i=0

∫ 1
1−xi

1
sd−2pi(sx + (1 − s)ei)|h(sx + (1 − s)ei)|.

Consequently, for i = 0, . . . , d, the quantities

∫ 1
1−xi

1
sd−2pi(sx + (1 − s)ei)h(sx + (1 − s)ei)
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all have the same sign and∣∣∣∣∣
∫ 1

1−xi

1
sd−2pi(sx + (1 − s)ei)h(sx + (1 − s)ei)

∣∣∣∣∣
=
∫ 1

1−xi

1
sd−2pi(sx + (1 − s)ei)|h(sx + (1 − s)ei)|.

In other words, for Lebesgue almost all x ∈ �d, setting xi := 1
1−xi

x + (
1 − 1

1−xi

)
ei for i =

0, . . . , d, the functions p0h, . . . , pdh, restricted respectively to [x, x0], . . . , [x, xd], have the
same sign. Hence, the functions hp0, . . . , hpd have (Lebesgue a.s.) the same sign on �d.
Eventually, the equality p1 + · · · + pd = 1 readily implies that the sign of h is Lebesgue
a.s. constant on �d. This contradicts the equality h = g1 − g2 with g1, g2 ∈ Den(�d, dx) and
g1 �= g2. �

As a direct consequence of (2.4), we may state the following corollary.

Corollary 2.1. (Uniqueness of the stationary density function) If a stationary density function
for the Markov chain (Zn)n≥0 exists then it is unique.

Proof. Assume that there are two different stationary density functions f �= g ∈ Den(�d, dx),
i.e. P∗f = f and P∗g = g. This implies that d(P∗f , P∗g) = d(f , g), in contradiction with (2.4).�
Remark 2.2.

(a) Although (Den(�d, dx), d) is a complete metric space, the operator P∗ is not uni-
formly contractive, i.e. there is no ρ ∈ [0, 1) such that, for any f , g ∈ Den(�d, dx),
d(P∗f , P∗g) ≤ ρd(f , g). Therefore, we cannot apply the Banach fixed point theorem.
In [29, Proposition 2, pp.988–989], the authors applied the Banach fixed point theorem
to prove the existence of the stationary density function, but their argument does not
work. A precise proof can be found in [20, Theorem 3.1], which covered all cases of
pi(x) in dimension 1.

(b) Although Den(�d, dx) is a non-empty closed convex subset in a Banach space
L

1(�d, dx), we cannot apply the Browder fixed point theorem, because L
1(�d, dx) is

not uniformly convex.

(c) There are many cases of pi(x) such that there is no stationary density function for the
(Zn)n≥0 even in dimension 1: see cases 2 and 3 in [20, Theorem 3.1], where the set of
invariant probability measures consists of convex combinations of Dirac measures δ0
and δ1. It is of interest to find a criteria on the weight functions pi(x) which ensures the
existence (then the unicity) of a stationary density function. This is still an open question
(see the last section of the present paper).

3. General framework for iterated function systems with a unique invariant probability
measure

In this section we recall some well-known results for iterated function systems and apply
them to our model.

The approach we use here is based on the description of the spectrum of the transition
operator associated with (Xn)n≥0; it is totally different from the one used in [23], based on
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criteria of ergodicity and stability of stochastic processes due to A. A. Borovkov [4]. We shall
use the assumption that our weight functions pi are Hölder, and there is at least one of these
functions with full support. This assumption and Assumption 2.2(ii) in [23] cannot be com-
pared. Therefore, our Theorem 3.4 and their Theorem 2.4 cannot be compared, although their
Assumptions 2.2(i) and (iii) for ξ cover ours for ξ = U(0, 1). Moreover, the main interest is its
flexibility: indeed, it allows us to study the case when several invariant probability measures
exist (see Section 5).

3.1. Iterated function systems with place-independent probabilities

Let (E, d) be a compact metric space and denote by Lip(E, E) the space of Lipschitz-
continuous functions from E to E, i.e. functions T : E → E such that

[T] := sup
x,y∈E
x �=y

d(T(x), T(y))

d(x, y)
< ∞.

Let (Tn)n≥1 be a sequence of i.i.d. random functions defined on a probability space (�, T , P)
with values in Lip(E, E) and common distribution μ. We consider the Markov chain (Xn)n≥0
on E defined, for any n ≥ 0, by

Xn+1 := Tn+1(Xn), (3.1)

where X0 is a fixed random variable with values in E. We say that the chain (Xn)n≥0 is generated
by the iterated function system (Tn)n≥1. Notice that Xn = Tn ◦ · · · ◦ T1(X0); it thus corresponds
to the forward iterations of the function system (Tn)n≥1. The stochastic behavior of (Xn)n≥0
is related to the contraction properties of the backward iterations T1 ◦ · · · ◦ Tn of the function
system (Tn)n≥1, which usually behave more nicely.

The transition operator Q of (Xn)n≥0 is defined, for any bounded Borel function ϕ : E →C

and any x ∈ E, by Qϕ(x) := ∫
Lip(E,E) ϕ(T(x))μ(dT). The chain (Xn)n≥0 has the ‘Feller prop-

erty’, i.e. the operator Q acts on the space C(E,C) of continuous functions from E to
C. The maps Tn being Lipschitz continuous on E, the operator Q also acts on the space
Lip(E,C) of Lipschitz-continuous functions from E to C, and more generally on the space
Hα(E,C), 0 < α ≤ 1, of α-Hölder-continuous functions from E to C defined by Hα(E,C) :=
{f ∈ C(E,C) | ‖f ‖α := ‖f ‖∞ + mα(f ) < +∞}, where

mα(f ) := sup
x,y∈E
x �=y

|f (x) − f (y)|
d(x, y)α

< ∞.

Endowed with the norm ‖ · ‖α , the space Hα(E,C) is a Banach space.
The behavior of the chain (Xn)n≥0 is closely related to the spectrum of the restriction of Q

to these spaces. Under some ‘contraction in mean’ assumption on the Tn, the restriction of Q
to Hα(E,C) satisfies some spectral gap property. We first cite the following result from [20,
Proposition 2.1].

Theorem 3.1. ([20].) Assume that there exists α ∈ (0, 1] such that

r := sup
x,y∈E
x �=y

∫
Lip(E,E)

(
d(T(x), T(y))

d(x, y)

)α

μ(dT) < 1. (3.2)

Then, there exists on E a unique Q-invariant probability measure ν. Furthermore, there exist
constants κ > 0 and ρ ∈ (0, 1) such that, for all ϕ ∈Hα(E,C), ‖Qnϕ − ν(ϕ)‖α ≤ κρn‖ϕ‖α .
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Remark 3.1. In the theory of random iterative function systems, it is common to assume
contraction in mean in the form

E

(
log sup

x,y∈E
x �=y

d(T(x), T(y))

d(x, y)

)
< 0,

which is secured, for instance, by

E

(
sup
x,y∈E
x �=y

d(T(x), T(y))

d(x, y)

)α

< 1.

The log-contraction condition instead of this last, more restrictive, contraction condition is in
fact an improvement of a cosmetic nature, since cases when log-contraction conditions are
fulfilled but average contraction conditions are not typically indicate that a change of metric is
appropriate (see [31] for more details). Notice also that the condition (3.2) (see also condition
H1 in Theorem 3.3) is less restrictive, with the supremum put out of the expectation; it already
appeared as the ‘global average condition’ in [31] and references therein.

3.1.1. Application to the Diaconis–Freedman chain for p fixed in �d We assume pi(x) = pi for
all i = 0, . . . , d. This puts the Diaconis–Freedman chain into the framework of iterated random
functions as follows. For each i = 0, . . . , d and t ∈ [0, 1], we set Hi(t, ·) : �d → �d, x �→ tx +
(1 − t)ei as an affine transformation; these functions Hi(t, ·) belong to the space Lip(�d, �d)
of Lipschitz-continuous functions from �d to �d, with Lipschitz coefficient m(Hi(t, ·)) = t.
Then, we consider the probability measure μ on Lip(�d, �d) defined by

μ(dT) :=
d∑

i=0

pi

∫ 1

0
δHi(t,·)(dT) dt, (3.3)

where δT is the Dirac mass at T . Equation (2.2) may be rewritten as: for all f ∈L
∞(�d) and

x ∈ �d, Qf (x) = ∫
Lip(�d,�d) f (T(x))μ(dT). Hence, the Diaconis–Freedman chain (Zn)n≥0 on

�d is generated by the iterated function system (Tn)n≥1 in the sense of (3.1), where (Tn)n≥1 is
a sequence of i.i.d. random functions with common distribution μ defined by (3.3).

Theorem 3.2. If pi(x) = pi for all i = 0, . . . , d, then the Diaconis–Freedman chain in �d

admits a unique P-invariant probability measure ν on �d. Furthermore, for any α ∈ (0, 1],
there exist constants κ > 0 and ρ ∈ (0, 1) depending on α such that, for any ϕ ∈Hα(�d,C)
and x ∈ �d,

∣∣Qnϕ(x) − ν(ϕ)
∣∣≤ κρn‖ϕ‖α .

Proof. This is a direct consequence of Theorem 3.1, because, for all α ∈ (0, 1], we have

r = sup
x,y∈�d
x�=y

∫
Lip(�d,�d)

( |T(x) − T(y)|
|x − y|

)α

μ(dT) ≤
d∑

i=0

pi

∫ 1

0
m(Hi(t, ·))αdt

=
∫ 1

0
tαdt = 1

1 + α
< 1. �

Remark 3.2. The unique P-invariant probability measure ν is usually nothing but the Dirichlet
distribution Dir[θ0, . . . , θk], as will be shown later. If θi > 0 for all i = 0, . . . , k, we have a
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unique invariant probability density which is the Dirichlet density. Otherwise, the Dirichlet
distribution is singular and can be understood in the sense of [9, p. 211], [10, Definition 3.1.1,
p. 89], or [16, Definition 4.2].

3.2. Iterated function systems with place-dependent probabilities

In this subsection we extend the measure μ to a collection (μx)x∈E of probability measures
on Lip(E, E), depending continuously on x. We consider the Markov chain (Xn)n≥0 on E whose
transition operator Q is given, for any bounded Borel function ϕ : E →C and any x ∈ E, by
Qϕ(x) = ∫

Lip(E,E) ϕ(T(x))μx(dT). First, we introduce the following definition.

Definition 3.1. A sequence (ξn)n≥0 of continuous functions from E to E is a contracting
sequence if there exists x0 ∈ E such that, for all x ∈ E, limn→+∞ ξn(x) = x0.

We cite the following result from [20, Proposition 2.2].

Theorem 3.3. ([20].) Assume that there exists α ∈ (0, 1] such that

H1 r := sup
x,y∈E
x �=y

∫
Lip(E,E)

(
d(T(x), T(y))

d(x, y)

)α

μx(dT) < 1;

H2 Rα := sup
x,y∈E
x �=y

|μx − μy| TV

d(x, y)α
< +∞, where |μx − μy|TV is the total variation distance

between μx and μy;

H3 there exist δ > 0 and a probability measure μ on E such that

(i) for all x ∈ E, μx ≥ δμ;

(ii) the closed semi-group Tμ generated by the support Sμ of μ possesses a contracting
sequence.

Then, there exists on E a unique Q-invariant probability measure ν. Furthermore, for some
constants κ > 0 and ρ ∈ (0, 1), for any ϕ ∈Hα(E) and x ∈ E, |Qnϕ(x) − ν(ϕ)| ≤ κρn‖ϕ‖α .

Let us now apply this statement to the Diaconis–Freedman chain on �d. For each x ∈ �d,
we define a space-dependent probability measure μx on Lip(�d, �d) by

μx(dT) :=
d∑

i=0

pi(x)
∫ 1

0
δHi(t,·)(dT) dt,

where δT is the Dirac mass at T . With this collection (μx)x∈�d of probability measures, the
Diaconis–Freedman chain falls within the scope of Theorem 3.3.

Theorem 3.4. Assume that

(i) for all j = 0, . . . , d, the functions pj belong to Hα(�d,C);

(ii) there exists i ∈ {0, . . . , d} such that δi := minx∈�d pi(x) > 0.

Then, the Diaconis–Freedman chain in �d has a unique P-invariant probability mea-
sure ν on �d. Furthermore, there exist constants κ > 0 and ρ ∈ (0, 1) such that, for any
ϕ ∈Hα(�d,C) and x ∈ �d, |Pnϕ(x) − ν(ϕ)| ≤ κρn‖ϕ‖α .
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Proof. This is a direct consequence of Theorem 3.3 since conditions H1–H3 hold in this
context:

H1 For any x �= y ∈ �d,

∫
Lip(�d,�d)

( |T(x) − T(y)|
|x − y|

)α

μx(dT) =
d∑

i=0

pi(x)
∫ 1

0

( |Hi(t, x) − Hi(t, y)|
|x − y|

)α

dt

= 1

1 + α
< 1.

H2 For any x �= y ∈ �d and any Borel set A ⊆Lip(�d, �d),

|μx(A) − μy(A)|
|x − y|α ≤

d∑
i=0

|pi(x) − pi(y)|
|x − y|α

∫ 1

0
δHi(t,·)(A) dt

≤
d∑

i=0

mα(pi) < ∞.

H3 Set μ(dT) := ∫ 1
0 δHi(t,·)(dT) dt; then, for all x ∈ �d,

μx(dT) ≥ pi(x)
∫ 1

0
δHi(t,·)(dT) dt ≥ δμ(dT).

Moreover, the constant function x �→ 0 belongs to the support of μ so that the semigroup
Tμ contains a contracting sequence with limit point 0.

We emphasize that under conditions H1–H3, the eigenvalue 1 is simple and is the unique
eigenvalue of Q with modulus 1; the proof requires precise control of the peripherical spectrum
of Q; see the proof of [20, Proposition 2.2]. �

4. Some explicit invariant probability densities

In this section we consider some special cases of weights for which it is possible to compute
explicitly the unique invariant probability density. When d = 1, it is known that, when both
conditions p1(0) > 0 and p0(1) > 0 hold, there exists a unique invariant probability density of
(Zn)n≥0 given by

g∞(y) = C exp

( ∫ y

1/2

p1(t)

1 − t
dt −

∫ y

1/2

p0(t)

t
dt

)
;

see, for instance, [29] or [20]. We do not get such a general result when d ≥ 2, we can do it only
in some specific cases. We would also like to emphasize that in [23], based on Sethuraman’s
construction of the Dirichlet distributions [30], the authors also gave general results for the
explicit formula of the stationary density in these special cases. Our approach, however, is
very natural and worth taking into account.
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4.1. The case of constant weights

We first consider the case of constant weights, i.e. pi(x) = pi > 0 for all i = 0, . . . , d.

Theorem 4.1. If pi(x) = pi > 0 for all i = 0, . . . , d, then the unique invariant probability
density g∞ of (Zn)n≥0 is the density of the Dirichlet distribution Dir[p0, . . . , pd], i.e.

g∞(y) = 1∏d
i=0 �(pi)

d∏
i=0

ypi−1
i 1�d (y)

for any y = (y1, . . . , yd) in �d, where y0 = 1 − y1 − · · · − yd.

Proof. It suffices to prove that g∞(y) =∏d
i=0 yαi

i with αi = pi − 1 is the unique solution of
the equation P∗g(y) = g(y). Indeed, according to (2.3),

P∗g∞(y) =
d∑

i=0

pi

∫ 1
1−yi

1
sd−2g∞

(
sy + (1 − s)ei

)
ds

=
d∑

i=0

pi

∫ 1
1−yi

1
sd−2(syi + 1 − s)αi

∏
j �=i

(syj)
αj ds

=
d∑

i=0

pi

∫ 1
1−yi

1
sd−2+∑j �=i αj (syi + 1 − s)αi

g∞(y)

yαi
i

ds

=
d∑

i=0

pi

(1 − yi)y
αi
i (1 − yi)−2−αi

(∫ yi

0
tαi (1 − t)−2−αi dt

)
g∞(y), (4.1)

where the last equality follows by using the change of variables t = syi + 1 − s and the equality∑d
j=0 αj = −d. Notice that, for i = 0, . . . , d and αi > −1,

(1 + αi)
∫ yi

0
tαi(1 − t)−2−αi dt = y1+αi

i (1 − yi)
−1−αi .

As a matter of fact, the function F : yi �→ (1 + αi)
∫ yi

0 tαi(1 − t)−2−αi dt − y1+αi
i (1 − yi)−1−αi

satisfies F(0) = 0 and F′(yi) = 0; therefore, F(yi) ≡ 0. Hence, the equality (4.1) yields

P∗g∞(y) =
d∑

i=0

yig∞(y) = g∞(y).

The uniqueness stems from Corollary 2.1. �
Example 4.1. When d = 2, p1 = p2 = p0 = 1/3, the unique invariant probability density is

g∞(y) = 1

�(1/3)3
y
− 2

3
1 y

− 2
3

2 (1 − y1 − y2)−
2
3 1�2 (y)

(see Figure 2).
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FIGURE 2. The density function of the Dirichlet distribution Dir
[

1
3 , 1

3 , 1
3

]
.

2 2

FIGURE 3. Left: Random trajectory of Zn in [0,1] starting at x0 = 0.6. Right: Random trajectory of Zn in
�2 starting at x0 = (0.3, 0.4).

Figure 3 represents random trajectories of (Zn)n≥0:

• in [0, 1], starting at x0 = 0.6 with p1(x) = 0.2, p0(x) = 0.8, in the left panel;

• in �2, starting at x0 = (0.3, 0.4) with p1(x) = 0.5, p2(x) = 0.2, p0(x) = 0.3 in the right
panel.

They both illustrate the ergodic behavior of the chain.
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4.2. The case of affine weights

In this section we present a special case of non-constant weight functions pi(y) which yield
an explicit form of the unique invariant density function.

Theorem 4.2. Fix positive constants θ0, . . . , θd > 0 with |θ | = θ0 + · · · + θd ≤ 1, and assume
that, for any i = 1, . . . , d and x = (x1, . . . , xd) in �d, pi(x) = p̃i(xi) := θi + (1 − |θ |)xi (which
implicitly implies p0(x) = p̃0(x0) := θ0 + (1 − |θ |)x0). Then, the unique invariant probability
density g∞ of (Zn)n≥0 is the Dirichlet distribution Dir[θ0, . . . , θd] given by

g∞(y) = Dir[θ0, . . . , θd](y) = �(|θ |)∏d
i=0 �(θi)

d∏
i=0

yθi−1
i 1�d (y)

for any y = (y1, . . . , yd) in �d, where y0 = 1 − y1 − · · · − yd.

Proof. Using the same techniques as in the proof of Theorem 4.1, we only need to check
that ∫ yi

0 pi(t)tαi(1 − t)|α|−αi+d−2 dt

yαi
i (1 − yi)|α|−αi+d−1

= yi,

which can be easily done by a direct calculation.

Remark 4.1.

(i) The case when |θ | = 1 corresponds to constant weights.

(ii) This result has a very close connection to results studied in Wright–Fisher models with
mutations (see, for instance, [15, 32, 33]).

In Figure 4 we simulate random trajectories of (Zn)n≥0:

• in [0, 1], starting at x0 = 0.6 with p1(x) = x, p0(x) = 1 − x in the left panel;

• in �2 starting at x0 = (0.3, 0.4) with p1(x) = x1, p2(x) = x2, p0(x) = 1 − x1 − x2 in the
right panel. They both illustrate the absorbing behavior of the chain.

5. Asymptotic behavior of (Zn)n ≥ 0

In this section we describe the asymptotic behavior of (Zn)n≥0 using the notion of minimal
P-absorbing compact subsets. First, we establish some properties of the family Km of these
subsets and propose their classification. By a general results of [14], this yields the classifica-
tion of the set of P-invariant probability measures as well as the description of the asymptotic
behavior of (Zn)n≥0. The classification is complete in �2 but partial in �d, d > 2.

5.1. The set Km of minimal P-absorbing compact subsets

Definition 5.1. A non-empty compact subset K ⊆ �d is said to be P-absorbing if, for all x ∈ K,

P(x, Kc) := P1Kc (x) =
d∑

i=0

pi(x)
∫ 1

0
1Kc (tx + (1 − t)ei) dt = 0,

where Kc = �d \ K. It is minimal when it does not contain any proper P-absorbing compact
subset.
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2 1 1 2

FIGURE 4. Left: Four random trajectories of Zn in [0,1] starting at x0 = 0.8; they will absorb in {0, 1}.
Right: Four random trajectories of Zn in �2 starting at x0 = (0.3, 0.4); they will absorb in {e0, e2}.

FIGURE 5. The domain Bε(ei).

We denote by Km the set of all minimal P-absorbing compact subsets. For any x0 ∈ �d and
ε > 0, we set Bε(x0) = {x ∈ �d : |x − x0| < ε} and Bε = ∪d

i=0Bε(ei); Figure 5 shows the domain
Bε(ei).

The following rules are useful for describing the minimal P-absorbing sets K.

Proposition 5.1. Given continuous weight functions pi(x) on �d, i.e. pi(x) ≥ 0 for every i =
0, . . . , d and

∑d
i=0 pi(x) = 1:

(i) If K ∈Km then K contains at least one vertex.

(ii) If K ∈Km, ei ∈ K, and pi(ei) = 1 then K = {ei}.
(iii) If K ∈Km, ei ∈ K, and pj(ei) > 0 for some j �= i then [ei, ej] ⊆ K.

(iv) If K ∈Km and pi(x) > 0 for some x ∈ K \ {ei} then [ei, x] ⊆ K.

Proof.

(i) Assume that ei /∈ K for all i = 0, . . . , d. Since Kc is open, there exists ε > 0 such that
Bε ⊆ Kc. Therefore, for all x ∈ K,
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P(x, Kc) =
d∑

i=0

pi(x)
∫ 1

0
1Kc (tx + (1 − t)ei) dt

≥
d∑

i=0

pi(x)
∫ 1

0
1Bε (tx + (1 − t)ei) dt =

d∑
i=0

pi(x)ε = ε > 0.

This contradicts the fact that K is P-absorbing.

(ii) It suffices to prove that {ei} ∈Km. This is true because

P(ei, {ei}c) =
∑
j �=i

pj(ei) = 0.

(iii) If [ei, ej] ∩ Kc �= ∅, then there exist x0 ∈ [ei, ej] ∩ Kc and ε > 0 such that Bε(x0) ⊆ Kc.
Therefore, P(ei, Kc) ≥ pj(ei)ε > 0, a contradiction.

(iv) Again, if [ei, ej] ∩ Kc �= ∅, then there exist x0 ∈ [ei, ej] ∩ Kc and ε > 0 such that
Bε(x0) ⊆ Kc; hence, P(x, Kc) ≥ pi(x)ε > 0, which is a contradiction. �

This proposition easily yields the classification of Km when d = 1 (see [20]):

(i) If p1(1) < 1 and p0(0) < 1 then Km = {[0, 1]}.
(ii) If p1(1) < 1 and p0(0) = 1 then Km = {{1}}.

(iii) If p1(1) = 1 and p0(0) < 1 then Km = {{0}}.
(iv) If p1(1) = 1 and p0(0) = 1 then Km = {{0}, {1}}.

Proposition 5.1 is also sufficient to get the full classification of the set Km in �2. In the next
two subsections we focus on this classification and the asymptotic behavior of (Zn)n≥0 in �2.
The reader may be easily convinced that similar statements hold in higher dimensions, with
technical difficulties we do not want to contend with here; an expanded version of Proposition
5.1 is required when d ≥ 3.

5.2. Classification of Km in �2

We assume d = 2 in this subsection. Unlike the case d = 1, for the case of d = 2 we need
to classify the values of pi not only on the vertices but also on the edges. We denote L0 = {x ∈
[e1, e2] : p0(x) > 0}, L1 = {x ∈ [e0, e2] : p1(x) > 0}, and L2 = {x ∈ [e0, e1] : p2(x) > 0}. Let Lc

0
(respectively Lc

1 and Lc
2) be the complement of L0 (resp. L1 and L2) in [e1, e2] (resp. [e0, e2]

and [e0, e1]).
Let us fix K ∈Km. There are several cases to consider.

5.2.1 p0(e0) = p1(e1) = p2(e2) = 1 By Proposition 5.1(i), either e0 ∈ K or e1 ∈ K or e2 ∈ K.
When e0 ∈ K, Proposition 5.1(ii) implies K = {e0}; similarly for e1 or e2. Finally, Km =
{{e0}, {e1}, {e2}}.
5.2.2 p0(e0) = p1(e1) = 1 but p2(e2) < 1 As above, if e0 ∈ K (resp. e1 ∈ K) then K = {e0} (resp.
e1 ∈ K). Assume now that e2 ∈ K. Proposition 5.1(iii) implies [e0, e2] ⊆ K when p2(e0) > 0
and [e1, e2] ⊆ K when p2(e1) > 0. Therefore, K contains e1 or e2, in contradiction with the
minimality of K. Finally, Km = {{e0}, {e1}}.
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FIGURE 6. Domain Bε(e0).

Similar statements hold when p0(e0) = p2(e2) = 1 but p1(e1) < 1 or p1(e1) = p2(e2) = 1 but
p0(e0) < 1.

5.2.3 p0(e0) = 1 but p1(e1), p2(e2) < 1 Firstly, {e0} ∈Km and K = {e0} as soon as e0 ∈ K.
Assume now e0 /∈ K (thus Bε(e0) ⊆ Kc for some ε > 0; see Figure 6) and suppose,

for instance, e1 ∈ K (the same argument holds with e2). Hence, p0(e1) = 0; indeed, the
condition p0(e1) > 0 implies [e0, e1] ⊆ K, a contradiction. Consequently, p2(e1) > 0, which
implies [e1, e2] ⊆ K, so p0(e2) = 0 and p1(e2) > 0. This readily implies that L0 = ∅; other-
wise, p0(x0) > 0 for some x0 ∈ [e1, e2], and therefore P(x0, Kc) ≥ p0(x0)ε > 0, contradicting
the fact that x0 ∈ K and K is invariant. The equality L0 = ∅ yields K = [e1, e2] and Km =
{{e0}, [e1, e2]}. Finally,

Km =
⎧⎨
⎩{{e0}, [e1, e2]} if L0 = ∅,

{{e0}} otherwise.

Similar statements hold when p1(e1) = 1 but p0(e0), p2(e2) < 1, or p2(e2) = 1 but
p0(e0), p1(e1) < 1.

5.2.4 p0(e0), p1(e1), p2(e2) < 1 and L0 = ∅ By Proposition 5.1(i), the set K contains at least
one of the vertices. Assume, for instance, e1 ∈ K; thus, p2(e1) > 0 since L0 = ∅, which implies
[e1, e2] ⊆ K. The condition L0 = ∅ also implies P(x, [e1, e2]c) = p0(x) = 0 for all x ∈ [e1, e2],
and finally K = [e1, e2]. The same conclusion holds when e2 ∈ K.

Now, the set K cannot contain e0. Otherwise, the condition p0(e0) < 1 implies either
[e0, e1] ⊆ K or [e0, e2] ⊆ K; thus, e1 ∈ K or e2 ∈ K. This yields K = [e1, e2], a contradiction.
Finally, Km = {[e1, e2]}.

Similar statements hold when L1 = ∅ or L2 = ∅.

5.2.5 p0(e0), p1(e1), p2(e2) < 1 and L0, L1, L2 non-empty In this case we always have
{e0, e1, e2} ⊆ K. Indeed, by Proposition 5.1(i), the set K contains at least one vertex, say e0 ∈
K; since p0(e0) < 1, it contains one of the two sides [e0, e1] or [e0, e2]. Assume [e0, e1] ⊂ K
(thus e1 ∈ K) and let us check that e2 ∈ K. Otherwise, Bε(e2) ⊆ Kc for some ε > 0; since L2
is a proper subset of [e0, e1], there exists x ∈ [e0, e1] ⊆ K such that P(x, Kc) ≥ p2(x)ε > 0, a
contradiction.

Now, the inclusion {e0, e1, e2} ⊆ K combined with Proposition 5.1(iv) yields co{e0, L0} ⊆
K, co{e1, L1} ⊆ K, and co{e2, L2} ⊆ K, so that, by the compactness of K,

K0 := co{e0, L0} ∪ co{e1, L1} ∪ co{e2, L2} ⊆ K. (5.1)
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FIGURE 7. K0 = white domains ∪ yellow domains = �2\ green domain; Kc
0 is the green domain; �1,

�2, and �0 are the yellow domains I, II, and III respectively.

Next, for all i ∈ {0, 1, 2} we denote Li(1) := {x ∈ K0 : pi(x) > 0}. It is easy to see that Li(1) ⊇ Li

for all i ∈ {0, 1, 2}. Then, Proposition 5.1(iv) and the compactness of K yield

K1 := co{e0, L0(1)} ∪ co{e1, L1(1)} ∪ co{e2, L2(1)} ⊆ K. (5.2)

We construct by induction a sequence of increasing compact subsets {Kn}n≥0 ⊆ K and consider
two possibilities: if there is a finite n such that Kn = �2 then K = �2; otherwise, K = K∞ :=
{∪n≥0Kn} ⊂ �2. In this case Km consists of a unique minimal P-absorbing compact set,

Km =
⎧⎨
⎩{�2} if there exists a finite n such that Kn = �2,

{K∞} otherwise.

We illustrate here two cases when Km = {K0} and Km = {K1}. If we assume that, for i =
0, 1, 2,

pi(x) = 0 for all x ∈ �i := {y ∈ K0 : [y, ei] ∩ Kc
0 �= ∅}, (5.3)

then K1 = K0 and, by induction, K∞ = K0. Moreover, from (5.3), P(x, Kc
0) = 0 for all x ∈ K0,

and therefore K = K0 by the minimality of K and (5.1) (see Figure 7).
If we assume now, for i = 0, 1, 2,

pi(x) = 0 for all x ∈ �i(1) := {ith yellow region}, (5.4)

then K1 �= K0, K2 = K1, and iteratively K∞ = K1. Moreover, by (5.4), P(x, Kc
1) = 0 for all x ∈

K1, and therefore K = K1 by the minimality of K and (5.2) (see Figure 8).

5.2.6. Summary The complete classification of Km in �2 is as follows:

Theorem 5.1. In �2, we have the following options, which are mutually exclusive:

(i) Km consists of 3 vertices.

(ii) Km consists of 2 vertices.

(iii) Km consists of 1 vertex.
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FIGURE 8. K1 = white domains + yellow domains = �2 minus; green domain; Kc
1 is the green domain;

�1(1), �2(1), and �0(1) are the yellow domains I, II, and III respectively.

(iv) Km consists of 1 edge.

(v) Km consists of 1 vertex and 1 opposite edge.

(vi) Km consists of a compact subset K∞ ⊆ �2 such that K∞ ∩ �2 �= ∅. This set K∞ may
equal the whole set �2.

5.3. Asymptotic behavior of (Zn)n ≥ 0 in �2

Using Theorem 5.1, we may state the following theorem in �2.

Theorem 5.2. Let (Zn)n≥0 be the Diaconis–Freedman chain in �2 with weight functions
pi(x) ∈Hα(�2) for some α ∈ (0, 1]. Denote by PInv(�2) the set of invariant probabil-
ity measures of (Zn)n≥0 in �2. Then, we have the following options, which are mutually
exclusive:

(i) If Km = {{e0}, {e1}, {e2}} then PInv(�2) = co{δe0 , δe1, δe2} and, for all x ∈ �2, the chain
(Zn)n≥0 converges Px-a.s. to a random variable Z∞ with values in {e0, e1, e2} and
distribution Px(Z∞ = ei) = hi(x), i ∈ {0, 1, 2}, where hi is a non-negative function in
Hα(�2) such that Phi = hi, h0 + h1 + h2 ≡ 1, and hi(ej) = 0 for all i �= j ∈ {0, 1, 2}.
Moreover, there exist κ > 0 and ρ ∈ [0, 1) such that, for all ϕ ∈Hα(�2) and x ∈ �2,∣∣Pnϕ(x) − h0(x)ϕ(e0) − h1(x)ϕ(e1) − h2(x)ϕ(e2)

∣∣≤ κρn‖ϕ‖α .

(ii) If Km = {{e0}, {e1}} then PInv(�2) = co{δe0 , δe1} and, for any x ∈ �2, the chain (Zn)n≥0
converges Px-a.s. to a random variable Z∞ with values in {e0, e1} and distribu-
tion Px(Z∞ = ei) = hi(x), i ∈ {0, 1}, where hi is the unique function in Hα(�2) such
that Phi = hi, h0 + h1 ≡ 1, and hi(ej) = δij for all i, j ∈ {0, 1}. Moreover, there exist
κ > 0 and ρ ∈ [0, 1) such that, for all ϕ ∈Hα(�2) and x ∈ �2,

∣∣Pnϕ(x) − h0(x)ϕ(e0) −
h1(x)ϕ(e1)

∣∣≤ κρn‖ϕ‖α .
Similar statements hold when Km = {{e0}, {e2}} or Km = {{e1}, {e2}}.

(iii) If Km = {{e0}} then PInv(�2) = {δe0} and, for any x ∈ �2, the chain (Zn)n≥0 converges
Px-a.s. to e0. Moreover, there exist κ > 0 and ρ ∈ [0, 1) such that, for any ϕ ∈Hα(�2)
and x ∈ �2,

∣∣Pnϕ(x) − ϕ(e0)
∣∣≤ κρn‖ϕ‖α .

Similar statements hold when Km = {{e1}} or Km = {{e2}}.
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(iv) If Km = {[e1, e2]} then PInv(�2) = {μ12∞(dx ∩ [e1, e2])}, where μ12∞ is the probability
measure on [e1, e2] with density

g12∞((t, 1 − t), (s, 1 − s))

:= C exp

(∫ t

s

p1(u, 1 − u)

1 − u
du +

∫ s

t

p2(u, 1 − u)

u
du

)
. (5.5)

For any x ∈ �2, the chain (Zn)n≥0 converges Px-a.s. to a random variable Z∞ with
values on [e1, e2] and distribution μ12∞(dx ∩ [e1, e2]). Moreover, there exist κ > 0 and
ρ ∈ [0, 1) such that, for any ϕ ∈Hα(�2) and x ∈ �2,

∣∣Pnϕ(x) − μ12∞(ϕ)
∣∣≤ κρn‖ϕ‖α .

Similar statements hold when Km = {[e0, e1]} or Km = {[e0, e2]}.
(v) If Km = {{e0}, [e1, e2]} then PInv(�2) = co{δe0 , μ12∞(dx ∩ [e1, e2])}, where μ12∞ is the

probability measure on [e1, e2] with density given by (5.5). Furthermore, for any x ∈ �2,
the chain (Zn)n≥0 converges to e0 with probability h0(x) and to [e1, e2] with probability
h12(x), where h0 and h12 are non-negative functions in Hα(�2) such that Ph0 = h0,
Ph12 = h12, h0 + h12 ≡ 1, and h0(x) = 0 for all x ∈ [e1, e2] and h12(e0) = 0. Moreover,
there exist κ > 0 and ρ ∈ [0, 1) such that, for all ϕ ∈Hα(�2) and all x ∈ �2,

∣∣Pnϕ(x) −
h0(x)ϕ(e0) − h12(x)μ12∞(ϕ)

∣∣≤ κρn‖ϕ‖α .

(vi) If Km = {K∞} (possibly equal to �2) then PInv(�2) = {μ∞}, where μ∞ is a probability
measure on �2 with support K∞ (which possibly equals �2).

Proof. The operator P is non-negative, and bounded on Hα(�2) with spectral radius 1.
Moreover, for all ϕ ∈Hα(�2), we have

‖Pϕ‖α ≤ 1

1 + α
mα(ϕ) +

(
1 +

2∑
i=0

mα(pi)

)
‖ϕ‖∞.

Hence, by [12], the operator P is quasi-compact on Hα(�2). Note that 1 ∈Hα(�2) satisfies
P1 = 1. Therefore, by using [14, Theorem 2.2], the eigenspace corresponding to eigenvalue 1
is nothing but ker (P − Id). The decomposition of ker (P − Id) in all six of the above options
is then done using [14, Theorem 2.3] (i.e. if Km = {{e0}, {e1}, {e2}} then ker (P − Id) =C1 ⊕
Ch1 ⊕Ch2; if Km = {{e0}, {e1}} then ker (P − Id) =C1 ⊕Ch1; and so on).

Furthermore, by following [20, Theorem 3.1, Step 3], we easily prove that the peripheral
spectrum of P is reduced to {1}; the argument relies on the fact that, if ϕ ∈Hα(�2) satis-
fies Pϕ = λϕ with |λ| = 1, then the sequence (λ−nϕ(Zn))n≥0 is a bounded martingale, which
thus converges P-a.s. (see [20, Lemma 2.4]). This implies the proof in all six of the above
options. �
Remark 5.1. The cases considered in Section 4 where there is a unique invariant probability
density all satisfy case (vi) where Km = {�2}, i.e. when pi(ei) < 1 for all i = 0, 1, 2. The ques-
tion of the existence (hence unicity) of an invariant probability density when pi(ei) < 1 for all
i = 0, 1, . . . , d is still open for d ≥ 2 (it has been solved for d = 1 in [20]).

6. Discussion

We would like to briefly present here another interesting setting for the Diaconis–Freedman
chain in �d. For any i = 0, . . . , d and x ∈ �d, let Si(x) be the strict convex combination of x
and all vertices ej except ei, i.e. Si(x) := (

co{x, {ej}j �=i}
)
.
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FIGURE 9. An alternative model.

Assume that at time n, a walker Z is located at site Zn = x ∈ �d and has probability pi(x) to
move to the domain Si(x), the arrival point being chosen according to the uniform distribution
USi(dx)) on this domain. In other words, the one-step transition probability function of the
Markov chain generated by this walker is

P(x, dy) =
d∑

i=0

pi(x)
1

|Si(x)|1Si(x)(y) dy, x ∈ �d.

We illustrate this setting in �2 in Figure 9; such a setting and its applications will be considered
in detail elsewhere.
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