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The time it takes to acquire a satellite signal is one of the most important parameters for a Global
Navigation Satellite System (GNSS) receiver. The Parallel Frequency space search acquisition
Algorithm (PFA) runs faster than the Parallel Code phase search acquisition Algorithm (PCA)
when the approximate phase of Pseudo-Random Noise (PRN) code and the approximate value
of a Doppler shift are known. However, a large amount of data is needed to be dealt with by the
Fast Fourier Transform (FFT) in a traditional PFA algorithm because it processes a narrow-band
signal with the initial sampling frequency after the PRN code is stripped. In order to reduce the
computational complexity of the traditional PFA algorithm, a down-conversion module and a
downsampling module were added to the traditional PFA in the work reported here. Experiments
demonstrated that this method not only succeeded in acquiring BeiDou B1I signals, but also the
time for acquirement was reduced by at least 80% with the modified PFA algorithm compared
with the traditional PFA algorithm. The loss in Signal-to-Noise Ratio (SNR) did not exceed
0·5 dB when the number of coherent points was less than 500.
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1. INTRODUCTION. When transmitted from a satellite to a Global Navigation Satel-
lite System (GNSS) receiver, the carrier frequency and code phase of a signal will change
due to the Doppler effect. The signal will also be drowned in noise. So, the GNSS receiver
has to extract the signal from noise by a correlation method. The purpose of acquisition is
to determine the visible satellites, coarse values of Doppler shift and the phase of a Pseudo-
Random Noise (PRN) code (Rinder, 2004). Popular estimation algorithms of the phase of
the PRN code and a Doppler shift for satellite signals include the Serial Search acquisition
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Figure 1. PCA algorithm.

Figure 2. PFA algorithm.

Algorithm (SSA), Parallel Code phase search acquisition Algorithm (PCA) and Parallel
Frequency space search acquisition Algorithm (PFA) (Thakar and Mewada, 2012).

The time needed to acquire a satellite signal is one of the most important parameters for
a BeiDou satellite receiver (Xie et al., 2017). Most current receivers use fast acquisition
algorithms. The traditional fast acquisition algorithms include PCA and PFA. The PCA
algorithm, as shown in Figure 1, consists of six steps: the first step is to remove the Doppler
shift of the carrier wave; the second step is to perform Fast Fourier Transform (FFT) on
the satellite signal after the Doppler shift of the carrier wave is removed; the third step is to
perform FFT on the locally generated PRN code sequence and perform complex conjugate
processing; the fourth step is to multiply the second and third results; the fifth step is to
take the inverse Fourier transform of the outputs of the fourth step and the last step is to
compare the peak value of FFT outputs with the acquisition threshold to determine whether
the satellite signal has been acquired. The PFA algorithm, as shown in Figure 2, consists of
three steps: the first step is to strip away the PRN code; the second step is to estimate the
Doppler shift through FFT and the third step is to compare the peak value of FFT outputs
with the acquisition threshold to determine whether the satellite signal has been acquired.

Both the PCA algorithm and the PFA algorithm convert the signal from time-domain
to frequency-domain using FFT. PCA does a parallel search of the PRN code and a serial
search of the frequency or Doppler shift (Zeng et al., 2018; Cao et al., 2009; Leclère et al.,

https://doi.org/10.1017/S0373463319000699 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463319000699


NO. 2 PARALLEL FREQUENCY ACQUISITION ALGORITHM 435

2013). PFA does a parallel search of the frequency or Doppler shift and a serial search
of the PRN code (Aboud et al., 2015; Zheng, 2010). Since the range of the Doppler shift
is -5 kHz to 5 kHz, if the search step is set as 500 Hz, it only takes a maximum of 21
search rounds for PCA to achieve satellite acquisition. Since there are 2,046 chips in the
BeiDou PRN code, if the search step is set as one chip, it requires as many as 2,046 search
rounds for PFA to acquire the satellite signal. Therefore, in the case of a cold start of the
receiver (Kovar and Jelen, 2014; Jin et al., 2017), the PFA algorithm needs to consume
more computational resources than the PCA algorithm. However, in a single-round search
process, the PFA algorithm only needs to run the FFT operation once while the PCA needs
to run the FFT three times, so the PFA algorithm consumes less computational resources
to acquire the same satellite signal than the PCA algorithm when the approximate phase of
the PRN code and the approximate value of the Doppler shift are known.

As the bandwidth of the signal is decreased to about 10 kHz after the PRN code is
stripped away, the FFT process in the PFA algorithm will consume too much computa-
tional resource if the PFA algorithm still uses the original sampling frequency after PRN
code is stripped away. The Partial Matching Filter and Fast Fourier Transformation (PMF-
FFT) algorithm has been proposed to reduce the computational load of the PFA algorithm
(Liu et al., 2011a). However, the spectrum of the real-numbered satellite signals is
aliased when Doppler shift is present, since the PMF-FFT algorithm first performs down-
conversion processing. In order to reduce the computational load of the PFA algorithm and
make the modified PFA algorithm able to process both real and complex signals, this paper
proposes a coherent downsampling method.

The rest of this paper is organised as follows: first, the structure of the B1 signal is
introduced; it is followed by the principle of PFA based on coherent downsampling pro-
posed by this paper; then it goes on to theoretically analyse the influence of FFT point L
on the computational complexity of the proposed algorithm, the influence of the proposed
algorithm on signal power and Signal-to-Noise Ratio (SNR) and the influence of the pro-
posed algorithm on the acquisition sensitivity using the Receiver Operating Characteristic
(ROC) curve. Finally, the influence of the number of FFT points on acquisition time and
the SNR of the acquired signal are analysed based on experiments.

2. SIGNAL MODEL OF THE B1 SIGNAL. In November 2016, the China Satellite
Navigation Office released the Interface Control Document (ICD) for the open service B1
signal (China Satellite Navigation Office, 2016). The structure, basic parameters, PRN code
features and navigation data format of the B1 signal are described in the ICD. BeiDou
adopted the Quadrature Phase Shift Keying (QPSK) modulation mode (Gardner, 1986;
Noe, 2005) instead of the Binary Phase Shift Keying (BPSK) modulation of Global Posi-
tioning System (GPS) signals (Kim and Polydoros, 1988). Compared with BPSK, QPSK
transmits In-phase/Quadrature-phase (I/Q) signals simultaneously and utilises the fre-
quency band more efficiently. Consisting of channel I (open) and channel Q (authorisation),
the B1 signal can be expressed as:

S j
B1(t) = AB1I C j

B1I (t)D j
B1I (t) cos(2π fB1t + ϕ

j
B1I ) + AB1QC j

B1Q(t)D j
B1Q(t) sin(2π fB1t + ϕ

j
B1Q)

(1)

where j represents the satellite number; AB1I and AB1Q indicate the signal amplitude of
channel I and channel Q; C j

B1I and C j
B1Q are PRNs; D j

B1I (t) and D j
B1Q are navigation data
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Figure 3. Modulation mode of B1 signal.

and ϕ
j
B1I and ϕ

j
B1Q are the carrier phases of channels I and Q, respectively. The carrier

frequency fB1 is 1,561·098 MHz. Only the channel I signal will be studied in this paper as
the channel Q signal needs authorisation and is not open to the public. The code C j

B1I rate
is 2·046 MHz.

The satellite signal is obtained by modulating the code C j
B1I and navigation data with

the carrier in the QPSK mode. The code C j
B1I and navigation data of the B1 signal are mul-

tiplied by the carrier of the channel I (or Q) directly instead of going through a multiplexer
(Xie et al., 2016), and the modulation process is illustrated in Figure 3. Different from the
modulation method of GPS L1 navigation data, the BeiDou D1 navigation message is mod-
ulated with a 1 kbps Neumann-Hoffman (NH) code (Meng et al., 2017). Therefore, in order
to eliminate the effect of NH code jump on the correlation peak value, 2 ms data are usually
sampled for BeiDou satellite signal acquisition while 1 ms data is needed for GPS signal
acquisition.

As the code rate of C j
B1I is twice that of the GPS C/A code, to reduce acquisition time, the

signal sampling frequency needs to be reduced after the PRN is stripped. The heavy com-
putational load will correspondingly make it much more difficult to implement a software
receiver on an embedded platform with limited resources (Tian et al., 2008).

3. PRINCIPLES OF PFA BASED ON COHERENT DOWNSAMPLING. As BeiDou
B1 satellite’s PRN code has a code rate of 2·046 MHz, the Radio Frequency (RF) front end
uses a high frequency of 2·5 MHz as the Intermediate Frequency (IF) in order to enable the
IF signal to accommodate the information of the B1 signal. A sampling frequency greater
than 10 MHz is used to sample satellite signals to prevent aliasing distortion. After the
PRN code is stripped away, the carrier frequency is the sum of the IF and the Doppler shift,
which remains a relatively high value. Therefore, after the code is stripped away, the carrier
frequency is down-converted to make the signal only contain the Doppler information. As
shown in Figure 4, the first step is the same as the traditional PFA algorithm, where the
PRN code is stripped away. The second step is the down-conversion process to remove the
IF information and to retain only the Doppler shift information. The third step is to reduce
the sampling frequency by an integration method during the downsampling process. The
fourth step is the FFT process. The fifth step is to compare the peak value of FFT outputs
with the acquisition threshold to determine whether the satellite signal has been acquired.
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Figure 4. Parallel frequency acquisition algorithm based on coherent downsampling.

Step 1: Strip the PRN code C j
B1I away. According to the auto-correlation characteristics

of the PRN code C j
B1I , the PRN code can be stripped away by correlating the signal S j

B1(n)
with the locally generated PRN code. The details are as follows.

The signal input to the acquisition module is a complex IF signal as shown in
Equation (2):

S j
B1(n) = AB1I C j

B1I (n)D j
B1I (n) exp[i(2π (fIF + fd j

B1)n + ϕB1I )] + nB1I (n)

nB1I (n) = nI
B1I (n) + inQ

B1I (n)
(2)

fIF is the IF, which is a known value of the system. fd j
B1 represents the Doppler shift of the

B1 signal of the satellite j , whose range is between +10 kHz and −10 kHz in high dynamic
conditions and i stands for imaginary unit. nI

B1I (n) and nQ
B1I (n) are white Gaussian noise,

and their relationship can be expressed as Equation (3):

σ 2
nI

B1I
= σ 2

nQ
B1I

=
1
2
σ 2

0 (3)

where σ 2
0 is the average power of nB1I =

√
(nI

B1I )2 + (nQ
B1I )2.

The signal S j
B1(n) is multiplied by the locally generated code Cj

B1I (n − m). The process
is expressed as Equation (4):

x j
0 (n) = S j

B1(n)C j
B1I (n − m)

= AB1I D j
B1I (n)R(m) cos(2π (fIF + fd j

B1)n + ϕB1I )︸ ︷︷ ︸
I branch

+ i AB1I D j
B1I (n)R(m) sin(2π (fIF + fd j

B1)n + ϕB1I )︸ ︷︷ ︸
Q branch

+nB1I (n)

(4)

where m indicates the phase difference between C j
B1I (n) and C j

B1I (n − m). R(m) is the
correlation value between C j

B1I (n) and C j
B1I (n − m).

During acquisition, the phase of the locally generated PRN code is aligned with the
phase of the PRN code contained in the signal by moving m. When the phase of the locally
generated PRN code is aligned with the phase of the PRN code contained in the signal,
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R(m) can be represented by Equation (5).

R(m) = R(0) = 1 (5)

Step 2: Down-conversion. The complex down-conversion strategy is applied to the
down-conversion process of the above IF signal x j

0 (n), which is shown as Equation (6):

x1(n) = x j
0 (n) exp[−i(2π fIF )n]︸ ︷︷ ︸

SIF (n)

= AB1I D j
B1I (n) exp[i(2π fd j

B1n + ϕB1I )] + nB1I (n)

(6)

Step 3: Coherent downsampling. Equation (6) can be obtained by discrete sampling the
continuous time-domain signal x1(t) shown in Equation (7). The sampling frequency is fs,
which is much larger than the Doppler shift fd j

B1.

x1(t) = AB1I D j
B1I (t) exp[i(2π fd j

B1t + ϕB1I )] + nB1I (t) (7)

Due to fs � fd j
B1, the coherent downsampling process can be expressed as Equation (8):

y(k) =
1
M

M (k+1)∑
n=Mk

x1(n) =
1

MTs

∫ MTs(k+1)

MTsk
x1(t)dt

= A
sin(π fd j

B1MTs)

Mπ fd j
B1Ts

exp[i(2π fd j
B1MTsk + π fd j

B1MTs + ϕ)] + n(k)

n(k) = nI
(k) + inQ

(k)

(8)

where Ts represents the initial sampling period. M represents the number of coherent points.
y(k) can be obtained by sampling the time-domain signal y(t) at a sampling frequency

of 1
MTs . The signal structure of y(t) is shown as Equation (9) and the sampling process is

shown as Equation (10):

y(t) = A
sin(π fd j

B1MTs)

Mπ fd j
B1Ts

exp[i(2π fd j
B1Mt + π fd j

B1MTs + ϕ)] + n(t) (9)

y(k) = ŷ(t) = A
sin(π fd j

B1MTs)

Mπ fd j
B1Ts

exp(i(2π fd j
B1t + π fd j

B1MTs + ϕ))
∞∑

k=−∞
δ(t − MTsk) (10)

Since the coherent downsampling process does not change their noise characteristics,
the noise in branches I and Q are still white Gaussian noise after coherent processing
but the average noise power σ 2

nI
(k)

or σ 2
nQ

(k)
is reduced to 1/M, which can be expressed as

Equation (11):

σ 2
nI

(k)
= σ 2

nQ
(k)

=
1
2

σ 2
0

M
(11)

Step 4: FFT process. Since y(k) is an infinite sequence while FFT can only process finite
sequences, the signal y(k) must be windowed. To make the analysis easier, a rectangular
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window is used to truncate the signal y(k). The truncated process can be expressed as
Equation (12):

y ′(k) = ŷ ′(t)

= y(k)rect(MTsL)

= AB1I R(m)
sin(π fdB1MTs)

Mπ fdB1Ts︸ ︷︷ ︸
A

exp[i(2π fdB1t + π fdB1MTs + ϕ)]︸ ︷︷ ︸
x(t)

×
∞∑

k=−∞
δ(t − MTsk)

︸ ︷︷ ︸
s(t)

rect
(

t
MTsL

)
︸ ︷︷ ︸

w(t)

(12)

where L represents the number of FFT points.
Equation (12) can be simplified to Equation (13).

y ′(k) = ŷ ′(t) = Ax(t)s(t)w(t) (13)

Next, according to the rule that multiplication in the time domain is equal to convolution
in the frequency domain, y ′(k) is transferred from time domain to frequency domain, and
the transformation process is shown as Equation (14):

Y( f ) = AX ( f )∗S( f )∗W( f ) (14)

Equation (15) can be obtained by expanding each component of Equation (14):

Y( f ) = AX ( f )∗S( f )∗W( f )

= AB1I R(m)
sin(π fdB1MTs)

Mπ fdB1Ts︸ ︷︷ ︸
A

∗
[

1
2π

δ(2π f − 2π fdB1)
]

︸ ︷︷ ︸
X ( f )

∗
[

2π

MTs

∞∑
k=−∞

δ

(
2π f − k

2π

MTs

)]
︸ ︷︷ ︸

S( f )

∗ [MTsL sin c(MTsLf )]︸ ︷︷ ︸
W( f )

= AB1I R(m)L sin c(MTsfdB1)︸ ︷︷ ︸
A′(fdB1)

×

⎡
⎢⎢⎢⎢⎣[δ(2π f − 2π fdB1)]︸ ︷︷ ︸

Y′( f )

∗
[ ∞∑

k=−∞
δ

(
2π f − k

2π

MTs

)]
︸ ︷︷ ︸

S′( f )

∗ [sin c(MTsLf )]︸ ︷︷ ︸
W′( f )

⎤
⎥⎥⎥⎥⎦

(15)

Y( f ), a continuous and infinite frequency-domain signal, must be discretised and
truncated to obtain the discrete and finite frequency-domain signal, which is shown in
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Equation (16).

Y′(kk) = Y( f )
∞∑

kk=−∞
δ( f − kk�f )rect(MTsf)

= Y( f )
1/(2MTs)∑

kk=−1/(2MTs)

δ( f − kk�f )

(16)

The outputs of the system are the modulus of FFT outputs. The process is shown as
Equation (17):

Y(kk) =

√√√√(Y′I
(kk)

L

)2

+

(
Y′Q

(kk)

L

)2

(17)

The effect of FFT processing on noise is similar to that of coherent processing. The
noises of branches I and Q are white Gaussian noise after FFT processing but the average
noise power σ 2

YI
(kk)

or σ 2
YQ

(kk)
is reduced to 1/L. The process can be expressed as Equation (18):

σ 2
YI

(kk)
= σ 2

YQ
(kk)

=
σ 2

nI
(k)

L

σ 2
nQ

(k)

L
=

1
2

σ 2
0

ML
(18)

Step 5: Peak detection. The noise of Y(kk) belongs to the Rayleigh distribution and the
Y(kk) belongs to the Rice distribution. Equation (20) is derived from Equation (19):

Pfa =
∫ ∞

Yt
fn(Y)dY =

∫ ∞

Yt

Y
σ 2

YI
(kk)

e

−Y2

2σ2
YI

(kk) dY = e

−Y2

2σ2
YI

(kk) (19)

Yt = σYI
(kk)

√−2 ln(Pfa) (20)

where fn represents the probability density function of the Rayleigh distribution, Pfa
represents the false alarm rate and Yt represents the acquisition threshold.

After the acquisition threshold Yt is obtained, the detection probability of the signal can
be calculated according to Equation (21):

Pd =
∫ ∞

Yt
fs(Y)dY (21)

where fs represents the probability density function of the Rice distribution and Pd
represents the probability of detection.

4. ANALYSIS OF COMPUTATIONAL COMPLEXITY. On an embedded platform
with limited resources, the computational time of an acquisition algorithm will affect the
start-up speed of a software receiver. In the traditional hardware receiver, signal acquisi-
tion is achieved by the Application Specific Integrated Circuit (ASIC), which has a high
computing speed. In a software receiver, the signal is acquired by the software running in
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Table 1. Comparison of computational complexity.

PFA PCA Modified-PFA

Mul Add Mul Add Mul Add

Step 1 2N 0 2N 0 2N 0
Step 2 2N logN

2 3N logN
2 2N logN

2 3N logN
2 4N 2N

Step 3 0 0 2N logN
2 3N logN

2 0 2(N − L)
Step 4 0 0 4N 2N 2L logL

2 3L logL
2

Step 5 0 0 2N logN
2 3N logN

2 0 0
Sum y(n) × 2046 y(n) × 21 y(n) × 2046

Sum Mul 4092(N logN
2 + N ) 246(N logN

2 + N ) 4092L logL
2 + 12276N

Add 6138N logN
2 369 N logN

2 + 82N 8184N − 4092L + 6138L logL
2

the Central Processing Unit (CPU). Since the structure of CPU is more flexible, the soft-
ware receiver will be more useful than a hardware receiver if the computational load of
acquisition is reduced (Liu et al., 2011b).

According to the complex operational rules shown in Equations (22), (23) and (24), a
multiplication in a complex domain is equivalent to four multiplications and two additions
in a real domain. A multiplication of a complex number and a real number requires two
real multiplications. The process of taking the sum of two complex numbers requires two
real additions.

(a + ib)(c + id) = (ac − bd) + i(ad + bc) (22)

(a + ib)c = ac + ibc (23)

(a + ib) + (c + id) = (a + c) + i(b + d) (24)

Figures 1, 2 and 4 respectively show the operating steps of PCA, PFA and modified-
PFA algorithms. According to the complex operational rules shown as Equations (22), (23)
and (24), the computational complexity of PFA, PCA and modified-PFA algorithm can be
obtained as shown in Table 1.

In Table 1, y(n) represents the computational cost of a search round. Comparisons
of the computational loads of PFA, PCA and Modified-PFA algorithm in addition and
multiplication are shown in Figures 5 and 6, respectively.

From Figures 5 and 6, it can be seen that compared with the traditional PFA algorithm,
the modified PFA algorithm has greatly reduced the computational loads of both addition
and multiplication. The computational load consumed by the modified PFA algorithm is
close to that of the PCA algorithm. Figures 7 and 8 are drawn to show the impact of FFT
point on the computational load of the modified PFA algorithm.

From Figures 7 and 8, we can see that different values of L correspond to different
ratios of reduction in the computational load. As L decreases, the ratio of reduction in the
computational load increases. However, with an increase in the number of sampling points
N , the influence of L on the ratio of reduction in the computational load gets smaller and
smaller until the ratios become similar. The ratio of reduction in the computational load
increases as the number of sampling points N increases. When the number of sampling
points N is greater than 10,000, the amounts of both addition and multiplication are reduced
by more than 80%.
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Figure 5. Comparison of computation load of addition.

Figure 6. Comparison of computation load of multiplication.

5. EFFECT OF MODIFIED PFA ALGORITHM ON SIGNAL POWER AND SNR.
According to the principles of the modified PFA algorithm, the signal power changes in
steps 1, 3 and 4, and the average power of noise changes in steps 3 and 4. The reasons for
the change of signal power and SNR in steps 1, 3 and 4 will be individually analysed in this
section. Each step will be quantitatively analysed through the four experimental schemes
in Table 2.

Comparison between scheme 1 and scheme 3 shows that the same sampling time and dif-
ferent coherent points M lead to different bandwidths. The same conclusion can be drawn
from comparison between scheme 2 and scheme 4. Comparison between scheme 1 and
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Figure 7. Ratio of reduction in computation load of addition with different sampling points.

Figure 8. Ratio of reduction in computation load of multiplication with different sampling points.

Table 2. Experimental schemes.

Scheme 1 Scheme 2 Scheme 3 Scheme 4

Signal power (dBW) −160 −160 −160 −160
Sampling frequency (MHz) 18·048 18·048 18·048 18·048
Coherent time (μs) 31·25 31·25 15·625 15·625
Sampling time (ms) 1 2 1 2
Number of coherent points M 564 564 282 282
Number of FFT points L 32 64 64 128
Frequency resolution kHz 1 0·5 1 0·5
Bandwidth kHz 32 (±16) 32 (±16) 64 (±32) 64(±32)
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Figure 9. CB1I code auto-correlation curve.

scheme 2 shows that the same coherent points M and different sampling time lead to dif-
ferent frequency resolutions. The same conclusion can be drawn from comparison between
scheme 3 and scheme 4.

5.1. Influence of CB1I code on signal power. Similar to the Coarse/Acquisition (C/A)
code, the auto-correlation function graph of the code CB1I is triangular when the phase
difference between the local code and the input signal is no more than one chip. Figure 9 is
the code CB1I auto-correlation curve of PRN-3 satellite.

R(m) can be expressed as Equation (25) when the phase difference between the locally
generated PRN code and the PRN code contained in the signal is no more than one chip:

R(m) = 1 − |m|
Tchip

m ∈ [−Tchip, Tchip] (25)

The attenuation of signal power caused by the phase difference between the locally
generated PRN code and the PRN code contained in the signal can be expressed as
Equation (26):

PCB1I (m) = 20 log10(1 − |m|
Tchip

) m ∈ [−Tchip, Tchip] (26)

From Equation (26), Figure 10 can be drawn. From Figure 10, it can be seen that the
trend of the attenuation of signal power is relatively flat when m < 0·5 chip; the attenua-
tion of signal power is 6 dB when m = 0·5 chip; the signal power attenuates rapidly when
m > 0·9 chip.

5.2. Influence of coherent downsampling processing on signal power and SNR.
Coherent downsampling was analysed in Section 3. The reduction in signal amplitude
caused by coherent downsampling can be expressed as Equation (27):

ACDS =
sin(π fdB1MTs)

Mπ fdB1Ts

= sin c(fdB1MTs)
(27)

It can be seen from Equation (27) that ACDS is a function related to the coherent down-
sampling time MTs and the Doppler shift fdB1. The attenuation of signal power caused by
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Figure 10. Signal power attenuation caused by the phase difference between the local code and the input
signal.

Figure 11. Attenuation in signal power caused by coherent downsampling.

coherent downsampling can be expressed as:

pCDS(MTs, fdB1) = 20 log10(sin c(fdB1MTs)) (28)

Using Equation (28), Figure 11 can be drawn.
It can be seen from Figure 11 that increasing the coherent time will attenuate the power

of the input signal. Equation (30) can be obtained from Equation (29):

SNR =
P
σN

(29)

ICDS = 10 log10(M ) + 20 log10(sin c(fdB1MTs)) (30)

where P represents the power of signal and σN represents the average power of noise. ICDS
represents the improvement in the SNR caused by the coherent downsampling process.

From Equation (30), Figure 12 can be drawn. In Figure 12, each point in the confidence
interval graph is obtained through 5,000 simulation experiments. The confidence varies
from the mean minus the standard deviation to the mean plus the standard deviation. It can
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Figure 12. Effect of coherent downsampling on SNR.

Figure 13. Frequency domain sensitivity shape of FFT processing.

be seen from Figure 12 that the experimental and theoretical values are consistent; the SNR
of the satellite signal is improved by increasing M when the sampling time MTs and the
original sampling frequency are the same and the Doppler shift is smaller.

5.3. Influence of FFT processing on signal power and SNR. The signal spectrum was
analysed in Step 4 of Section 3 thoroughly. Take the analysis of scheme 1 as an example.
The spectrum of continuous time-domain signal after the Fourier transform is shown in
Figure 13. Since the peak value of the FFT output is a very important parameter in the PFA
algorithm, the relationship between the peak value of the FFT outputs and the Doppler shift
is drawn by the blue envelope in Figure 13.
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Figure 14. Effect of FFT on signal power.

It is obvious that the blue envelope in Figure 13 can be represented by an even function
of 1

MLTs periods. The function can be expressed as Equation (31):

AFFT(f ) = sin c
[

MLTs
(

f − kk
MLTs

)]
kk = round(MLTsf ) (31)

Therefore, the effect of FFT on signal power can be expressed as Equation (32):

PFFT( f ) = 20 log10

[
sin c

[
MLTs( f − kk

MLTs
)
]]

kk = round(MLTsf ) (32)

According to the analysis of noise in Step 4 of Section 3, the loss in the SNR caused by
the FFT process can be expressed as:

IFFT = 10 log10(L) + 20 log10

[
sin c

[
MLTs( f − kk

MLTs
)
]]

kk = round(MLTsf ) (33)

where IFFT represents the loss in the SNR caused by FFT process.
Figure 14 shows the effect of the FFT process on signal power and Figure 15 shows the

effect of FFT on the SNR. It can be clearly seen from Figure 14 that the FFT process has no
effect on the power of the signal when the Doppler shift is an integer multiple of the FFT
resolution �f, while the power of the signal will be lost when the Doppler shift is not an
integer multiple of the FFT resolution �f. From Figure 15, it can be seen that the effect of
FFT process on the SNR is completely determined by the number of FFT points L when
the Doppler shift is an integer multiple of the FFT resolution �f, while the influence of
the FFT process on the SNR is partly determined by the number of FFT points L when the
Doppler shift is not an integer multiple of the FFT resolution �f.

5.4. Effect of modified PFA algorithm on signal power and SNR. Sections 5.1 to 5.3
analysed the influence of each process of the modified PFA algorithm on signal power and
SNR. This section will analyse the synergetic influence of all processes on signal power
and SNR. Equations (34) and (35) show the effects of the modified PFA algorithm on
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Figure 15. Effect of FFT on SNR.

Figure 16. Influence of modified PFA algorithm on signal power.

signal power and the SNR respectively:

P(f ) = PFFT + PADS + PCB1I (34)

I ′ = ICDS + IFFT

= 10 log10(ML) + 20 log10

[
sin c

[
MLTs(f − kk

MLTs
)
]]

+ 20 log10(sin c(fdB1MTs)), kk = round(MLTsf ) (35)

where I ′
SNR represents the improvement in the SNR after the acquisition process.

The theoretical curves of the influences of the modified PFA on signal power and the
SNR are shown in Figure 16 and Figure 17, respectively when the influence of the code
CB1I is ignored and the parameters are set according to scheme 1.

Figures 16 and 17 show that the FFT process is the main cause of the change to the
magnitude of signal power and the SNR when the Doppler shift is not equal to an integer
multiple of �f. Under the parameters set in scheme 1, the SNR is improved by at least
36 dB.
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Figure 17. Influence of modified PFA algorithm on SNR.

Figure 18. Influence of M on SNR.

When the sampling time M ∗L∗Ts is constant, it can be seen from Equation (35) that only
the coherent integration process can affect the SNR of the signal in the modified PFA. If
fs = 10MHz, Equation (36) can be shown as Figure 18.

ISNR = 20 log10(sin c(fdB1MTs)) (36)

where ISNR represents the improvement in the SNR compared to that of the traditional PFA
algorithm.

It can be seen from Figure 18 that the SNR decreases when the number of coherent
points M increases. The improvement of SNR decreases as the Doppler shift increases.
Therefore, a large number of integration points M can be used when the dynamics of the
receiver is small. However, the number of coherent points M needs to be set to a small
value to prevent a great loss of SNR when the dynamics of the receiver is high.

6. ROC CURVES. To evaluate the performance of the modified PFA algorithm, a
Monte Carlo simulation was performed on the ROC curve (Yang et al., 2014; 2016). The
ROC curve represents the detection probability under different probabilities of false alarm.
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Figure 19. ROC comparison between PFA and modified PFA’

Figure 20. GNSS IF signal sampler SIS600B1+L1.

Figure 19 shows the ROC curves of the traditional PFA algorithm and the modified PFA
algorithm based on the parameters in scheme 1. From Figure 19, we can see that the detec-
tion probabilities for the modified PFA algorithm are slightly lower than the PFA algorithm
with the same Pfa. The ROC curve of the modified PFA algorithm is slightly lower than
the ROC curve of the traditional PFA algorithm, because the average power of the noise
does not change and the amplitude of the acquired signal decreases. Theoretical analysis is
consistent with simulation results.

7. EXPERIMENT. In this experiment, the 2ms satellite signal was sampled by the IF
signal sampler shown in Figure 20. The setup for the signal sampling experiment is shown
as Figure 21. The parameters of the experimental equipment are shown in Table 3. The
signal was then processed on MATLAB.

Figures 22– 24 show the BeiDou PRN-3 satellite acquisition results of the traditional
PFA, L = 64 modified PFA and L = 32 modified PFA algorithms, respectively.

From Figures 22, 23 and 24, it can be seen that the acquired PRN code delay is 909
chips and the Doppler shift is 0 Hz. The acquired Doppler shift and the phase of PRN code
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Figure 21. Experimental setup for live data acquisition and storage.

Table 3. Parameters of experimental equipment.

Type of antenna GNSS (GPSL1+BD2B1) Dual frequency measuring antenna

Working voltage 5V ± 0·5V
Amplification factor ≥36 dB
Noise factor ≤1·5 dB
operating frequency GPSL1: 1575·420 ± 2·5 MHz

BD2B1: 1561·098 ± 2·5 MHz
Signal processing platform MATLAB 2014a
Sampling time 2 ms
Sampling frequency 10 MHz
IF 2·5 MHz
The sampling points (N = M*L) 10,000

Figure 22. Acquisition results of BeiDou PRN-3 satellite by the traditional PFA algorithm.

are the same with the above three algorithms. In order to verify the SNR decreases with the
increase of M , different M values were taken to measure the SNR of the acquired PRN-3
satellite. Experiments showed that the SNR of the PRN-3 satellite acquired by the tradi-
tional PFA algorithm was 20·47 dB. When the number of sampling points N was 10,000,
the SNR of the PRN-3 satellite acquired by the modified PFA algorithm was lower than
that of the traditional PFA algorithm. The effect of FFT points L on the SNR is shown in
Figure 25.
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Figure 23. Acquisition results of BeiDou PRN-3 satellite by the L = 64 modified PFA algorithm.

Figure 24. Acquisition results of BeiDou PRN-3 satellite by the L = 32 modified PFA algorithm.

Figure 25. Effect of FFT points L on SNR.

It can be seen from Figure 25 that the theoretical value and the experimental value were
close to each other although they did not completely match due to the introduction of the
system measurement error. When both the number of sampling points N and the Doppler
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Figure 26. Effect of FFT points L on the time required for PRN-3 acquisition.

shifts were small, the modified PFA algorithm had almost no effect on the SNR compared
to the traditional PFA algorithm.

In order to verify that the modified PFA algorithm could indeed shorten the acquisition
time, the same segment of acquisition code ran repeatedly in MATLAB 5,000 times, and
the acquisition time was measured. According to experimental measurement, the average
time required for the traditional PFA algorithm to acquire the 2ms PRN-3 satellite sig-
nals was 1·69 seconds. The time reduction of the modified PFA over the traditional PFA
algorithm is shown in Figure 26.

It can be seen from Figure 26 that the acquisition time of the modified PFA algorithm
was reduced by more than 80% compared to that of the traditional PFA algorithm when the
number of sampling points N and the Doppler shifts were small.

8. CONCLUSION. A new acquisition algorithm for the complex signal of BeiDou B1I
is proposed in this paper. Compared with the traditional PFA algorithm, the proposed PFA
algorithm based on coherent downsampling includes two extra modules: a complex down-
conversion module and a coherent downsampling module. The time needed to acquire the
satellite was reduced by at least 80% with the modified PFA algorithm and the SNR loss
was less than 0·5 dB when the number of sampling points N and the Doppler shifts were
small.
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