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Abstract
In dynamically switched systems with unknown switching signal, the control system is conventionally designed
based on the worst switching scenario to ensure system stability. Such conservative design demands excessive con-
trol effort in less critical switching configurations. In the case of continuum mechanics systems, such excessive
control inputs result in increased structural deformations and resultant modeling uncertainties. These deformations
alter differential equations of motion which cripple the task of control. In this paper, a new approach for tracking con-
trol of uncertain continuum mechanics multivariable systems undergoing switching dynamics and unknown time
delay has been proposed. Control algorithm is constructed based on the mathematical rigid model of the plant and
a Common Lyapunov Function (CLF) is proposed upon sliding hyperplane regarding all switching configurations.
Considering the model-based nature of sliding mode control (SMC) and inevitable uncertainties induced from mod-
eling simplifications of continuum system or parameter evaluation errors, Finite Element Analysis (FEA) is utilized
to approximate total model uncertainties. To obtain robust stability, instead of conventional switching functions in
the construction of control law, the control inputs are selected such that system dynamics reside within stability
bounds which are calculated based on the Lyapunov asymptotic stability criterion. Therefore, the unwanted chat-
tering issue caused by continuous switching is not observed in control input signals. Eventually, the accuracy of the
proposed method has been verified through the student version of ANSYS R© mechanical APDL-based simulations
and its effectiveness has been demonstrated in multiple operating conditions.

1. Introduction
1.1. Overview
Continuum mechanics vibrations are capable of imposing destructive effects in the performance of
control systems and generally result in closed-loop instability. Presence of model uncertainties is gen-
erally caused by either insufficient data in parameter evaluation or unmodeled dynamics [1]. Uncertain
switched systems exhibit other types of model uncertainties such that governing dynamical equations
alter spontaneously when switching occurs. The situation becomes critical in the case of continuum
mechanics systems when unstructured uncertainties dominancy renders system response more unpre-
dictable. Thus, it is easy to show that controller design and verification solely based on the rigid model
of system would not guarantee similar performance when applied to continuum mechanics systems. In
addition, analytical approaches in determining model uncertainties are not always practical due to the
following reasons:

- Dynamical response of continuum mechanics system results from the superposition of infinite
number of vibrational modes nevertheless, only the first few modes are generally taken into
account in the construction of control algorithm to avoid burdensome calculations.
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- Analytical continuous beam models like Euler–Bernoulli or Timoshenko that are utilized in the
modal analysis are only valid during small deformations when the beam’s radius of curvature is
considered to be linearly related to vertical deformations throughout beam length [2].

- The corresponding partial differential equations solution is not attainable analytically in the
presence of any form of nonlinearities such as nonlinear springs, bearings backlash, Coulomb
friction.

- Control algorithm for the unknown switched system is conventionally developed considering
worst switching case to guarantee stability in all switching modes. As a result, excessive con-
trol inputs would intensify system nonlinearities and corresponding unstructured uncertainties.
Overwhelming inaccuracy caused by thre resence of such unmodeled dynamics would eventually
result in unpredictable closed-loop response and terminal instability

Therefore, it could be inferred that rigid or even analytical flexible model of the system reflects only a
portion of dynamical behaviors and accordingly the ignored dynamics would appear neither in controller
design nor in simulation. Considering the aforementioned complications, the control problem of an
uncertain continuum mechanics system with the unknown switching configuration constitutes the core
part of the current study.

Control of uncertain switched systems has been widely studied in the existing literature. Due to
inherent difficulties [3] such as maintaining system stability between switch configurations, inconsistent
tracking performance, unknown frequency in which switching occurs, unknown dynamical behavior
due to variable switching conditions, etc., a control algorithm capable of ensuring system stability and
desirable tracking performance is not easy to achieve. Therefore, most studies are dedicated to a specific
class of systems and limited conditions. For instance, Huang et al. [4] focused their studies upon finite-
time output tracking for a class of switched nonlinear systems with polynomial state equations. Yang et
al. [5] investigated an optimal approach regarding the class of switched linear parameter variable sys-
tems via multiple parameter-dependent Lyapunov functions. Wu et al. [6] introduced a novel controller
based on backstepping method for a specific class of strict forward systems. Some researchers followed
a similar framework from an adaptive point of view [7,8]. Zhang et al. investigated tracking control of
linear parameter variable flexible hypersonic vehicle through H∞ approach. However, their investiga-
tions are limited to linear systems and only parametric uncertainties are included in their framework [9].
M.R. Homaeinezhad et al. introduced an appropriate solution to the control problem corresponding to
the class of parametrically uncertain systems covering unknown time delay and inaccessible switching
mode detection [10]. Although the algorithm exhibits acceptable tracking performance in presence of
an unknown switching signal, the proposed theory does not include unstructured uncertainties and con-
troller performance is verified on a rigid mechanism, thus, the results cannot be generalized for continu-
ous vibrational systems. Considering the fact that sliding mode control techniques are renowned for their
robust behavior and are capable of ensuring stabilization of closed-loop systems in presence of modeling
uncertainty, switched system control algorithm is constructed based on discrete sliding mode technique.

Investigations in the field of control of vibrational systems are categorized into two major fields. A
group of studies address the problem of suppression of vibrations and are mainly dedicated to vibra-
tional attenuation of a beam or flexible mechanisms using piezoelectric actuators [11–13]. Zhang et al.
[14] used adaptive sliding mode in control of parallel mechanism with flexible links. The other groups
are conducted prioritizing stabilization and tracking problems of flexible mechanisms with or without
vibration attenuation [15,16] which is also the approach the current paper adapts. Franco et al. [17]
discussed balancing control of an inverted pendulum using an energy-shaping controller with adap-
tive disturbance-compensation. In their investigations, analytical system modeling in the construction
of control algorithm is followed and dynamical behavior is assumed to be incorporated by only the first
mode shape. Chen et al. [18] proposed control of a nonlinear manipulator with Duffing oscillator dynam-
ics and used numerical methods for solving nonlinear equations. Though being theoretically rich, the
method is not easily applicable to more complicated nonlinear problems due to burdensome calculation.
In recent literature regarding problem of control of vibrational systems, it has been widely accepted to
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employ FEA for defining mode shapes and natural frequencies [19]. But exploiting the idea to benefit in
case of uncertainty estimation is rarely addressed. Homaeinezhad et al. [20] devised a novel approach to
estimate model parametric and unstructured uncertainties by synchronizing an identical dummy model
with a real system in an FEA environment. Considering high costs and space limitations usually encoun-
tered in the implementation of feedback sensors, the control algorithm is being assisted by FEA such
that it only requires a limited number of sensors to approximate model uncertainties. But their inves-
tigations did not include the situation when system dynamic switches between various configurations.
Following this idea, the FEA-based uncertainty estimator is used in this framework to include the effect
of flexibility and unstructured uncertainties in control of switched systems.

1.2. Innovations
In order to address the aforementioned issues and overcome the existing shortcomings in available liter-
ature, this paper proposes major development over the previously presented algorithm to make it capable
of controlling uncertain flexible Multi-Input Multi-Output (MIMO) systems under uncertain switching
signals. This paper features the following novel contributions:

- Common Lyapunov function is proposed based on sliding hyperplane featuring every individual
subsystem at given switch configuration. Therefore, the system is proven to be asymptotically
stable in finite time regardless of active configuration. In case that the system is affected by an
unknown time delay, Lyapunov–Krasovskii Function (LKF) is utilized instead.

- Dummy models regarding each switch configuration are constructed and run simultaneously with
the real system to estimate system parametric and unstructured uncertainties.

- Controller input gain parametric uncertainties are included in the construction of control algo-
rithm thus calculation of input bounds includes probable deviations between the real plant and
rigid model.

This paper is organized as followed. Section 2 presents the problem definition and general formulation
of the problem to be solved in this research. The mathematical basis required for the construction of
control algorithm is proposed in Section 3. The control model for MIMO vibrational switched system
has been numerically evaluated using ANSYS R© simulations, the results of which are presented and
analyzed in Section 4.

2. Problem Definition
In the case of rigid dynamical systems, SMC algorithm establishment is possible even for rather com-
plicated mechanisms. However, for continuum mechanics systems, the equations of motions are often
extracted based on the calculation of complicated system energy expressions such as Lagrange or
Hamilton principle. The obtained equations generally include complicated terms constituting spatial
derivatives resulted from transverse vibrations of continuum subsystems which render the expressions
difficult to work within control applications.

In order to derive dynamical equations of motion regarding continuum mechanics system, modal
analysis is required to demonstrate transverse vibrations. To this end, corresponding partial differential
equations should be transformed to set of ordinary differential equations [2] using Eq. (1):

w (, t) =
mφ∑
j=1

�j (ξ) qj(t) (1)

where w(ξ , t) denotes discretized expression of transverse vibration, �j(ξ ) are potentially unknown spa-
tial functions regarding mode shapes in certain boundary conditions, qj(t) are corresponding temporal
state variables and mφ is the total number of mode shapes used for discretization of transverse vibrations.
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In order to mitigate calculation burden during discretization, only a limited number of vibrational modes
are taken into account and usually, high-frequency modes are ignored due to their relatively minor
effects. This approximation is not valid when the system is stimulated by high-frequency disturbances
that resonate with high-frequency modes and amplify their already ignored effect. The issue demands
more attention when switching occurs and alters system dynamics in an unknown pattern.

In this section, discrete form of state-space realization of MIMO continuum mechanics systems is
expressed in Eq. (2). The obtained formulations are subsequently used in the construction of control
algorithm. The procedure of obtaining dynamical expressions of Eq. (2) is detailed in the authors’ pre-
vious work [20]. In this study, a novel control algorithm is proposed considering this class of dynamical
systems under arbitrarily generated switching effects. In addition, the significant effect of control input
gains uncertainty which was ignored previously will be included here. The considered class of dynamical
systems without switching effects is expressed as

xr(k + 1) = fr[x(k)] + fq[xq(k)] + B(k)u(k) + v(k)

ν(k) = [ν1(k), · · · , νmu (k)]

νi(k) = bT
i,k−1(k)u(k − 1) + · · · + bT

i,k−mc
(k)u(k − mc) (2)

where xr(k) = [x1(k), · · · , xmr (k)]T denotes position vectors corresponding to rigid states and mr rep-
resents system total degrees of freedom (DOF). xk denotes states corresponding to a rigid model of
the system and xq(k) = [x(k), q

f
(k)] includes both system states relating to rigid dynamics along with

continuum mechanics vibrational terms qi(k). ν(k) contains terms corresponding to past values of con-
trol inputs resulted from discretization order of mc. fr[x(k)] includes dynamical terms related to a rigid
model of system and fq[xq(k)] represents dynamical effects resulted from continuum mechanics vibra-
tions which is difficult to accurately ascertain and will be approximated in this study. B(k) denotes
control input gains including both parametric and unstructured uncertainties, mu is the total number of
control inputs and u(k) stands for control input vector for MIMO system.

Considering multiple switching configurations, Eq. (2) for each individual subsystem can be written
like:

xrij (k + 1) = frij

[
x(k)

] + fqij

[
xq(k)

] + bT
ij(k)u(k) + νij(k) (3)

where index j stands for arbitrary switching configuration for each term.
In conclusion, for MIMO continuous vibrational systems, the existence of spatial derivative terms

of transverse vibrations, nonlinear terms, and boundary conditions in addition to various interactions
between subsystems tend to render the task of obtaining a dynamical model almost inaccessible, resource
demanding, and potentially inaccurate. Naturally, dynamical and numerical analysis of obtained mod-
els is likewise impossible. The fact that few studies have been conducted to address tracking control of
MIMO flexible system indicates the aforementioned issue. In this paper, overcoming complications aris-
ing from the difficulty of dynamical analysis in control of switched vibrational systems is discussed and
FEA is applied to approximate modeling uncertainties caused by the continuum mechanics vibrations.

3 Main results
Considering the proposed model for each individual subsystem in Eq.(3), in this section, discrete slid-
ing mode control (DSMC) algorithm will be developed such that closed-loop stability and tracking
performance of continuum mechanics MIMO system in presence of both parametric and unstructured
uncertainties with unknown switching configuration is ensured. To this end, the sliding function sij(k)
for each individual subsystem i at given switching configuration j is defined as

sij(k)
�= x̃r ij(k) + λijx̃r ij (k − 1) (4)
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Where x̃rij (k) = xrij (k) − xid(k) and xid(k) is the desired reference for xi(k). λijs are control parameters set
such that sij(k) = 0 would result in xrij(k) = xid(k).

Remark 1 (Considerations of measurement noise). In order to involve measurement noise in the
construction of proposed algorithm, two approaches are available. In the first method, stochastic charac-
teristics of measurement noise such as probability density function type or noise probability moment are
required to be precisely approximated to achieve acceptable consistency with system real measurement
conditions. In addition, the variations of measurement noise statistical characteristics over system non-
linear dynamics manifold are required to be obtained. In such cases, nonlinear filters such as cubature
or unscented Kalman filters are utilized in which statistical variables of the stochastic process are being
updated continuously via sigma points. However, statistical characteristic of this measurement noise gen-
erally cannot be classified as stationary white noises rendering complications in certain circumstances
[21]. As another approach, one would suggest using analogue low-pass filters to remove measurement
noise in the construction of control scheme. Since the filter is considered to be analogue, phase shift
and amplitude distortion relative to those of the original signal are neglectable. Hence, the influence of
filtering could be considered in feedback control through the incorporation of filter dynamics in control
calculations according to Eq. (5).

ŝij(k) = 2 − ω0sT

2 + ω0sT
ŝij (k − 1) + ω0sT

2 + ω0sT

[
sij(k) + sij (k − 1)

]
(5)

In addition, high-frequency signals included in control inputs that are generated due to measure-
ment noise are normally ignored due to the limited frequency bandwidth of physical actuators. In other
words, physical actuator dynamics oftentimes behave as a first-order low-pass filter in the presence of
high-frequency signals. In such cases, it is necessary to similarly incorporate actuator dynamics in the
construction of control law.

ui(k) = 2 − ω0aT

2 + ω0aT
ui (k − 1) + ω0aT

2 + ω0aT
[uic(k) + uic (k − 1)] (6)

In Eqs. (5), and (6), ω0s and ω0a are bandwidth frequencies corresponding to low-pass filters applied,
respectively, to sliding functions and control input signals. Replacing ui(k) from Eq. (6) into convex
inequality of Eq. (14) which is being discussed further, Uc(K − 1) = [U1c(k), · · · Unc(k)]T is obtained.
Hence, the control signal is calculated considering actuators’ frequency bandwidth and measurement
noise effects [15].

Remark 2 (Sliding functions parameter). It can be shown that setting
∣∣λij

∣∣ < 1 drives individual system
states to desired references if sij(k) = 0.

Assumption 1. The system is considered to be in squared format for simplicity purposes in obtaining
the control model, that is, the controller gain matrix is square and invertible. In such cases, sliding
functions are assigned to those DOFs that correspond to a tracking objective.

Substituting xrij(k) from Eq. (3) into Eq. (4) and shifting the equation for one sample ahead results
in:

sij (k + 1) = frij

[
x(k)

] + fqij

[
xq(k)

] + νij(k) + λijxrij(k) − xid (k + 1) − λijxid(k) + bT
ij(k)u(k) (7)

Eq. (7) is further summarized to Eq. (8):

sij(k + 1) = frij[x(k)] + fqij [xq(k)] + bT
ij(k)u(k) + vij(k) + ξij(k),

ξij(k)
�= λijxrij(k) − xid (k + 1) − λijxid(k) (8)
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Theorem 1. Discrete-Time MIMO flexible system response expressed in Eq. (2) under unknown switch-
ing signal and both parametric and unstructured uncertainties will follow the desired sliding set
�i = {si(k) : |si(k)| ≤ ρi} in finite number of samples under Assumption 1. In case control input is selected
within calculated bounds, it is as follows:

u(k) = [1 − α(k)] B−1(k)Q
L
(k) + α(k)B−1(k)Q

H
(k)

α(k) ∈ (0, 1) (9)

Q
L
(k) and Q

H
(k) are calculated as lower and upper control input bounds and α(k) is the control input

proximity factor which is set by the control designer.

Proof. Candidate Lyapunov function Vi(k) for each subsystem is defined in Eq. (10).

Vi(k)
�=

[
mσ∑
j=1

ηijsij(k)

]2

(10)

In Eq. (10), mσ is the number of total possible switching configurations and ηij > 0 is an arbitrary
weighting factor set by the designer in accordance with the possibility and severity of each switching
configuration. The control law corresponding to the dynamical model presented in Eq. (2) is derived such
that candidate Lyapunov function is monotonically decreasing. In order to attain finite-time convergence,
the Lyapunov function should satisfy Eq. (11) with finite-time convergence factor of μi ∈ (0, 1)

Vi (k + 1) < μ2
i Vi(k) (11)

As a result; [
mσ∑
j=1

ηijsij (k + 1)

]2

< μ2
i

[
mσ∑
j=1

ηijsij(k)

]2

(12)

Thus,

−μ

∣∣∣∣∣
mσ∑
j=1

ηijsij(k)

∣∣∣∣∣ <

mσ∑
j=1

ηijsij (k + 1) < +μi

∣∣∣∣∣
mσ∑
j=1

ηijsij(k)

∣∣∣∣∣ (13)

Substituting sij(k + 1) from Eq. (8) to Eq. (13) leads to:

−μ

∣∣∣∣∣
mσ∑
j=1

ηijsij(k)

∣∣∣∣∣ <

mσ∑
j=1

ηij

{
frij

[
x(k)

] + fqij

[
xq(k)

] + bT
ij(k)u(k) + νij(k) + ξij(k)

}
< +μi

∣∣∣∣∣
mσ∑
j=1

ηijsij(k)

∣∣∣∣∣ (14)

Since real system parameters are oftentimes difficult or even impossible to accurately ascertain, para-
metric uncertainties are inevitable in dynamical analysis and should be considered when obtaining the
control algorithm. Therefore, the nominal value of system parameters should be used in the construction
of control algorithm. Defining gij(k)�frij[x(k)] + νij(k) and ĝij(k) and f̂qij[xq(k)] as approximations (with
known nominal parameters) of rigid model and flexible terms, respectively, Eq. (14) turns to Eq. (15)
by adding and subtracting the approximated terms ĝij(k) + f̂qij[xq(k)].

−μ

∣∣∣∣∣
mσ∑
j=1

ηijsij(k)

∣∣∣∣∣ <

mσ∑
j=1

ηij

{ [
gij(k) + fqij

[
xq(k)

]] −
[
ĝij(k) + f̂qij

[
xq(k)

]] + ĝij(k)

+ f̂qij

[
xq(k)

] + bT
ij(k)u(k) + ξij(k)

}
< +μi

∣∣∣∣∣
mσ∑
j=1

ηijsij(k)

∣∣∣∣∣ (15)
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By subtracting
∑mσ

j=1 ηij{[gij(k) + fqij [xq(k)]] − [ĝij(k) + f̂qij [xq(k)]] + ĝij(k) + f̂qij [xq(k)] + ξij(k)} from
all sides of convex inequality of (15), it is obtained that:

−
mσ∑
j=1

ηij
{[

gij(k) + fqij

[
xq(k)

]] − [̂
gij(k) + f̂qij

[
xq(k)

]] + ĝij(k) + f̂qij

[
xq(k)

] + ξij(k)
}

− μi

∣∣∣∣∣
mσ∑
j=1

ηijsij(k)

∣∣∣∣∣ <

mσ∑
j=1

ηij
[
bT

ij(k)u(k)
]
< −

mσ∑
j=1

ηij

{ [
gij(k) + fqij

[
xq(k)

]]
− [̂

gij(k) + f̂qij

[
xq(k)

]] + ĝij(k) + f̂qij

[
xq(k)

] + ξij(k)
}

+ μi

∣∣∣∣∣
mσ∑
j=1

ηijsij(k)

∣∣∣∣∣ (16)

Remark 3 (Uncertainty estimation). The term [gij(k) + fqij [xq(k)]] − [ĝij(k) + f̂qij [xq(k)]] and f̂qij[xq(x)]
respectively, express parametric and unstructured uncertainties of the vibrational system for any given
switching configuration. At this state, FEA dummy models are generated corresponding to each spe-
cific switching configuration. Since dummy models are analyzed in the FEA framework using an
adequate number of elements, dynamical responses actually include the influence of high-frequency
modes and could potentially represent real system’s behavior. Thus it can be inferred that any dynam-
ical responses deviation in comparison with the real system is related to parametric evaluation errors.
This approximation generally holds true due to the FEA capability in modeling vibrational modes.
Similarly, unstructured uncertainties could be obtained comparing dynamical behavior of dummy mod-
els and mathematical rigid model of the system. It should be noted that one-step lagged approximation
is inevitable due to limited data availability at the current time step.

gi(k) + fqij[xq(k)] ≈ xrij(k) − bT
ij(k)u(k)

f̂qij[xq(k)] ≈ x̂rij(k) − bT
ij(k)u(k) − ĝij(k) (17)

System states for dummy models are expressed as x̂ij(k) at given switching configuration of j.
Considering approximations in Eq. (17), Eq. (16) yield to Eq.(18):

−
mσ∑
j=1

ηij

{
xrij(k) − x̂rij (k) + ĝij(k) + f̂qij

[
xq(k)

] + ξij(k)
}

−
mσ∑
j=1

ηij

{
−

[
bT

ij (k − 1) − b̂
T

ij (k − 1)
]

u (k − 1)
}

− μi

∣∣∣∣∣
mσ∑
j=1

ηijsij(k)

∣∣∣∣∣
<

mσ∑
j=1

ηij

[
bT

ij(k)u(k)
]
< +μi

∣∣∣∣∣
mσ∑
j=1

ηijsij(k)

∣∣∣∣∣ −
mσ∑
j=1

ηij

{
−

[
bT

ij (k − 1) − b̂
T

ij (k − 1)
]

u (k − 1)
}

−
mσ∑
j=1

ηij

{
xrij (k) − x̂rij (k) + ĝij(k) + f̂qij

[
xq(k)

] + ξij(k)
}

(18)

Assumption 2. The matrix Bj(k) �

⎡⎢⎣ BT
1j(k)
...

BT
mxj(k)

⎤⎥⎦, Bj(k) ∈R
mx×mx expressing control signal multipliers for

total mx subsystems and given switching signal j is considered to include multiplicative uncertainty.
Bj(k)is therefore expressed as in Eq. (19). �

Bj(k)
�= [

I + �j(k)
]

B̂j(k) (19)
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In which �j(k) denotes the uncertainty matrix with known bounds and B̂j(k) is the approximated
controller signal multiplier matrix with nominal parameters. Furthermore, it is assumed that Bj(k)�j(k)
is nonsingular for all possible cases of model uncertainty and switching signals.

The terms at the sides of inequality expressed in Eq. (18) determine stability bounds of a control
input signal in the form of ql,i(k) ≤ ∑mσ

j=1 ηij[bT
ij (k)u(k)] ≤ qh,i(k) for every individual subsystem con-

sidering all switching signals j in which ql,i(k) and qh,i(k) denote lower and upper stability bounds,
respectively. Similar expressions could be obtained for all rigid dynamical states i = 1, . . . , mr there-
fore, the terms corresponding to control inputs bounds are merged into a set of convex inequalities
according to Assumption 2.

q
L
(k) <

⎧⎪⎪⎨⎪⎪⎩
mσ∑
j=1

⎡⎢⎢⎣
η1j · · · 0

...
. . .

...

0 · · · ηmx ,j

⎤⎥⎥⎦ [
Bj(k)

]⎫⎪⎪⎬⎪⎪⎭ u(k) < q
H
(k) (20)

Where q
L
(k) = [ql,1(k) · · · ql,mu

(k)]T and q
H
(k) = [qh,1(k) · · · qh,mu

(k)]T.
According to Assumption 2, control input gains uncertainties equation [Bj(k − 1) − B̂j(k − 1)] =

�j(k − 1)B̂j(k − 1) is obtained. Adapting the introduced format in Eq. (20), stability bounds on either
side of Eq. (18) could be rewritten as Eqs. (21–22) such that they include all subsystems.

q
L
(k) �

⎧⎪⎪⎨⎪⎪⎩
mσ∑
j=1

⎡⎢⎢⎣
η1j · · · 0

...
. . .

...

0 · · · ηmx ,j

⎤⎥⎥⎦ [
�j(k − 1)B̂j (k − 1)

]⎫⎪⎪⎬⎪⎪⎭ u (k − 1)

+

⎡⎢⎢⎢⎢⎢⎢⎢⎣
−

mσ∑
j=1

η
j
1

{
xj

ri (k) − x̂ri j(k) + ĝ1j(k) + f̂q1j

[
xq(k)

] + ξ1j(k)
} − μ1

∣∣∣∣∣mσ∑
j=1

η1js1j(k)

∣∣∣∣∣
...

−
mσ∑
j=1

ηmxj
{
xmxj(k) − x̂mxj(k) + ĝmxj(k) + f̂qmxj

[
xq(k)

] + ξmxj(k)
} − μmx

∣∣∣∣∣mσ∑
j=1

ηmx ,jsmx ,j(k)

∣∣∣∣∣

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(21)

q
H
(k) �

×

⎡⎢⎢⎢⎢⎢⎢⎢⎣
−

mσ∑
j=1

η1j
{
xrij (k) − x̂rij (k) + ĝ1j(k) + f̂q1j

[
xq(k)

] + ξ1j(k)
} + μ1

∣∣∣∣∣mσ∑
j=1

η1js1j(k)

∣∣∣∣∣
...

−
mσ∑
j=1

ηmxj
{
xmxj(k) − x̂mxj(k) + ĝmxj(k) + f̂qmxj

[
xq(k)

] + ξmxj(k)
} + μmx

∣∣∣∣∣mσ∑
j=1

ηmx ,jsmx ,j(k)

∣∣∣∣∣

⎤⎥⎥⎥⎥⎥⎥⎥⎦

+

⎧⎪⎪⎨⎪⎪⎩
mσ∑
j=1

⎡⎢⎢⎣
η1j · · · 0

...
. . .

...

0 · · · ηmx ,j

⎤⎥⎥⎦ [
�j(k − 1)B̂j (k − 1)

]⎫⎪⎪⎬⎪⎪⎭ u (k − 1) (22)

Then, using 0 < α(k) < 1 as proximity factor, control signals are obtained as

u(k) = [1 − α(k)] B−1(k)Q
L
(k) + α(k)B−1(k)Q

H
(k)
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Q
L
(k) =

⎧⎪⎨⎪⎩
∑mσ

j=1

⎡⎢⎣η1j · · · 0
...

. . .
...

0 · · · ηmx ,j

⎤⎥⎦ [
I + �j(k)

]
B̂j(k)

⎫⎪⎬⎪⎭
−1

q
L
(k)

Q
H
(k) =

⎧⎪⎨⎪⎩
∑mσ

j=1

⎡⎢⎣η1j · · · 0
...

. . .
...

0 · · · ηmx ,j

⎤⎥⎦ [
I + �j(k)

]
B̂j(k)

⎫⎪⎬⎪⎭
−1

q
H
(k) (23)

Proof of Theorem 1 ends here.

Proposition 1 (Consideration of time delay). In case the system dynamics is being affected by time
delay, the dynamical equations of motion and corresponding sliding functions should be modified
accordingly. To this end, the dynamical discrete model Eq. (3) should include terms corresponding to
the effect of time delay. In order to consider the difficulty of locating the exact point in which time
delay affects system dynamic, the time delay is considered unknown with limited bounds such that
md,ij ∈

[
1, m̄dij

]
where m̄dij is the maximum delay corresponding to individual subsystem i at given switch-

ing configuration of j. The procedure of obtaining a control algorithm in the presence of time delay is
briefly discussed as followed.

xrij(k + 1) = frij
[
x(k)

] + fqij
[
xq(k)

] + hrij
[
x

(
k − md,ij

)] + hqij
[
xq

(
k − md,ij

)]
+ bT

ij (k)u(k) + νij(k) (24)

In Eq. (24), hrij, hqij:Rmx →R are switched functions corresponding to sections of system dynamics that
include time delay. Consequently, sliding functions Eq. (8) are required to be rewritten as Eq. (25).

sij(k + 1) = frij
[
x(k)

] + fqij

[
xq(k)

] + hrij
[
x

(
k − md,ij

)] + hqij

[
xq

(
k − md,ij

)]
+ bT

ij (k)u(k) + νij(k) + ξij(k) (25)

In addition, the candidate Lyapunov function introduced in theorem 1 is replaced by Lyapunov–
Krasovskii function (LKF) including sliding functions correspond to the effect of time delay.

Vi(k)
�=

[
mσ∑
j=1

ηijsij(k)

]2

+
mσ∑
j=1

k−1∑
l=k−md,ij

βijs2
ij(l) (26)

In Eq. (26), ηij and βij are design parameters, respectively. assigned to current sliding functions and
the sliding functions defined over the uncertain time delay horizon. Similar to the procedure followed in
Theorem 1, to ensure attaining a monotonically decreasing LKF and attaining finite-time convergence,
it is considered that Vi(k + 1) − Vi(k) < 0.

Vi(k + 1) − Vi(k) < 0

⇒
[

mσ∑
j=1

ηijsij(k + 1)

]2

+
mσ∑
j=1

k∑
l=k−md,ij+1

βijs2
ij(l) −

[
mσ∑
j=1

ηijsij(k)

]2

−
mσ∑
j=1

k−1∑
l=k−md,ij

βijs2
ij(l) < 0 (27)

Design parameters ηij and βij should be allocated such that
[∑mσ

j=1 ηijsij(k)
]2 − ∑mσ

j=1 βij[
s2

ij(k) − s2
ij

(
k − md,ij

)]
> 0. Hence, the conditions for Krasovskii weights are expressed through

investigations over the term P2
i (k) �

[∑mσ

j=1 ηijsij(k)
]2 − ∑mσ

j=1 βij
[
s2

ij(k) − s2
ij

(
k − md,ij

)]
which is

required to be positive.

P2
i (k) > P̄2

i (k)
�=

mσ∑
j=1

η2
ijs

2
ij(k) +

mσ∑
j=1

mσ∑
l=1

ηijηilsij(k)sil(k) −
mσ∑
j=1

βijs2
ij(k) (28)
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A sufficient condition for P̄2
i (k) ≥ 0 can be expressed as

η2
ijs

2
ij(k) +

mσ∑
l=1

ηijηilsij(k)sil(k) − βijs2
ij(k) > 0;j = 1, . . . , .mσ (29)

Then, the feasibility conditions for Krasovkii weights are obtained as

βij < η2
ij + ηij

∑mσ

j=1 ηilsil(k)

sij(k)
(30)

More details are left to be seen in [22]. Proposition 1 ends here.

Proposition 2 (Finite-time convergence). In order to ensure closed-loop response convergence to slid-
ing surface in finite number of steps, |∑mσ

j=1 ηijsij(k + 1)| < μi|∑mσ

j=1 ηijsij(k)| was defined as Lyapunov
asymptotic stability condition with μi as finite-time convergence factor. Therefore;∣∣ηi1si1 (1) + ηi2si2 (1) + · · · + ηimσ

simσ
(1)

∣∣ < μi
∣∣ηi1si1 (0) + ηi2si2 (0) + · · · + ηimσ

simσ
(0)

∣∣
⇒ ∣∣ηi1si1 (2) + ηi2si2 (2) + · · · + ηimσ

simσ
(2)

∣∣ < μi
∣∣ηi1si1 (1) + ηi2si2 (1) + · · · + ηimσ

simσ
(1)

∣∣
< μ2

i

∣∣ηi1si1 (0) + ηi2si2 (0) + · · · + ηimσ
simσ

(0)
∣∣ ⇒ · · · ⇒ ∣∣ηi1si1(k) + ηi2si2(k) + · · · + ηimσ

simσ
(k)

∣∣
< μk

i

∣∣ηi1si1 (0) + ηi2si2 (0) + · · · + ηimσ
simσ

(0)
∣∣ (31)

Sliding set is defined as �i = {sij(k):
∣∣∑mσ

j=1 ηijsij(k)
∣∣ ≤ ρi}. In which, ρi > 0 is half the width of the sliding

band. Solving the equation μk
i

∣∣ηi1si1(0) + ηi2si2(0) + · · · + ηimσ
simσ

(0)
∣∣ = ρi for k, it is concluded that

system response trajectory converges to �i in n�i = logμi
( ρi|ηi1si1(0)+ηi2si2(0)+···+ηimσ simσ (0)| ) samples.

Remark 4 (Switching dwell time). It should be noted that switching dwell time needs to be greater
than convergence time calculated in Proposition 2, otherwise switching may occur before the system
converges to sliding manifold resulting in closed-loop instability.

Remark 5 (Convergence to sliding hyperplane). Theorem 1 does not impose any particular value
for ηij > 0 in obtaining control input of Eq. (23). As a result, given multiple values of ηij > 0, for a par-
ticular switching signal and a specific subsystem, theorem 1 should hold true. In case tends to zero,
|∑mσ

j=1 ηijsij(k)| = 0 constitute homogenous systems of equations for each individual subsystem with mul-
tiple arbitrary (not necessarily zero) ηij. Thus it can be inferred that all sij(k) will tend to zero for it is the
only answer to each homogenous system of equations.

Proposition 3 (Sliding mode). When the closed-loop system enters sliding manifold neighborhood with
radius of ρi, that is, |

mσ∑
j=1

ηijsij(k)| < ρi, the stability conditions will be slightly different from Eq. (12) for

reaching mode. In fact, the ideal control input should be obtained such that it forces the system dynamics
to reside within sliding band. [

mσ∑
j=1

ηijsij(k + 1)

]2

< ρ2
i (32)

Following the procedure similar to the proof of Theorem 1, it is obtained that:

q
L
(k) <

⎧⎪⎪⎨⎪⎪⎩
mσ∑
j=1

⎡⎢⎢⎣
η1j · · · 0

...
. . .

...

0 · · · ηmx ,j

⎤⎥⎥⎦ [
I + �j(k)

]
B̂j(k)

⎫⎪⎪⎬⎪⎪⎭ u(k) < q
H

(k) (33)
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where q
(
k) and q

H
(k) are defined as boundary dynamical terms in sliding mode.

q
L
(k) �

⎧⎪⎨⎪⎩
mσ∑
j=1

⎡⎢⎣η1j · · · 0
...

. . .
...

0 · · · ηmx ,j

⎤⎥⎦ [
�j(k − 1)B̂j (k − 1)

]⎫⎪⎬⎪⎭ u (k − 1)

+

⎡⎢⎢⎢⎢⎢⎣
−

mσ∑
j=1

η1j
{
xr1j(k) − x̂r1j(k) + ĝ1j(k) + f̂q1j

[
xq(k)

] + ξ1j(k)
} − ρi

...

−
mσ∑
j=1

ηmxj
{
xmxj(k) − x̂mxj(k) + ĝmxj(k) + f̂qmxj

[
xq(k)

] + ξmxj(k)
} − ρmx

⎤⎥⎥⎥⎥⎥⎦ (34)

Q
H

(k) �

⎡⎢⎢⎢⎢⎢⎣
−

mσ∑
j=1

η1j
{
xr1j (k) − x̂r1j (k) + ĝ1j(k) + f̂q1j

[
xq(k)

] + ξ1j(k)
} + ρi

...

−
mσ∑
j=1

ηmxj
{
xmxj(k) − x̂mxj(k) + ĝmxj(k) + f̂qmxj

[
xq(k)

] + ξmxj(k)
} + ρmx

⎤⎥⎥⎥⎥⎥⎦
+

⎧⎪⎨⎪⎩
mσ∑
j=1

⎡⎢⎣η1j · · · 0
...

. . .
...

0 · · · ηmx ,j

⎤⎥⎦ [
�j(k − 1)B̂j (k − 1)

]⎫⎪⎬⎪⎭ u (k − 1) (35)

Hence, control input is calculated according to Eq. (36).

u(k) = [1 − α(k)] B−1(k)QL(k) + α(k)B−1(k)QH(k)

QL(k) =

⎧⎪⎨⎪⎩
mσ∑
j=1

⎡⎢⎣η1j · · · 0
...

. . .
...

0 · · · ηmx ,j

⎤⎥⎦ [
I + �j(k)

]
B̂j(k)

⎫⎪⎬⎪⎭
−1

q
L
(k)

QH(k) =

⎧⎪⎨⎪⎩
mσ∑
j=1

⎡⎢⎣η1j · · · 0
...

. . .
...

0 · · · ηmx ,j

⎤⎥⎦ [
I + �j(k)

]
B̂j(k)

⎫⎪⎬⎪⎭
−1

q
H
(k) (36)

Proposition 3 ends here.

Remark 6 (Control system design parameters recommendation). Regarding controller performance
tuning, appropriate selection of design parameters ηij,μi,λij and α(k) are essential for obtaining the best
performance. ηij represents weight factor for each switching configuration. It is strongly recommended
to opt for higher values in case of severe switching cases. μi defines how fast system dynamics converge
to the sliding surface of �i. Thus selecting greater values provide a smooth transition toward the sliding
surface. α(k) determines system dynamics proximity with respect to stability bounds. Proximity factor
selection highly depends upon uncertainty approximation accuracy. In fact, if total uncertainties are ide-
ally approximated, the middle point that is, α(k) = 0.5 usually results in best performance otherwise the
appropriate value is to be found through trial and error. λij incorporates tracking performance and overall
stability of closed-loop system such that selecting values around stability borders (

∣∣λij
∣∣ = 1) results in

superior stability but poor tracking performance and vice versa.

It is observed that control input bounds are calculated based on the rigid model of system, desired
reference values, and approximated uncertainties from FEA. In the reaching phase, Lyapunov stability
condition is based on the selection of inputs in appropriate bounds according to Eq. (23). After reaching
sliding mode, control input bounds are selected such that closed-loop system will reside within the
sliding band according to Eq. (36). In other words, by following the detailed procedure, it is ensured
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Fig. 1. Flowchart of DSCMS control algorithm.

that the system will reach sliding surface in finite time and remains there afterward. Therefore, the
control signal is not calculated through a switching signal like the conventional continuous-time SMC
approach and the effects of input chattering will no longer exist.

Summarizing the previous steps, the algorithm for Discrete-Time Sliding mode Control of Uncertain
Continuum Mechanics Switched MIMO systems (DSCMS) is listed as follows:

(a) Deriving mathematical rigid model of the real system using nominal parameters for each
switching configuration.

(b) Discretizing the rigid model to obtain ĝij(k) and B̂j(k).
(c) Setting up the dummy models for each switching configuration to approximate parametric and

unstructured uncertainties.
(d) Adjusting initial control weighting parameters ηij, finite-time convergence factor μi, proximity

factor α(k) and sliding function parameters λij through investigation over acceptable reference
error ranges, system response behavior over different DOFs, and tracking priorities according to
Remark 6.

(e) Calculating stability bounds according to Theorem 1, Propositions 1 and 3.
(f) Applying DSCMS control input through appropriate selection of control proximity factor α(k).

In Fig. 1, the general block-diagram of the proposed DSCMS algorithm illustrating the operation logic
of the feedback system in cases where flexibility of switching system is excited by control commands,
is depicted.

4. Numerical Example
This section demonstrates controller performance and effectiveness through FEA Simulation for a con-
tinuum mechanics switched MIMO system. The selected flexible mechanism which is located on a
horizontal plane consists of two flexible beams fixed to each other in the center and carries four concen-
trated masses attached to either end of each beam according to Fig. 2. A nonlinear van der pol oscillator
is also attached to the mechanism Center of Gravity (COG) to increase system nonlinearity for control
system evaluation. The proposed mechanism could be represented as a simplified model of a quadrature,
space station, or other similar applications. Nevertheless, its capability of demonstrating the deteriorat-
ing effect of continuum mechanics vibration in the control process was the main motivation to use it for
the evaluation of DSCMS.
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Fig. 2. Schematic description of the investigated dynamical system. Systems parameters and geometry
are similar to the model of study [20].

The control objective is to guide the system such that its COG follows a predefined trajectory. Since
the entire motion takes place in a horizontal plane, the mechanism would have three DOFs and three sub-
sequent subsystems would be available throughout the development of DSCMS. To obtain the squared
system described in Assumption 1, three concentrated forces as control inputs are applied in arbitrary
positions over beam lengths and friction forces are exerted in the location of point masses. Proposed
control system verification regarding switching dynamics could be investigated from various aspects.
However, without loss of generality, switching is assumed to take place between force exertion points.
Two different configurations are simulated such that in the first configuration, control input forces are
exerted at the very end of beams close to concentrated masses and in the second configuration, exertion
points will be chosen near COG.

The closed-loop system is modeled in the FEA framework in a multitude of details to accurately sim-
ulate physical implementation. These details include mechanical strength properties such as elasticity
and Poisson ratio, geometric sections, Coulomb friction, and other simulation preliminaries. The whole
process necessitates the transformation of control algorithm codes into ANSYS R© mechanical APDL
macros for use in transient analysis. Auxiliary dummy models are also constructed in FEA and run
alongside the system sharing identical control reference values, initial position for each solution time
step, and controller design parameters with the exception that their geometry and mechanical properties
are defined according to known nominal values. Table I defines parameters used for both real system
(within parentheses) and dummy models in simulation setup:

Dynamical equations regarding the mathematical rigid model of proposed mechanism are compre-
hensively expressed in the author’s previous study [20] and only simulation results of the closed-loop
system are analyzed here. Two dummy models corresponding to each switching configuration of force
exertion point are constructed to estimate model uncertainties according to Remark 3. It should be noted
that dummy models are stimulated with the same control input forces applied on the real system and their
initial position is set exactly similar to the system initial position for every solution time step. Figure 3
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Table I. Parameters for simulation setup.

Parameter Definition Value
m, m0 Concentrated masses and their nominal value 2.2 (2.0)

[
kg

]
K, K0 Elastic coefficient of van der pole oscillator and

its nominal value
5.0 (10)

[
N/m

]
Cv, Cv0 Damping coefficient of van der pole oscillator and

its nominal value
10 (15)

[
N.s/m

]
μ, μ0 Coulomb friction coefficient and its nominal value 0.15 (0.2)

l, l0 Distance from COG to any of concentrated
masses and its nominal value

1.1 (1) [m]

ρ, ρ0 Beams mass density for aluminum and its
nominal value

2600 (2700)
[
kg/m3

]
A Beams cross-section (Height × Width) 90 × 20 mm
E Elastic modulus for aluminum 69 × 109

[
N/m2

]
ν Poisson ratio for aluminum 0.32
X0, Y0, θ0 System initial position 1 [m] , 1 [m] , 0 [Rad]
a1, b1, c1 Control inputs exertion position for first switch
a2, b2, c2 Control inputs exertion position for second switch
α Control proximity factor 0.5
T Sampling time 0.01sec

Fig. 3. Nodal displacement vector analysis for dummy models corresponding to each switching con-
figuration. (a) Dummy models coincided in the center. (b) Dummy models regarding each switching
configuration.

shows different system behavior for either dummy model responding to identical initial condition and
input force though with different force exertion points. In Fig. 3(a), both models are coincided in the
center to clearly demonstrate the differences in magnitude and orientation of each node displacement
vector.

For better graphical representation of dummy models regarding to each switching configuration,
Fig. 3(b) shows the separated velocity vector fields of the dummy models computed by ANSYS.

Switching signal is depicted in Fig. 4 in which dwell time is set to 2.5 s for the current simulation.
Figure 5 depicts closed-loop system response comparison in tracking sinusoidal references Xd =

2.0 sin 0.6π t, Yd = 2 sin 0.4π t and θd = 0.1π sin 0.2π t and alongside with their respective derivatives
for horizontal (Fig. 5(a), (b)), vertical (Fig. 5(c), (d)), and angular (Fig. 5(e), (f)) degrees of freedom.
Simulation results are compared with those of FEA-based controllers (Discrete Sliding Mode Controller
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Fig. 4. Switching signal that alters force exertion points throughout the flexible arms.

(a) (b)

(c) (d)

(e) (f)

Fig. 5. Time history plots of the response comparison of flexible system (a) Horizontal position of COG.
(b) Horizontal velocity of COG. (c) Vertical position of COG. (d) Vertical velocity of COG. (e) Angular
displacement. (f) Angular velocity.
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(a)

(b)

(c)

Fig. 6. Deviation of sliding functions comparison (a) s11. (b) s12. (c)s21

for MIMO Vibrational Systems abbreviated as DSCMV) presented in [20], which does not include
switching effects in the construction of control algorithm.

It is observed that the reference values are successfully tracked for DSCMS closed-loop system
despite frequent switches altering control input force exertion points. It is also notable that system
response undergoes a brief disturbance right after switching moment but the controller immediately
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Fig. 7. Path tracking of COG for MIMO flexible system.

drives the system into reference trajectories. Since switching alters the exertion point of input forces and
does not influence their magnitude, system horizontal and vertical motion is less affected after switching.
In this comparison, the DSCMV controller algorithm is constructed based on the worst switching case
(when input forces are closer to origin) to satisfy stability conditions for less critical cases. Nevertheless,
the closed-loop system becomes unstable due to the fact that adapting controller inputs stability bounds
to more critical switching cases, typically results in severe deformations which rule out system lin-
earity. These nonlinear behaviors are oftentimes too quick to be detectable by the FEA estimator. In
theory, the issue could be addressed by the increasing sampling rate. However, smaller sampling period
results in further complications such that increasing data reading rate involves high-frequency modes
and inaccurate control signal calculation.

Figure 6 illustrates sliding surface fluctuations around origin in period of simulation for horizontal
(Fig. 6(a)), vertical (Fig. 6(b)), and angular (Fig. 6(c)) motions. Clearly, there is no sign of high-
frequency zigzag motion around the sliding surface. In fact, the selection of control inputs between
stability bounds totally removes the chattering effect (which is normally seen in SMC techniques) with-
out notable performance compromise. Presence of model uncertainties justifies the deviation of sliding
functions from the origin which is notably reduced in DSMCS closed-loop response.

Path tracking of system COG is depicted in Fig. 7. In this figure, it is observed that planar motion
of the mechanism follows the desired path, which was expected based on precise trajectory tracking of
state values illustrated in Fig. 5.

Figure 8 represents controller inputs that is required to stabilize the close-loop system under switching
signal is depicted in Fig. 4. The superiority of DSCMS controller performance stands out regarding both
chattering effects and control effort. Minor fluctuations are observed after each switching period which
is quickly compensated through the controller effort to reach the sliding surface.

5. Conclusion
In this paper, a new approach in the control of continuum mechanics MIMO uncertain switched system
considering unknown time delay and active switching configuration is presented. The control algorithm
is constructed based on discrete sliding mode theorem and model uncertainties are estimated via Finite
Element Analysis. Candidate Lyapunov function is proposed according to a set of sliding functions
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Fig. 8. Control input forces required to track desired references.
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corresponding to each individual subsystem and given switching configuration while Krasovskii terms
are included in case the system is affected by time delay. Controller inputs are then calculated to
reside within stability bounds derived from the Lyapunov stability criterion. Proposed control algorithm
performance in comparison with available methods in the existing literature is verified through FEA
simulations.

Future works recommendation
In this paper, tracking control of continuum mechanics systems has been investigated regardless of vibra-
tion level. However, FEA-based approximation method presented in this paper is not always accurate due
to numerical methods complications. These inaccuracies directly affect the calculation of control input
bounds increasing the possibility of driving system dynamics outside the stability region. To address
this issue, the following approaches are recommended for future references:

- Using vibration suppression methods simultaneously alongside proposed DSCMS to attenuate
system vibrations in order to avoid intensification of unstructured uncertainties.

- Compressing stability margins to ensure asymptotic stability in case of inaccurate uncertainty
approximation.
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