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Stability of sedimenting flexible loops
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We study the behaviour of circular flexible loops sedimenting in a viscous fluid by
numerical simulations and linear stability analysis. The numerical model involves a local
slender-body theory approximation for the flow coupled to the Euler–Bernoulli elastic
forces for an inextensible fibre. Starting from an inclined circle, we simulate the dynamics
using truncated Fourier modes to observe three distinct regimes of motion: absolute
stability, two- and three-dimensional dynamics, depending on the relative importance of
the elastic and gravitational forces. We identify the governing parameter and develop
a simple semi-analytic stability criterion, which we verify numerically. In all cases,
sedimenting loops converge to stable, planar shape equilibria with one free parameter
related to the initial conditions and material properties of the fibre.
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1. Overview

Biological processes are one of many inspirations of elastohydromechanics (Shelley &
Ueda 2000; Schoeller et al. 2021). Slender biological objects emerge in multiple contexts,
motivating detailed investigation. Starting from the sub-cellular level, examples include
DNA and protein folding dynamics (Goldstein & Langer 1995), lipids usually forming
cell walls assembling into long filaments (Rudolph, Ratna & Kahn 1991) or microtubules
helping healing by contracting wounds (Ehrlich, Grislis & Hunt 1977). Another large area
of interest is motility – cells moving inside a fluid environment or cells inducing motion
of a fluid. An iconic example of such motion is sperm cells. On closer investigation
it turns out that flexibility plays an important role in their motion, and the interplay
between elasticity and viscous forces causes changes to the beating pattern in response
to the changing environment (Cosentino Lagomarsino, Capuani & Lowe 2003; Fauci &
Dillon 2006; Gaffney et al. 2011). Biological ‘optimisation’ for viscosity gradients can
also be found in mucus transport inside the lungs where the correct length, stiffness
and active deformation of cilia provide the necessary movement of multiple layers of
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fluid with varying viscosity, essential for healthy respiration (Fulford & Blake 1986). On
larger length scales, bacterial complexes were observed joining into elongated structures
exhibiting a complex dynamics because of elastohydrodynamic effects (Mendelson et al.
1995; Goldstein, Powers & Wiggins 1998).

Most of these examples are set in a microscale context, and thus the observed dynamics
is dominated by the viscous interactions with the surrounding fluid (Lauga & Powers
2009).

Flexible fibres with free ends have been studied in multiple settings, including their
sedimentation, both experimentally (Herzhaft & Guazzelli 1999) and numerically (Li et al.
2013). The free-end configuration was investigated first, because methods of producing
slender filaments were already developed, and because it is of interest for both industrial
applications and biological settings. Further, the one-dimensional structure provides a
particularly elegant, treatable and successful way of modelling (Wiggins et al. 1998).

In the case of low Reynolds number flows in such settings, elastic elongated filaments
can be modelled using various simulation methods, for example: the immersed boundary
(IB) method (Peskin 2002), regularised singularity methods (Cortez, Fauci & Medovikov
2005), bead-spring models (Kuei et al. 2015; Słowicka, Wajnryb & Ekiel-Jeżewska
2015; Schoeller et al. 2021) and discrete and continuous variants of slender-body theory
(SBT) (Tornberg & Shelley 2004; Saintillan, Darve & Shaqfeh 2005). The reduced
dimensionality of the filament offers a computational advantage, which has been used
in variants of the IB technique to study the whirling instability of spinning filaments (Lim
& Peskin 2004) and hydrodynamic bundling of bacterial flagella (Lim & Peskin 2012).
A combination of SBT and the regularised Stokeslet method has also been formulated
by Cortez & Nicholas (2012) and profitably applied e.g. to explain the motion of flagella
in dinoflagellates (Hguyen et al. 2011). See Nguyen, Cortez & Fauci (2014) for a review
of this approach. On the other hand, in methods which treat the filament as fundamentally
one-dimensional, such as SBT, one faces problems when the mesh along the filament is too
fine (small in comparison with the reduced length scale), even when smoothing the integral
kernels, as discussed by Tornberg & Shelley (2004). Finally, any numerical scheme for
the time evolution of elastic filaments must address the stiffness of the equations caused
by presence of high-order spatial derivatives in the equations of motion responsible for
bending rigidity. Due to the very high rate at which disturbances of small wavelength
are damped, the issue of stiffness becomes even more pronounced with finer mesh sizes.
Practically all numerical works to date use an implicit integration scheme, while here we
present a different approach.

We focus on a different configuration – looped filaments with no free ends. The
dynamics of microscale loops in viscous flows was previously analysed in the context
of growing smectic-A liquid crystals, which were modelled by Shelley & Ueda (2000)
using SBT, and for circular filaments with a non-zero inherent twist and bend, explored
using a variant of the IB method by Lim et al. (2008) in the context of over- and
underwinding of DNA leading to dynamic transitions of shapes. Our work is motivated
by the experimental work of Alizadehheidari et al. (2015) on circular DNA confined to
nanofluidic channels (and in particular its breaking), and that of Koche et al. (2020) linking
extrachromosomal circular DNA properties with neuroblastoma, and partly inspired by
previous numerical work using bead-spring hydrodynamic models (Gruziel-Słomka et al.
2019). Electrophoretic and ultracentrifugation measurements of mobility pose questions
about what constitutes a flexible regime, correct values of drag coefficients and the stress
distribution along the filament.

The inclusion of elasticity is necessary to analyse the aforementioned systems. It was
observed experimentally for red blood cells (Jay & Canham 1972) and numerically for
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flexible chains of beads (Gruziel et al. 2018; Gruziel-Słomka et al. 2019) that high
flexibility leads to a change in orientation (and sometimes shape) of sedimenting objects,
affecting their sedimentation speed. Independently, in the case of linear filaments, Reichert
& Stark (2005) observed that including elasticity can change the behaviour qualitatively
when looking at bundling vs non-bundling flagella. Even for a fixed shape, a change in
orientation can alter the sedimentation velocity by 25 %, as shown by Tchen (1954) and
in further analytical solutions for sedimenting tori (Cox 1970; Majumdar & O’Neill 1977;
Johnson & Wu 1979). Furthermore, as noted by Box et al. (2020) and Kodio, Goriely &
Vella (2020), dynamical buckling can occur in similar settings, resulting in significant
shape changes of the filaments. In bead-spring models, Gruziel-Słomka et al. (2019)
observed the existence of an elasticity threshold beyond which flexible loops undergo
significant changes in sedimentation dynamics. While stiff loops were seen to attain almost
planar, oval shapes and sediment vertically or at an acute angle to gravity, depending on
their stiffness, more flexible fibres exhibited a complex shape evolution. Our work aims to
explore this stability threshold in slender-body dynamics, both analytically and in terms of
numerical simulations.

In this work, we analyse the dynamics of slender elastic loops by linear stability analysis
in a coupled elastohydrodynamic model, and by numerical simulations introducing a new
method based on Fourier expansions. The mathematical elegance of the periodic boundary
conditions allows us to simplify the theoretical analysis and gain an analytical insight into
the stability question. Our results contribute to the explanation of horizontal sedimentation
preference. We also derive explicit expressions for tension distribution along the filament,
which comply with the work of Alizadehheidari et al. (2015) on DNA loops in microfluidic
channels, where typical locations of ruptures correspond to the highest tension in our
model.

2. Qualitative description

We focus on a thin, inextensible, looped elastic filament, settling in a viscous fluid
under gravity. The filament has a length L and bending stiffness A. We consider the
dynamics in the Stokesian regime of low Reynolds numbers, where the fluid drag forces are
proportional to the local velocity of the filament. Solutions for the terminal velocity for a
rigid loop were known even before the development of the SBT (Tchen 1954; Majumdar &
O’Neill 1977) and were tested experimentally in some cases (Amarakoon et al. 1982). The
distribution of shear forces from the fluid acting on toroidal particles in these solutions
is not uniform and thus has to be balanced by an equal and opposite force from the
particle. For loops that are not perfectly stiff, these forces may partially arise from elastic
deformation.

The presence of elastic forces can give rise to a complex dynamics of the sedimenting
loop. To understand the stability of sedimenting circular loops, we first consider a simpler
case. A classical example of beam instability under external compression has a solution
known since the mid-eighteenth century (Euler 1759). Buckling under internal forcing
(a heavy column buckling under its own weight) was revisited later by Greenhill (1881).
For a beam of length L under the action of an external force F, stability results from a
competition of this forcing with the stiffness of the beam. Because the bending rigidity is
quantified by the product A = EI, with E being the Young’s modulus of the beam material,
and I being its cross-sectional moment of inertia, the relevant dimensionless quantity is
EI/FL2, capturing the stiffness to external force ratio, and there exists a critical threshold
value of this quantity above which the initial shape becomes unstable.
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Figure 1. A three-dimensional sketch of the studied system. The direction of gravity g0, angle of inclination θ

and the arc length variable s are highlighted. Additionally, the colour indicates the tension in the beam, either
positive (aft or trailing side) or negative valued (fore or leading side). Such a tension distribution is possible
when the dimensionless gravity-to-stiffness ratio and inclination angle are large enough to cause compression
due to drag anisotropy.

We thus expect that a large enough compression is sufficient to destabilise an elastic
filament. On the other hand, when we compute forces on a straight beam bent into the
shape of a circle, we find that bending forces are balanced by the tension (negative
compression, or stretching) in the beam of value T = EI/R2, where R is the radius of
the circle. Hence, in the absence of the fluid, we have two mechanisms which stabilise the
shape against perturbations: the negative compression rate in the beam and the forces that
resist bending. The presence of a fluidic environment introduces additional hydrodynamic
forces that may be responsible for a local compression of the sedimenting loop.

Uniform drag would not lead to any compression, so even for a qualitative explanation of
hydrodynamic buckling it is necessary to include the dependence of the drag force density
on the location on the loop. The intuition that the drag is larger in the areas where the
filament is perpendicular to the flow is exemplified by a known result of local SBT: that the
ratio of the drag coefficients of a slender body in the directions parallel and perpendicular
to the centreline of the body is 1/2 (Guazzelli & Morris 2012, p. 79) up to O(ε), where
ε � 1 is the slenderness parameter of the body, or the filament aspect ratio. Consider now
a sedimenting loop of circular shape, as in figure 1. The local gravitational force density is
uniform on the circle, but we expect the drag forces to be higher at the top and the bottom in
comparison with the sides, which results in the front of the circle being hydrodynamically
compressed and its back being stretched. The compression can be destabilising, leading
to a spontaneous shape change at the fore side of the loop – in sedimentation this is the
lowest point of the loop – which can then lead to reorientation and further deformation. For
stiff loops, the global balance of hydrodynamic, elastic and gravitational forces suggests
that the hydrodynamic forces are proportional to the total weight of the loop only via a
geometric, dimensionless factor. Because the flow field around stable configurations of
flexible loops has to be identical to that around stiff loops of the same shape, we expect
this scaling to hold for flexible loops as well. Recalling the stability threshold form to
be EI/FL2, and with the force scaling as mass times gravity, this reasoning finally hints at
EI/((ρLgL)L2) being the dimensionless number governing this set-up, similarly to simpler
buckling examples (here, ρL is the fibre linear density corrected for buoyancy).
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3. Local slender-body equations

We model the fibre as a slender elastic beam of length L in a viscous fluid. To account
for hydrodynamic interactions, we use a local SBT which is a far-field approximation of
the Stokes flow due to an obstacle with a very small aspect ratio (Batchelor 1970; Cox
1970; Johnson 1980), allowing for shape parametrisation using the centreline position x(s),
where s ∈ [0, L] is the arc length.

The Stokes approximation is valid if two dimensionless constants are very small: the
Reynolds and Stokes numbers, measuring the relative importance of viscous to advective
and viscous to inertial terms in the Navier–Stokes equation, respectively. In this case, we
neglect the inertial and time-dependent terms in the Navier–Stokes equations, and arrive at
the Stokes equations describing the flow field u of an incompressible fluid with viscosity
μ under external body force density g

μ∇2u = ∇p − g, (3.1)

∇ · u = 0, (3.2)

where p denotes pressure. These equations are linear and thus admit the Green’s
fundamental solution, also called the Stokeslet, which reads

uS(r) = 1
8πμr

(
I + rr

r2

)
· f , (3.3)

where I denotes a unit tensor and r = |r|. The Stokeslet is associated with a point force
f acting on the fluid at the origin. Notably, its derivatives are also solutions to the Stokes
equations. One of particular importance is the Stokes doublet, which has a dipolar flow
character (Blake & Chwang 1974) and decays faster (∼ 1/r2) than the Stokeslet solution.

The SBT solves for the flow around a slender object of radius r and length L, with
a typical aspect ratio (slenderness parameter) ε = r/L � 1, by approximating the force
density on its surface by a distribution of Stokeslets and Stokes doublets along the
centreline.

This is motivated by the idea that distributing the singularities should be sufficient to
model the flow at distances large in comparison with the typical radius of the filament.
Matching the ‘inner’ expansion of the flow field with the ‘outer’ flow produced by the
body as a whole, and taking into account the boundary conditions on the surface of the
rod, allows for expression of the centreline velocity of the filament, u(s), in terms of two
linear operators Λ and K acting on the force density applied to the filament as

u(s) = −Λ[f ](s) − K [f ](s). (3.4)

The operators take the form

Λ[f ](s) = [
(c + 1)I + (c − 3)∂sx ∂sx

] · f (s), (3.5)

K [f ](s) =
∫ L

0

(
I + R̂(s, s′)R̂(s, s′)

|R(s, s′)| · f (s′) − I + ∂sx ∂sx
|s − s′| · f (s)

)
ds′, (3.6)

where R(s, s′) = x(s) − x(s′), R̂(s, s′) = R(s, s′)/|R(s, s′)| and c = −2 log(ε) is a
function of the slenderness parameter. This method was initially developed by Batchelor
(1970) and later improved by Cox (1970), Keller & Rubinow (1976) and Johnson (1980).
The non-local contribution (K [ f ] together with the c-independent part of Λ[ f ]) vanishes
on comparison with the local one at a rate o(1/ log(ε)). In this contribution, we shall take
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advantage of this asymptotic behaviour by neglecting K [ f ] entirely. For slender fibres,
neglecting the non-local term is a great simplification towards an analytical treatment of
the resulting equations and leads to the local SBT, also known as resistive-force theory
(RFT) introduced by Gray & Hancock (1955), in which the local velocity (in a quiescent
fluid) is related to the local hydrodynamic drag force on the filament, f h, by

u(s) = − c
8πμ

(I + ∂sx ∂sx) · f h(s). (3.7)

More recently, RFT has been increasingly popular as a modelling technique in biological
fluid dynamics and the analysis of the motion of slender filaments, leading, e.g. to a general
qualitative agreement with experimental observations of deforming flagella (Lauga &
Eloy 2013), or giving insights into the buckling (De Canio, Lauga & Goldstein 2017)
and swirling instabilities (Stein et al. 2021) in the microtubule cytoskeleton. In fact,
high-precision tracking of swimming sperm revealed that RFT can quantitatively predict
the complex trajectory of a sperm cell (Friedrich et al. 2010). Even in the case when the
slender filaments come close together, RFT has proven to be useful in predicting their
bundling behaviour (Man, Koens & Lauga 2016). In Stokes flow, the forces acting on a
suspended body balance out to zero. In our case, this involves elastic forces, gravity and
hydrodynamic drag on the filament, so the no-net-force condition can be written as

f el + f g + f h = 0. (3.8)

We model the elastic forces f el according to the Euler–Bernoulli beam theory, which takes
into account only the local curvature of the filament and the longitudinal tension (Tornberg
& Shelley 2004; Euler, Fellmann & Mikhai 2016). The elastic force density is then given
by

f el = EI ∂ssssx − ∂s(T(s)∂sx), (3.9)

where EI is the flexural (bending) rigidity and T(s) is the tension of the filament. The
second term imposes a constant length of the filament with T acting as a Lagrange
multiplier.

The tension is determined by the inextensibility equation |∂sx| = 1, which can be
rewritten as a condition on the filament velocity by taking the time derivative

0 = 1
2∂t|∂sx|2 = ∂stx · ∂sx = ∂su · ∂sx, (3.10)

and noting that it is satisfied initially. One problem that arises due to this treatment is the
lack of a correcting mechanism in cases when the length changes slightly due to numerical
errors. We implement the solution proposed by Tornberg & Shelley (2004) by introducing
a numerical stabilisation term, recasting (3.10) as

0 = ∂sx · ∂su − w(1 − ∂sx · ∂sx), (3.11)

with w controlling the absolute extension penalty.
The force balance condition, (3.8), governs the dynamics. The hydrodynamic force

density on the filament is determined by the sum of the gravitational and elastic forces
(as in (3.9)), which is then used to compute the velocity of the filament centreline via
(3.7). Equation (3.10) closes the system by imposing the filament inextensibility. We
now rescale these equations to arrive at a dimensionless system. Firstly, we choose the
dimensionless arc length to have a domain s ∈ [0, 2π] for additional convenience when
expanding in Fourier series. This results in the characteristic length L/2π scaling for x.
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Secondly, we introduce L3/(8π3EI) as the force scale. Finally, we rescale the time by
choosing 2μL3/(πEIc) as our velocity scale. This leads to equations in the form

f = −∂ssssx + (∂sx∂s + ∂ssx)T(s) − g0êz, (3.12)

u = f + (∂sx · f )∂sx, (3.13)

0 = ∂sx · ∂su − w(1 − ∂sx · ∂sx), (3.14)

with a single dimensionless parameter g0 = L3gρL/(8π3EI), analogous to (the inverse
of) that used by Gruziel-Słomka et al. (2019) for the bead-spring model. Here,
ρL = πr2(ρbeam − ρfluid) is the mass per unit length of the fibre corrected for buoyancy,
with ρbeam and ρfluid being the densities of the beam material and the fluid, respectively.
We note that w is merely a numerical stabilisation constant having no influence on the
solutions under exact evolution.

4. Linear stability analysis of the planar circle solution

We now use the equations of motion to study the sedimentation dynamics of looped
filaments with the initial condition that they are perfectly circular and inclined at an
angle θ0 to the horizontal plane, as in figure 1. A rigid circle solution (including
full hydrodynamics with non-local terms) was already known previously (Tchen 1954;
Majumdar & O’Neill 1977; Johnson & Wu 1979) and serves as the starting point for our
stability analysis.

Equations (3.12)–(3.14) admit a translating (∂su = 0) solution with a single parameter
θ0 as

x0(s, t) = [sin s, cos θ0 cos s, sin θ0 cos s] + u0t, (4.1)

T0(s) = 1 + g0 sin θ0

3
cos s, (4.2)

u0 =
[

0,
g0 sin 2θ0

6
,

g0(7 − cos 2θ0)

6

]
. (4.3)

Note that, for g0(sin θ0)/3 > 1, there appears an area of negative tension (compression) in
the beam, also the tension is largest on the aft side of the loop, explaining the observations
of Alizadehheidari et al. (2015) that such flexible loops of DNA tend to break near fore or
aft more frequently than in between – we propose that this effect is compounded by the
higher curvature, as noted in the mentioned work.

Similarly to a sedimenting slender rod, this solution exhibits a lateral drift due to the
friction anisotropy. The maximal settling angle (the angle between the sedimentation
velocity and gravity) is γmax = tan−1(1/(4

√
3)) ≈ 8.2◦ (as compared with γmax ≈ 19.47◦

for a thin rod (Guazzelli & Morris 2012, p. 83)). It is relatively small, because some parts
of the circle contribute to the downwards force, while not contributing to the sideways
force at any chosen angle.

We perturb the solution (4.3) by taking

x(s) = x0 + x̃ + O(x̃2), (4.4)

where a tilde over a symbol denotes the perturbation function. A general form of the
perturbation turns out to be analytically intractable due to the complexity of the coupled
equations for tension perturbation, so further simplifying assumptions are necessary. Here,
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Figure 2. Diagram of the considered initial perturbation ζ(s). Presented linear stability analysis focuses only
on the perturbation in the direction perpendicular to the plane in which the unperturbed solution lies.

we consider specific perturbations in the direction perpendicular to the circle’s plane, as
in figure 2, so that x̃ is of the form

x̃ = ζ(s)[0, − sin θ0, cos θ0]. (4.5)

The presented method gives rise to two problems when trying to expand to in-plane
perturbations. Firstly, taking a dot product with an in-plane vector instead of a normal
vector leads to significantly more complex equations. The second complication is that
in-plane perturbations are inherently two-dimensional and cannot be described by just
a single scalar function. Choosing only specific normal perturbation is justified by the
intuitive insight that comes from the tractable form of the resulting linear stability analysis
problem.

Assuming that the associated perturbation of tension T̃ is O(ζ ), we neglect quadratic-
and higher-order terms in ζ . Then the force f in the perturbed system is of the form
f = f 0 + f̃ where

f 0 = g0 sin θ0

3

[
sin 2s, cos 2s cos θ0,

3
sin θ0

+ cos 2s cos θ0

]
, (4.6)

f̃ = −∂ssssx̃ + ∂sT0 ∂sx̃ + ∂sT̃ ∂sx0 + T̃ ∂ssx0 + T0 ∂ssx̃. (4.7)

Finally, we get a linear resulting perturbation to the velocity u = u0 + ũ with

ũ = f̃ + ( f̃ · ∂sx0)∂sx0 + ( f 0 · ∂sx̃)∂sx0 + ( f 0 · ∂sx0)∂sx̃. (4.8)

This can be put into the inextensibility condition ∂su · ∂sx = 0. With ∂su0 = 0 and
∂sũ · ∂ x̃ being a second-order term, the inextensibility equation for the perturbed shape
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Figure 3. (a) Largest eigenvalues of the linear operator L depending on the stability parameter q (dark blue
lines) describing the linearised stability problem. At q approximately 14.5 the largest eigenvalue crosses
zero, which corresponds to the appearance of an unstable solution of the time-dependent equation. (b) The
critical value of q computed for various values of the truncation frequency n. For n < 4 the behaviour of L is
completely different, but for n ≥ 4 the critical value of the stability parameter changes by a very small fraction.
This is possible because the most unstable mode is dominated by low-frequency oscillations.

is simply
0 = ∂sũ · ∂sx0. (4.9)

It could be in principle solved for the tension perturbation. Instead, a more convenient way
of proceeding is to note that

∂tζ = ũ · [0, − sin θ0, cos θ0]=∂ssζ + g0 sin θ0

3
[(∂sζ ) sin s+(∂ssζ ) cos s]−∂ssssζ = L[ζ ],

(4.10)
which has all the information needed to analyse the evolution of perturbation in the
direction of the initial perturbation. The perturbation dynamics is now governed by a single
parameter only

q = 1
3 g0 sin θ0. (4.11)

Equation (4.10) can be rewritten as a diffusion-like equation of the form

∂tζ = −∂ssssζ + ∂s(T0∂sζ ). (4.12)

This highlights the essential role of negative tension in the development of shape
instability, which takes the role of the diffusion coefficient in (4.12) and the only other
term is ∂ssssζ , which has an additional stabilising effect. To determine the stability of the
linear partial differential equation (4.12), we examine the eigenvalues of the linear operator
L on the right-hand side. The value of the initial tension T0(s) = 1 + q cos s gives rise to
a simple analytical form of this operator

L = −∂ssss + ∂ss + q((sin s) ∂s + (cos s) ∂ss). (4.13)

The periodicity of ζ can be enforced by analysing L action on {sin ks, cos ks} basis on
L2(S1). We note that

L[sin ks] = −(k2 + k4) sin ks + 1
2 kq(k + 1) sin(k − 1)s + 1

2 kq(k − 1) sin(k + 1)s,
(4.14)
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and similarly for cos ks. Therefore, to find the eigenvalues of L, it is sufficient to consider
linear combinations of the sine and cosine parts of the Fourier expansion separately, as L
maps the span of either one to itself. Moreover, on each of the subspaces, the restricted
maps are the same and thus have identical eigenvalues.

The operator L on span[sin(kx)] has the following matrix representation:

L =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2 −3q

0 −20 −6q

−q −90 −10q

−3q −272

−6q
. . . −qk(k + 1)/2

−k2 − k4

−qk(k − 1)/2
. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4.15)

We can obtain approximations to L by truncating at a desired n. For a given n the
condition that q is critical translates to L having one eigenvalue equal to zero, which
can be expressed as detL = 0, which is a polynomial equation in q. Such equations
have fast numerical solvers, allowing for computation of the critical value with high
accuracy. We examined this for n ∈ (1, 2, . . . 60) to verify that the highest eigenvalue of
L was determined with satisfactory precision – the convergence is extremely fast (at least
exponential), as illustrated in figure 3. We find that the critical value of q = g0(sin θ0)/3 is
14.56105439107. Above this critical value the largest eigenvalue is positive, as illustrated.

5. Numerical method

In order to verify the predictions of the theoretical model and the simplified linear
stability analysis, we solve the equations of motion numerically. Because all the functions
characterising the elastic loop are periodic, we represent them in the form of (truncated)
Fourier series. More precisely, an approximation to a function f (s) is numerically
represented by a complex valued 2n-dimensional vector fα , such that

f (s) ≈
n∑

α=−n

fα exp(iαs). (5.1)

For a smooth f , such series converge exponentially. We simulate the equations of motion
by computing truncated series approximations to the position x, velocity u, and tension T
up to a fixed order n.

The governing equations can be coded as three affine maps (of type x �→ Ax + b) as
follows:

T
Euler–Bernoulli equation−−−−−−−−−−−−−→

(1)
f

local SBT−−−−−→
(2)

u
inextensibility equation−−−−−−−−−−−−→

(3)
ε. (5.2)

These correspond to the Euler–Bernoulli theory (map (1) – (3.9)) allowing for
computation of the force density given the tension T , local SBT mapping force density
f to the local velocity u (map (2) – (3.7)) and the inextensibility equation mapping the
local velocity to local length creation, the error term ε, which we try to minimise in the
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simulation (map (3) – (3.11)). Maps (1), (2) are approximated by matrix equations of
dimension corresponding to the truncation order n. This is chosen in order to keep x and
u expanded to the same order. Nevertheless, it is essential to compute the inextensibility
equation map (3) including higher-order (2n) terms. These three maps are combined to
obtain a relationship between the coefficients of the Fourier expansion of the tension
distribution T and the local filament length creation ε, which should be as close to zero
as possible. Because there are more terms in the expansion of the local length creation
than in the tension distribution, we can only attempt to make them as close to zero
as possible. The combined affine map from the tension T to the error term ε therefore
induces an overdetermined system of linear equations. These are solved for T by L2 error
minimisation, which is the same as solving the ordinary least squares (OLS) problem
(Fourier basis is orthonormal) with an additional restriction that T(s) is real valued. It
might be tempting to simplify this procedure by using the same truncation order on the
error terms as on the tension expansion, leading to an exact solution for T instead of
an optimisation problem, but if we leave out the highly oscillatory terms in the error
map (3), then the solver is oblivious to the filament length increase due to oscillations
with frequencies higher than n/2 in the tension expansion, resulting in an exponential
explosion of high-frequency vibrations. Such behaviour comes from the terms in the
equations where two functions are multiplied (such as ∂sT ∂sx); there two terms of a given
wavenumber can combine to one term with double the wavenumber. Additional care needs
to be taken to ensure that the trajectories remain real valued (the error can accumulate in
the complex-valued x Fourier expansions). This was achieved by projecting the solution
onto the allowed subspace at each time step.

Equations (5.2) for the tension T are solved at each evaluation of u, and this value of
tension is used to compute the velocity in an explicit integration scheme with a variable
time step of the Runge–Kutta–Feldberg (fifth-order) method. This algorithm, however, is
at best O(n3) in the truncation frequency (because the OLS minimiser is O(n3)) and in
reality even slower, as more degrees of freedom necessitate a decrease of the time step.
For n = 6, our implementation was running at a speed of 40 dimensionless time units
per hour for typical values of parameters on one thread of a typical 2.5 GHz processor;
for n = 8, the speed decreased to 5 dimensionless time units per hour (giving a very crude
estimate for complexity of approximately O(n7)). This makes investigations of large values
of n impractical. For our calculations, we choose n = 6. We discuss this choice further in
§ 6.1. Most of the simulations were run with the help of GNU Parallel software (Tange
2011).

6. Sedimentation modes

Motivated by the linear stability analysis performed above for circular loops, we now
explore numerically the evolution of elastic rings starting at arbitrary inclination angles for
a range of the elastohydrodynamic parameter g0. We thus choose similar initial conditions
to those used by Gruziel-Słomka et al. (2019). In the simulations, we observe three distinct
sedimentation regimes (corresponding to terminal shapes) depending on the stiffness of
the loop. They are demonstrated in figure 4 with top and in-plane views of the terminal
sedimentation shapes. For very stiff loops, characterised by low values of g0, marked in
purple in the figure and referred to as stable, we observe stable sedimentation of a circular
shape. The dynamics is then given by the translating solution of (4.3) – we see no change
in the shape or the sedimentation angle. When the elasticity of the loop is increased, we
observe a different terminal regime referred to as in-plane dynamics, where the shape of
the loop evolves in a two-dimensional plane defined by the initial angle (cases marked in
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g0 = 20 g0 = 50 g0 = 60 g0 = 70

g0 = 80 g0 = 110 g0 = 130 g0 = 140

g0 = 200 g0 = 260 g0 = 270 g0 = 300

(a) (b) (c) (d ) (e) ( f ) (g) (h)

(i) ( j) (k) (l) (m) ( n) (o) (p)

(q) (r) (s) (t) (u) ( v) (w) (x)

Figure 4. Selection of terminal shapes for varying values of forcing (inverse stiffness) g0 with an
initial angle θ0 = 30◦ and n = 6 coloured by trajectory type: stable (dark purple), in-plane dynamics
(green-blue), three-dimensional dynamics (yellow). The left panels (a,c,e,g,i,k,m,o,q,s,u,w) show side views
(sedimentation downwards) with a unit circle and initial tilt plane marked by dashed lines; black arrows indicate
the direction of gravity. When the terminal shape aspect ratio is 1, regardless of the terminal inclination angle,
the projection fits inside the unit circle. The right panels (b,d,f ,h,j,l,n,p,r,t,v,x) show the shape within the
final sedimentation plane aligned with the principal axes of the loop. Lowest points on the respective loops are
located on the left side of panels (b,d,f,h,j,l,n,p,r,t,v,x). Dashed unit circle is plotted for reference. Note that for
sufficiently large values of g0 (highly flexible filaments) the terminal tilt angle changes erratically with initial
conditions.

green–blue) – we only see changes of the shape, while the inclination angle of the loop
remains unchanged. The circular state is then unstable and evolves into a prolate loop.
When the stiffness is reduced further, for high values of g0, we observe three-dimensional
evolution (marked in yellow and referred to as three-dimensional dynamics) with a change
in the angle of the terminal sedimentation plane with respect to the initial inclination.
In the three-dimensional dynamics regime the loop leaves the initial plane essentially
immediately – it does not go through dynamics similar to the in-plane regime. Deviations
from a circular shape are necessary but not sufficient for a change in the inclination angle,
as exemplified by the existence of the in-plane dynamics regime. For the three-dimensional
dynamics regime in each simulation we observe in-plane and out-of-plane perturbations
appearing spontaneously every time, and the inclination angle always changes.

In order to test the stability criterion derived in § 4, we plot the observed sedimentation
modes depending on the dimensionless gravity g0 and the initial sedimentation angle θ0
in figure 5. Clearly, the stability criterion with q ≈ 14.5 (solid line) divides the regions
of absolute stability (with purple markers) and full three-dimensional dynamics (yellow
markers), with the planar evolution states in between. All instances of stable behaviour are
inside the predicted stability region. The initially unstable behaviour – yellow points to the
right of the stability curve – involves a complex transient evolution that finally settles on a
stable configuration at a smaller inclination angle. Even though the final shape in figure 4
is planar (prolate or circular), an example of the full shape transition in figure 6 shows
significant bending with a complete deviation from the initial plane and the establishment
of a new ellipsoidal shape in a different plane, essentially always at an angle smaller than
the initial θ0, and followed by a relaxation to the final shape. In most cases, the trajectory
consists of three phases. Firstly, the loop folds in half starting with the fore side of the loop
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Figure 5. Sedimentation regimes showing stable translation (dark purple), in-plane dynamics (green-blue)
and three-dimensional dynamics (yellow), observed in simulations for truncation frequency n = 6. Solid line
represents the linear stability analysis prediction (q ≈ 14.5); dashed lines are empirical in-plane dynamics
boundaries (q ≈ 10.5 and q ≈ 18.5) presented as eye guides.
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Figure 6. Sample of three-dimensional time evolution dynamics. Three-dimensional rendering (a), side view
(b), top view (c). Images show shape evolution when starting in an unstable equilibrium. Snapshots are taken
at regular time intervals with changing colour: initial light yellow to final dark purple. The loop starts at initial
angle θ0 = 60◦ subject to a gravitational force of dimensionless value g0 = 150. The fore side of the loop folds
upwards leading to the formation of two lobes and an ellipsoidal shape (best visible in top view). At long times,
the loop converges to a near-horizontal plane to finally (after a very slow dynamics) relax to a perfect circle
(not shown in the figure).

falling faster than the centre of mass and immediately after being ‘blown’ backwards by
the drag force. This is related to the loop deforming towards a more prolate shape. With
the increasing fore–aft distance, and the centre of mass position remaining symmetrically
in the middle of the loop, it is necessary for the fore side to move faster than the centre of
mass during this stage. We regard this as the primary reason for the different behaviours of
flexible rods and loops. In the initial stages of motion a loop extends in plane, elongating
its long axis, while a rod retains its constant length. We note, however, that this effect
lasts for a very short period of time, and is present only at the early stages of the evolution.
Secondly, the two lobes formed by the fold relax towards the terminal plane. The dynamics
then becomes very slow and the loop attains the terminal shape within the terminal plane.
Notably, this behaviour is different from the case of a free-end filament, in which the
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Figure 7. (a) A comparison between the initial and the final values of the stability parameter in all simulations.
Linear stability analysis prediction (solid line at q ≈ 14.5) is marked together with estimated in-plane regime
boundaries of q ≈ 10.5 and q ≈ 18.5 (dashed lines). The points are coloured by the type of trajectory:
stable (dark purple), in-plane dynamics (green-blue), three-dimensional dynamics (yellow). (b) A comparison
between the initial and the final values of tilt angle. The stable (darkest) and the in-plane dynamics (medium)
points were shifted 1◦ in (a,b) respectively, for clarity. The unordered scatter of the three-dimensional dynamics
points (yellow) shows that the final tilt is difficult to predict, but in the vast majority of cases it is smaller than
the initial tilt angle.

lowest part of the filament initially sediments slower than the centre of mass (Li et al.
2013), leading to a different shape evolution path.

Lastly, the green–blue points span across the stability boundary in figure 5. This type
of behaviour is not taken into account by our simplistic linear stability analysis, because
of the assumption of a normal direction of perturbation, while here the loop stays in
the initial plane. Nevertheless, this type of dynamics is observed in the vicinity of
the predicted stability boundary and can be regarded as an intermediate stage between
complete instability and the complete lack of shape change. A vast majority of such
trajectories are bounded by 10.5 < (g0 sin θ0)/3 < 18.5. This region closely follows the
stability curve in a wide range of the control parameter values and has boundaries that
appear to have a similar functional form to the analytical predictions.

To further analyse the relationship between the initial and final sedimentation planes,
in figure 7 we plot the initial stability parameter q = g0 sin θ0/3 vs the final parameter
(calculated as g0 sin θ/3) for all the cases investigated. The stability threshold is again
marked with a solid line, together with the empirical strip of two-dimensional evolving
shapes between the dashed lines. For stiff loops, at low values of q, the evolution does not
affect the sedimentation angle, and thus we see the expected linear correlation, which
persists for the semi-stable states which still remain in the initial plane. For unstable
loops of high flexibility, we see no apparent correlation between the initial and the final
sedimentation angles, as seen clearly in figure 7(b). Although the transition from stable to
unstable dynamics is quite accurately grasped by our estimates, we note that the detailed
evolution in this mode of motion is sensitive to the initial conditions, as discussed further.

In figure 8, we explore the deviation from a circular shape vs the final stability parameter.
To this end, we plot the aspect ratio of the final shape for all our data, defined as the ratio of
the highest to the middle eigenvalue of the spatial covariance matrix. The absolutely stable
loops remain circular, and once we enter the unstable region, in the vicinity of the stability
criterion we see a continuous increase of the aspect ratio. For unstable loops undergoing
the full three-dimensional evolution, we do not see a systematic trend, but the final aspect
ratios remain within the trend seen for stiffer loops, confirming that these configurations
are globally stable solutions of the loop evolution equations. In addition, we see that the
planar evolution is governed solely by the stability parameter q = g0 sin θ/3, also in the
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Figure 8. Aspect ratio of the terminal centreline shape plotted against the terminal value of stability parameter
g0(sin θ)/3. Large aspect ratios refer to highly elongated loops. A functional relationship confirms that
the in-plane dynamics depends only on the stability parameter. The final shape is determined by the final
sedimentation angle (and vice versa). Regime boundary between stable and the in-plane dynamics is clearly
visible on this graph as the point where medium shade points reach the aspect ratio = 1 line. When the initial
stability parameter is greater than q∗ ≈ 9, loops move from a stable to an in-plane dynamics regime. Note that
for the stable and in-plane dynamics trajectories (darkest and medium points) the initial and the final tilt are the
same, but for the three-dimensional dynamics the terminal tilt angle is smaller than the initial one (explaining
lightest points with aspect ratios of unity). Regardless of the initial configuration and parameters, it is sufficient
for the terminal stability parameter to be smaller than q∗ to ensure the terminal configuration takes the shape
of a circle. Dashed line shows the unstable branch of the solutions.

cases where the final value of θ is very small and the initial three-dimensional dynamics
converges to a perfectly circular equilibrium shape, the same shape as in the case of stable
sedimentation modes.

6.1. Influence of truncation order
All the presented summaries of simulations are results of a numerical scheme terminated
at t = 10 of the dimensionless time, which corresponds to a sedimentation distance of the
order of 103 in terms of loop radius for moderate values of stiffness, upon confirming
no further shape evolution. This is long enough for all the simulated shapes to attain
the final configuration. In most cases, all rapid changes in shape (each at time scales of
approximately 0.5) are finished when t reaches approximately 3, then the terminal angle
is selected. A much slower relaxation of shape within the terminal plane follows with the
characteristic time of t ≈ 1.

In the section above, we studied the stability of initial configurations and the attraction
to a stable shape for different values of the initial angle θ0 and the truncation orders
n = 6. Numerical investigation of the eigenvalues of the truncated L operator shows
that the stability boundary should be largely independent of the truncation order n. Even
though the initial rate at which the instability develops will be independent of n (in an
unstable equilibrium it is the numerical noise that initiates movement), we should expect
quantitatively similar behaviour for the terminal motion of the loops.

In figure 9, we redraw the stability diagram, figure 5, for different truncation order of n =
4 (a) and n = 8 (b). Regardless of the initial angle and the truncation order, the stability
region is correctly predicted by the simplified linear stability analysis. Moreover, when the
loops are initially in an unstable position, they eventually reach the terminal angles, which
are constrained by the stability region. However, the truncation order changes the exact
behaviour predicted for a particular stiffness and initial sedimentation angle. Notably, for
very small values of n the intermediate regime of in-plane dynamics cannot be observed.
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Figure 9. Comparison of regimes of sedimentation observed in simulation for truncation frequency n = 4 (a)
and n = 8 (b). Solid line represents the boundary of the stable region as obtained from the linear stability
analysis. Dashed lines are eye guides to facilitate the comparison of the two panels. Very small values of n do
not exhibit the intermediate regime of in-plane dynamics. However, the proposed stability criteria seem to hold
sway.

It is possible that this effect appears because the loop is unable to attain configuration
close enough to the terminal shape of the in-plane dynamics, due to the small number
of degrees of freedom. For a larger number of truncation modes, we see that the extent
of the two-dimensional evolution region decreases, with more unstable states close to the
stability criterion, but nevertheless the clear division between the modes remains in place,
rendering the simplistic criterion a useful tool for assessing the loop stability.

Far from the stability boundary, the dynamics of the loop follows the qualitative
conclusions derived from the analytical treatment, and the lower boundary (stable to
in-plane dynamics) is weakly sensitive to the truncation frequency – additional simulations
for n = 10 on a restricted set of initial angles confirm that a lower stability boundary
shows no further change with inclusion of higher-order terms in expansions. We note,
however, that the upper boundary (in-plane to three-dimensional dynamics) is a fragile
one, and the selection of one attractor over the other is sensitive to the details of numerical
implementation. The discussed discrepancies can be of three origins: (i) change in stability
due to the truncation of high frequencies, (ii) change in perturbation power spectrum
due to the change of dimensionality or (iii) change in perturbation due to the change in
numerical stability of the OLS minimiser procedure. The presented analysis of truncation
order in figure 3 gives us confidence that the high-frequency modes make negligible
contributions to the stability problem due to the extremely high damping by elastic ∂ssss
terms. Therefore, our expectation is that effects (ii) and (iii) are the primary reasons for
the observed differences between the smallest and largest values of the truncation order.

7. Conclusions

In this contribution, we modelled the behaviour of elastic loops sedimenting under gravity.
To this end, we combined the local SBT with the Euler–Bernoulli beam theory to develop
analytical insights into the dynamics and proposed a Fourier basis expansion method for
effective numerical implementation. Our approach takes advantage of the periodicity of
all the relevant functions in this setting, complementing our analytical treatment.

In simulations, when starting from an inclined circle, we identified three distinct regimes
of motion, depending on the relative importance of gravity and loop stiffness, combined
into a single dimensionless parameter g0. For stiff loops, or low values of g0, we see no
effect of elasticity and the loops sediment as circular rings. When increasing the softness,
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sedimenting loops remain oriented in the initial plane but attain elongated and slightly
asymmetric shapes. For even softer filaments, the loops exhibit a transient instability,
undergoing a three-dimensional shape evolution, where the fore edge of the loop is bent
and leaves the initial plane, but the dynamics eventually settles on a planar shape at an
angle different from the original. The said terminal angle is hard to predict and under
fixed g0 determines whether the final configuration will be circular or prolate. Small
enough angles corresponding to terminal stability parameter q = g0 sin θ/3 smaller than
approximately q∗ = 9 always result in an eventual circular shape.

To explain the transition between these regimes, we propose a simple theory based on
linear stability analysis, with a further assumption that perturbation is taken in the direction
perpendicular to the initial plane. This specific choice of perturbation leads to an analytical
insight into the dynamics which we doubt to be possible with an arbitrary perturbation.
To circumvent this difficulty, we additionally perform numerical simulations to provide
a description for arbitrary initial conditions. Under the chosen simplification we identify
the most important parameter controlling the motion as the initial stability parameter q =
g0 sin θ0/3, and perform a near-analytic determination of the stability boundary at q ≈
14.5.

The results of numerical simulations are in satisfactory agreement with the simplistic
approach of the linear stability analysis, thus confirming the validity of our approach for
finding the stability threshold. Both the absolutely stable and the unstable regimes fit
entirely within the domains predicted by the theory. The intermediate regime of planar
shape evolution appears in close proximity of the stability boundary. We conclude that
such a simplified linear stability analysis is a useful tool in both the three-dimensional
dynamics case as well as for in-plane dynamics because it correctly predicts both scaling
and approximate values of the stability parameter of regime transitions. For sufficiently
stiff loops, we compare our numerical codes to the existing analytical results of Johnson
& Wu (1979) and Tchen (1954) for stiff loops. We confirmed the expected agreement
both qualitatively (translation without change of orientation) and quantitatively in terms
of translation velocity asymptotics for very slender rods. Below the stability threshold,
however, we see differences from the bead-spring model (Gruziel-Słomka et al. 2019),
where sufficiently stiff sedimenting loops attained vertical or tilted oval shapes, in
contrast to loops sedimenting without a change of orientation in our model. Increasing
the flexibility leads to a deviation from the initial shape, resulting in an approach to a
different equilibrium circle. Beyond the stability threshold, we also find that the details
of intermittent evolution of more flexible fibres differ between the bead-spring results of
Gruziel-Słomka et al. (2019) and slender-body models. This might be partly due to the lack
of non-local terms in our resistive-force SBT and due to the different geometric details of
both systems, i.e. a slender filament vs a chain of beads. In particular, we note that the
stable circular configuration found in the RFT approximation is no longer a solution when
the full hydrodynamics is included. However, the shape of the final tilt angle vs stiffness
curve is similar in the bead-spring and RFT models.

The presented approach shows an attractive interpretation of the compression (negative
tension) on the fore side of sedimenting objects as a negative diffusion coefficient in the
governing equation of the linear stability analysis. This gives intuitive grounding to the
experimental results such as those of Jay & Canham (1972) where red blood cells show
a preference for horizontal sedimentation when their flexibility is increased, or Gruziel
et al. (2018) where the preference for horizontal sedimentation was seen for knotted elastic
fibres. It also provides support for the interpretation of experiments of the DNA loop
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rupture dynamics (Alizadehheidari et al. 2015), in which the loops break in locations
corresponding to the maximal tension in our description.

The conclusion that vertically oriented loop configurations are forbidden due to their
instability is a general physical observation applicable in similar elastohydrodynamic
settings. The presented results show that observations of instability from free-end
simulations (Li et al. 2013) are applicable only to some extent: circular configuration
gives rise to a tension offset which substantially improves stability in comparison with
the free-end configuration.

We look forward to additional experimental verification of the conclusions of this paper,
either in the microscale with biological fibres or in macroscopic experiments such as those
with knotted bead chains of Gruziel et al. (2018).
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