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Abstract We begin by defining a homoclinic class for homeomorphisms. Then we prove that if a
topological homoclinic class Λ associated with an area-preserving homeomorphism f on a surface M is
topologically hyperbolic (i.e. has the shadowing and expansiveness properties), then Λ = M and f is an
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1. Introduction

Let f : M → M be a diffeomorphism defined on a closed and connected Riemannian
manifold M . A compact and f -invariant set Λ ⊂ M is called a hyperbolic set if the
tangent bundle over Λ can be decomposed as a direct sum of two sub-bundles, both
invariant by the tangent map Df , that are uniformly contracted under forward and
backward iterations, respectively (see, e.g. [9] for full details). When such a hyperbolic
set Λ is given by the orbit of a periodic point, the point is called a hyperbolic periodic
point. The concept of hyperbolicity played a fundamental part in the development of the
stability theory of dynamical systems (see, e.g. [9,11]).

We recall that a non-wandering point x ∈ M is a point such that any neighbourhood
U of x contains points for which some forward iterate is in U . If the set of non-wandering
points is the closure of the set of hyperbolic periodic points and furthermore it is a
hyperbolic set, then Smale’s spectral decomposition theorem [11] ensures that the set of
non-wandering points can be partitioned into a finite number of compact blocks exhibiting
a dense orbit, called basic blocks. When there is a single piece in this decomposition, f is
called an Anosov map.
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In an attempt to generalize the hyperbolic basic sets which had a central role in
Smale’s spectral decomposition, Newhouse introduced, in the early 1970s, the concept
of a homoclinic class (see [5]). A homoclinic class is defined as the closure of the set of
transversal intersections of the stable and unstable invariant manifolds of a hyperbolic
periodic saddle of a diffeomorphism f . Homoclinic classes are f -invariant and display a
dense orbit of f in the homoclinic class. Yet the hyperbolicity of the periodic saddle,
which is the origin of the homoclinic class, is not enough to spread hyperbolicity to the
whole homoclinic class. Indeed, it is well known that homoclinic classes may fail to be
uniformly hyperbolic.

In the particular case when M is a surface and f is area preserving, Newhouse
proved in the mid-1980s [6] a simple but elegant result: that f cannot support proper
uniformly hyperbolic homoclinic classes. In other words, uniformly hyperbolic homo-
clinic classes must be the whole manifold, leading to the conclusion that f is an
Anosov map.

In the present paper, we intend to reconfigure Newhouse’s theorem by considering
maps that are not diffeomorphisms. Two problems arise: the pointwise hyperbolicity (a
homoclinic class foreshadows the need for a hyperbolic periodic saddle point) and set
hyperbolicity (the hypothesis that a homoclinic class is hyperbolic).

Clearly, we first need to seek vestiges of hyperbolicity in non-differentiable contexts
and only then try to conjecture what could be the topological counterpart of Newhouse’s
theorem. Our proposal is to replace the hyperbolicity by two properties with topolog-
ical flavour—shadowing and expansiveness. In § 2 we fully describe these ‘topological
hyperbolic sets’ in terms of dynamically defined invariant manifolds, canonical coor-
dinates and local product structure (LPS), which are of utmost importance when we
realign Newhouse’s strategy. In § 3 we define topological homoclinic classes readapted
to a type of topological transversality and obtain the Birkhoff–Smale theorem in this
non-differentiable setting.

For diffeomorphisms it is well known that periodic points are dense in the whole homo-
clinic class. However, we do not know how to prove this property for homeomorphisms (see
Remark 3.1). Fortunately, we are considering hyperbolic topological homoclinic classes,
which is enough to obtain that periodic points are dense in the whole homoclinic class
(cf. Proposition 2.6).

Like Newhouse, who was inspired by a uniformly hyperbolic basic set to consider the
closure of transversal intersections of stable/unstable manifolds of a hyperbolic periodic
saddle, we were inspired by a set displaying shadowing and expansiveness (topologi-
cal set hyperbolicity) to consider the closure of topological transversal intersections of
stable/unstable manifolds of a periodic point displaying shadowing and expansiveness
(pointwise hyperbolicity).

We hope that our definition of a topological homoclinic class will be useful
in several aspects of topological dynamics. Finally, in § 4 we prove the following
theorem.

Theorem 1. Let M be a surface, let f : M → M be an area-preserving homeomor-
phism and let Λ ⊆ M be a topological homoclinic class of f . If f has the shadowing
property on Λ and is expansive on Λ, then f is an Anosov homeomorphism (i.e., f has
the shadowing property on M and is expansive on M).
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Notably, in [3,4] it was proved that there are no expansive homeomorphisms on the
two-dimensional sphere S

2. This result, along with Theorem 1, allows us to conclude that
S

2 does not support topological homoclinic classes with shadowing and expansiveness
associated with an area-preserving homeomorphism.

Throughout the article we assume that M is a closed, connected Riemannian manifold,
d is the distance on M induced by the Riemannian structure and λ is the Lebesgue
measure on M associated with a volume form on M . Although our main result is about
surfaces, some results are stated and proved for manifolds on dimension ≥ 2 for eventual
future use.

2. Topological hyperbolicity

2.1. Hyperbolic homeomorphisms

Let f : M → M be a homeomorphism. Given δ > 0, a sequence of points {xi}i∈Z ⊂ M
is called a δ-pseudo-orbit of f if d(f(xi), xi+1) < δ for all i ∈ Z. Let Λ ⊆ M be a closed
f -invariant set (i.e. f(Λ) = Λ). We say that f has the shadowing property on Λ if for
every ε > 0 there is δ > 0 such that for any δ-pseudo-orbit {xi}i∈Z ⊂ Λ of f there is a
point z ∈ Λ such that d(f i(z), xi) < ε for all i ∈ Z. When Λ = M , f is said to have the
shadowing property.

A homeomorphism f is called expansive on Λ (see [9, § 7]) if there is e > 0, called an
expansive constant, such that for all x ∈ Λ and y ∈ M , if we have d(fn(x), fn(y)) ≤ e for
all n ∈ Z then x = y. When Λ = M , f is simply said to be expansive.

A homeomorphism f is called an Anosov homeomorphism if it has the shadowing prop-
erty and is expansive (see [1, § 11.3]). We shall say that f is a hyperbolic homeomorphism
on Λ if it has the shadowing property on Λ and is expansive on Λ.

2.2. Invariant sets, shadowing and expansiveness

In this section we obtain some useful local results to be used in the sequel. Let f : M →
M be a homeomorphism and let Λ ⊆ M be a closed and f -invariant set. Given x ∈ M
and ε > 0, the local stable and local unstable set of x are defined, respectively, by

W s
ε (x) = {y ∈ M : d(fn(x), fn(y)) ≤ ε for n ≥ 0}

and
Wu

ε (x) = {y ∈ M : d(f−n(x), f−n(y)) ≤ ε for n ≥ 0}.
Under the expansiveness hypothesis on Λ, stable and unstable sets of points x ∈ Λ are
dynamically defined, i.e. the following result holds.

Proposition 2.1. Let e > 0. The homeomorphism f is expansive on Λ with expansive
constant e if and only if for all ẽ > 0 there exists N > 0 such that for all x ∈ Λ and all
n ≥ N we have

fn(W s
e (x)) ⊂ W s

ẽ (fn(x)) and f−n(Wu
e (x)) ⊂ Wu

ẽ (f−n(x)). (2.1)

Proof. Suppose that f is expansive on Λ with expansive constant e, and sup-
pose, for a contradiction, that there exist sequences xn ∈ Λ and yn ∈ M , n ∈ N, such
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that yn ∈ W s
e (xn) and d(fn(xn), fn(yn)) > ẽ. Since yn ∈ W s

e (xn), we have that d(fm ◦
fn(xn), fm ◦ fn(yn)) ≤ e for all m ≥ −n. Taking subsequences, we may assume that
there exists x ∈ Λ and y ∈ M such that limn fn(xn) = x and limn fn(yn) = y. Hence,
d(fm(x), fm(y)) ≤ e for all m ∈ Z. Moreover, d(x, y) = limn d(fn(xn), fn(yn)) ≥ ẽ. This
contradicts the expansiveness on Λ.

Conversely, let x ∈ Λ and y ∈ M be such that d(fn(x), fn(y)) ≤ e for all n ∈ Z. For
all n ≥ 0 we have f−n(y) ∈ W s

e (f−n(x)). Then, for any ẽ > 0, we have y ∈ W s
ẽ (x) by the

first inclusion of (2.1) and hence x = y. �

The stable and unstable sets of x ∈ M are defined, respectively, by

W s(x) =
{

y ∈ M : lim
n→+∞d(fn(x), fn(y)) = 0

}

and

Wu(x) =
{

y ∈ M : lim
n→+∞d(f−n(x), f−n(y)) = 0

}
.

Proposition 2.2. If f is expansive on Λ with expansive constant e and ε ∈ (0, e), then
for all x ∈ Λ :

W s(x) =
⋃
n≥0

f−n(W s
ε (fn(x))) and Wu(x) =

⋃
n≥0

fn(Wu
ε (f−n(x))). (2.2)

Proof. Let y ∈ ∪n≥0f
−nW s

ε (fn(x)). There exists n ≥ 0 such that fn(y) ∈ W s
ε (fn(x)).

By Proposition 2.1, for all ẽ > 0 there exists N > 0 such that for all m ≥ N ,

fm+n(y) ∈ fmW s
ε (fn(x)) ⊂ W s

ẽ (fm+n(x)).

Hence, d(fm+n(y), fm+n(x)) ≤ ẽ for all m ≥ N and, consequently, y ∈ W s(x).
Conversely, let y ∈ W s(x). Given ε > 0 there exists N ≥ 0 such that d(fn(x), fn(y)) ≤ ε

for n ≥ N . Consequently, d(f i ◦ fN (x), f i ◦ fN (y)) ≤ ε for all i ≥ 0, i.e. fN (y) ∈
W s

ε (fN (x)). Hence,

y ∈ f−NW s
ε (fN (x)) ⊂ ∪n≥0f

−nW s
ε (fn(x)).

The second equality in (2.2) can be proved analogously. �

We say that f has canonical coordinates on Λ if for each ε > 0 there exists δ > 0 such
that if x, y ∈ Λ and d(x, y) < δ, then W s

ε (x) ∩ Wu
ε (y) ∩ Λ �= ∅.

Lemma 2.3. If f has the shadowing property on Λ, then f has canonical coordinates
on Λ.

Proof. Given ε > 0, let δ > 0 be given by the shadowing property on Λ. Let us be
given any x, y ∈ Λ such that d(x, y) < δ. Take xi = f i(x) for i ≥ 0 and xi = f i(y) for
i < 0. Clearly, {xi}i∈Z ⊂ Λ is a δ-pseudo orbit of f . By the shadowing property on Λ,
there exists z ∈ Λ such that d(f i(z), xi) < ε for all i ∈ Z. Thus, d(f i(z), f i(x)) < ε for all
i ≥ 0 and d(f i(z), f i(y)) < ε for all i < 0. Hence, z ∈ W s

ε (x) and z ∈ Wu
ε (y). �
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Figure 1. Example of a 1-prong structure. In this case, local stable and local unstable sets
intersect in more than one point, contradicting expansivity (cf. Lemma 2.4).

Lemma 2.4. If f is an expanding homeomorphism on Λ with expansive constant e,
then for each 0 < ε ≤ e/2 there exists δ > 0 such that if x, y ∈ Λ and d(x, y) < δ, then
there is at most one point of intersection of W s

ε (x) and Wu
ε (x).

Proof. Let z ∈ W s
ε (x) ∩ Wu

ε (y). Suppose, for a contradiction, that there exists w ∈
M , w �= z, such that w ∈ W s

ε (x) ∩ Wu
ε (y). Then, for all n ≥ 0, d(fn(x), fn(z)) ≤ ε,

d(fn(x), fn(w)) ≤ ε, d(f−n(y), f−n(z)) ≤ ε and d(f−n(y), f−n(w)) ≤ ε. This implies that

d(fn(z), fn(w)) ≤ 2ε,

for all n ∈ Z, which contradicts the expansiveness on Λ. �

As a consequence of Lemmas 2.3 and 2.4 we have the following.

Corollary 2.5. If f is a hyperbolic homeomorphism on Λ with expansive constant e,
then for each 0 < ε ≤ e/2 there exists δ > 0 such that if x, y ∈ Λ and d(x, y) < δ, then

W s
ε (x) ∩ Wu

ε (y) = {one point} ⊂ Λ.

Remark 2.1. We say that a one-dimensional set W ⊂ M is a topological manifold
if every x ∈ W has a neighbourhood homeomorphic to R. It should be enlightening to
say that even with expansiveness we can have several ‘prongs’ as invariant sets, and
thus stable (and unstable) sets are not topological manifolds. In Figure 2 we can have
expansiveness; nevertheless, a set Λ including a ball around p cannot have canonical
coordinates. Actually, there exist points x, y ∈ Λ arbitrarily close but still without any
intersection between the local stable set of x and the local unstable set of y. Shadowing
implies no n-prong structure for n > 2. Expansivity implies no 1-prong structure (cf.
Figure 1). Therefore, when we put together shadowing and expansiveness, there can only
be a 2-prong structure (Figure 3).

The next result shows that hyperbolic homeomorphisms on Λ behave similarly to the
basic pieces of classical hyperbolic dynamics theory (cf. [9]).

Proposition 2.6. Let f : M → M be a volume-preserving homeomorphism which is
hyperbolic on Λ. Then, Per(f) ∩ Λ = Λ.
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Figure 2. Example of a 3-prong structure. In this case local stable and local unstable sets do
not intersect, contradicting the shadowing property (cf. Lemma 2.3).

Figure 3. Example of 2-prong structure which is compatible with being a C0 manifold.

Proof. Let x ∈ Λ. Since f is volume preserving, by Poincaré recurrence theorem,
almost every point in Λ is recurrent and, therefore, x is a non-wandering point. Hence,
it is easy to deduce that for every δ > 0, there exists a δ-chain from x to itself, i.e. there
exists a finite δ-pseudo-orbit {xi}n

i=0 ⊂ Λ such that x = x0 = xn, n > 0.
Let e be the expansive constant of f , let 0 < ε ≤ e/2 be fixed and let δ > 0 be given

by the shadowing property on Λ. Let {xi}N
i=0 ⊂ Λ be a δ-chain from x to itself. The

sequence {x̃i}i∈Z defined by x̃i = xi if n ≡ i (mod N) is a δ-pseudo orbit. Therefore, it is
ε-shadowed by some point z ∈ Λ and, clearly, also by fN (z) ∈ Λ. Applying the triangle
inequality, we have that d(fn(z), fn+N (z)) ≤ 2ε ≤ e for all n ∈ Z. Hence, by the expansive
property on Λ, we obtain that z = fN (z). Thus, z ∈ Λ is a periodic point such that
d(z, x) = d(z, x0) ≤ ε. �
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2.3. Local product structure

Given ε > 0, let Δ(ε) := {(x, y) : x, y ∈ Λ and d(x, y) ≤ ε}. We say that a homeomor-
phism f has an LPS on Λ if the following hold.

(A) There are δ0 > 0 and a continuous function

[·, ·] : Δ(δ0) −→ Λ

(x, y) �−→ [x, y]

such that for all x, y, z ∈ Λ we have

[x, x] = x, [[x, y], z] = [x, z], [x, [y, z]] = [x, z] and f([x, y]) = [f(x), f(y)],

whenever defined.

(B) There exist δ1 ∈ (0, δ0/2) and ρ ∈ (0, δ1) such that for all x ∈ Λ the following three
conditions hold:
(i) denoting V σ

δ1
(x) := {y ∈ W σ

δ0
(x) ∩ Λ: d(x, y) < δ1} (σ ∈ {s, u}) we have that

[V u
δ1

(x), V s
δ1

(x)] is an open set of Λ with diameter less than δ0;

(ii) [·, ·] : V u
δ1

(x) × V s
δ1

(x) → [V u
δ1

(x), V s
δ1

(x)] is a homeomorphism; and

(iii) [V u
δ1

(x), V s
δ1

(x)] ⊃ {y ∈ Λ: d(x, y) ≤ ρ}.
When f is a hyperbolic homeomorphism on Λ we shall set [x, y] := W s

η (x) ∩ Wu
η (y),

where η = e/4 and e is an expansive constant for f (and x is near y).

Lemma 2.7. If f is a hyperbolic homeomorphism on Λ, then f has an LPS on Λ.

Proof. We borrow ideas from [2, Theorem 5.6] and adapt it to the local case. Let e > 0
be an expansive constant for f and fix η = e/4. By Corollary 2.5, there exists 0 < δ0 < η
such that W s

η (x) ∩ Wu
η (y) = {one point} ⊂ Λ for x, y ∈ Λ with d(x, y) ≤ δ0. We define

the map [·, ·] : Δ(δ0) → Λ by [x, y] := W s
η (x) ∩ Wu

η (y), for (x, y) ∈ Δ(δ0).
The map [·, ·] is continuous. Indeed, let {(xn, yn)} ⊂ Δ(δ0) be a sequence that con-

verges to (x, y) ∈ Δ(δ0). Let zn = [xn, yn]. Since Λ is compact, taking subsequences,
we may assume that (zn)n converges to z ∈ Λ. Since zn ∈ W s

η (xn), we have that
d(f i(xn), f i(zn)) ≤ η (i ≥ 0). Hence, d(f i(x), f i(z)) ≤ η and, therefore, z ∈ W s

η (x). Anal-
ogously, z ∈ Wu

η (y). Thus z = [x, y], which shows that (zn)n = ([xn, yn])n converges to
[x, y].

Clearly, [x, x] = x for all x ∈ Λ. Since [x, y] ∈ W s
η (x), we have that [[x, y], z] ∈ W s

2η(x) ∩
Wu

η (z). Hence, by expansivity on Λ, [[x, y], z] = [x, z]. Analogously, [x, [y, z]] = [x, z]. By
uniform continuity of f on Λ, it is easy to conclude that f [x, y] = [f(x), f(y)]. Altogether,
this proves (A) in the definition of LPS on Λ.

We shall now prove (B) (i)–(iii) in the definition of LPS on Λ. We define a map
g1 : Λ × Δ(δ0) → R by g1(x, (y, z)) := d(x, [y, z]), for x ∈ Λ and (y, z) ∈ Δ(δ0). Clearly,
g1 is continuous and g1(x, (x, x)) = 0. Since g1 is uniformly continuous, there exists
δ1 ∈ (0, δ0/2) such that diam{x, y, z} < 2 δ1 implies d(x, [y, z]) < δ0/3. Therefore, given
(y, z) ∈ V u

δ1
(x) × V s

δ1
(x), we have that d(x, [y, z]) < δ0/3. Take w1, w2 ∈ [V u

δ1
(x), V s

δ1
(x)].
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Then there exists y1, y2 ∈ V u
δ1

(x) and z1, z2 ∈ V s
δ1

(x) such that w1 = [y1, z1]
and w2 = [y2, z2]. We have that d(w1, w2) = d([y1, z1], [y2, z2]) ≤ d(x, [y1, z1]) +
d(x, [y2, z2]) ≤ δ0/3 + δ0/3 < δ0. Hence, the diameter of [V u

δ1
(x), V s

δ1
(x)] is smaller than

δ0. To show that [V u
δ1

(x), V s
δ1

(x)] is open in Λ, let w ∈ [V u
δ1

(x), V s
δ1

(x)]. Then there
exists y ∈ V u

δ1
(x) and z ∈ V s

δ1
(x) such that w = [y, z]. Since diam{x, y, z} < 2 δ1, we have

that d(x,w) < δ0/3. Thus, we can define the maps Pu : Bδ0/3(w) ∩ Λ → Wu
η (x) ∩ Λ and

Ps : Bδ0/3(w) ∩ Λ → W s
η (x) ∩ Λ by Pu(v) := [v, x] and Ps(v) := [x, v], for v ∈ Bδ0/3(w).

These maps are clearly continuous. Observe that, given v ∈ Bδ0/3(w) ∩ Λ, we have that
d(x, v) < d(x,w) + d(w, v) < δ0/3 + δ0/3 < δ0. Given that w = [y, z], we have Pu(w) = y
and Ps(w) = z, by expansivity on Λ. Hence, there is a neighbourhood U ⊂ Bδ0/3(w) ∩ Λ
of w in Λ such that Pu(U) ⊂ V u

δ1
(x) and Ps(U) ⊂ V s

δ1
(x). Take v ∈ U . By expansivity

on Λ, we have that v = [[v, x], [x, v]]. Therefore, v ∈ [V u
δ1

(x), V s
δ1

(x)], which proves that
[V u

δ1
(x), V s

δ1
(x)] is an open set of Λ. Thus, B(i) is proved.

To prove B(ii), define a map h : [V u
δ1

(x), V s
δ1

(x)] → V u
δ1

(x) × V s
δ1

(x) by h(w) :=
([w, x], [x,w]), for w ∈ [V u

δ1
(x), V s

δ1
(x)]. Clearly, h is continuous and h itself is the inverse

map of [·, ·].
Finally, we shall prove B(iii). Define the map g2 : Δ(δ0) → R by g2(x, y) :=

diam {x, [y, x], [x, y]}, for (x, y) ∈ Δ(δ0). Then g2 is (uniformly) continuous and, there-
fore, there exists ρ ∈ (0, δ1) such that d(x, y) < ρ implies g2(x, y) < δ1. Hence, [y, x] ∈
V u

δ1
(x) and [x, y] ∈ V s

δ1
(x). Therefore, given y ∈ Λ with d(x, y) < ρ, we have that y =

[[y, x], [x, y]] ∈ [V u
δ1

(x), V s
δ1

(x)], which proves B(iii). �

3. Topological homoclinic classes

3.1. Topological transversality

The intersection between two curves in the plane can be quite odd. Indeed, given any
compact set K ⊂ R, let us define the continuous function f : R → R by f(x) = min{|x −
k| : k ∈ K}. The intersection between the one-dimensional manifolds defined by the graph
of f and the x-axis is the set (k, 0) ∈ R

2, where k ∈ K. Let B(0, r) ⊂ R
2 denote the open

ball centred in (0, 0) and with radius r. Given one-dimensional manifolds N1, N2 ⊂ R
2, we

say that q ∈ R
2 is a transversal intersection between N1 and N2 if there exist an open ball

B containing q and a homeomorphism h : B(0, r) → B, where r > 0, such that h(x, 0) =
N̂1 and h(0, y) = N̂2, where N̂i are the connected components of Ni ∩ B containing q.

In the sequel we apply the previous concept of transversality to stable and unstable
topological manifolds. Clearly, if q ∈ W s(p) ∩ Wu(p) is a transversal intersection between
the stable and unstable manifolds of p, then this intersection is persistent in the sense that
the intersection between these two one-dimensional manifolds cannot disappear under an
arbitrarily small C0-perturbation of the map. We indicate that q ∈ W s(p) ∩ Wu(p) is a
transversal intersection by writing q ∈ W s(p) � Wu(p).

3.2. Definition of topological homoclinic classes

Let f : M → M be an area-preserving homeomorphism and p ∈ M a periodic point of
period n.

We say that p is topologically hyperbolic if f is a hyperbolic homeomorphism on Λ =
O(p), the orbit of p.
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By Proposition 2.1, under the expansiveness hypothesis on Λ, stable and unstable sets
of points x ∈ Λ are dynamically defined. Clearly, by Remark 2.1, any stable/unstable
structure at topological hyperbolic periodic points must be a 2-prong structure.

We define the topological homoclinic class of a topological hyperbolic periodic point
p by the closure of the transversal intersections of the stable and unstable manifolds
of f i(p), for i = 0, . . . , n − 1, that is, by W s(f i(p)) � Wu(f i(p)), for i = 0, . . . , n − 1.
Clearly, a homoclinic class is compact and f -invariant. The compactness follows from the
fact that it is a closed subset of a compact manifold. To check that f(Λ) = Λ, observe
that if we have x ∈ Λ, then xn → x for a sequence {xn}n ⊂ W s(p) ∩ Wu(p). By the f -
invariance of the sets W s(p) and Wu(p) we get that {f(xn)}n ⊂ W s(p) ∩ Wu(p). Finally,
the continuity of f ensures that f(x) ∈ Λ.

3.3. The Birkhoff–Smale theorem

In Theorem 3.2 we will obtain a slightly different version of the well-known Birkhoff–
Smale theorem, with a topological flavour. The fixed point index will play a crucial role
part in the proof since, in rough terms, the existence of a non-null index on a set ensures a
fixed point in that set. Let us recall the definition of a fixed point index: take an open ball
B ⊂ M such that Fix(f, ∂B) = ∅ (meaning that f has no fixed points in the boundary of
B denoted by ∂B) and B ∩ f(B) �= ∅, and ∂B, B ∪ f(B) are labelled by the same chart.
In this case we say that the index of f in B is the degree of the map defined in chart
coordinates by the vector field

Xf : ∂B � S
1 −→ S

1

x �−→ f(x) − x

‖f(x) − x‖ .

If the index is �= 0, then f has a fixed point in B. When B ∩ f(B) = ∅, we say that the
index is zero.

In the proof of Theorem 3.2 we will need a weak version of the well-known lambda-
lemma [7]. This lemma tells us that if Σ is a section transversal to the stable manifold,
then fn(Σ) (n > 0) becomes arbitrarily C1 close to some compact subset contained in
the unstable manifold. The difficult part in the proof of the classical lambda-lemma is
obtaining the C1 closeness of the two sets. Indeed, we can obtain easily the following.

Lemma 3.1 (Topological lambda-lemma). Let Σ and W s(p) be transversal topo-
logical manifolds and let Γ ⊂ Wu(p) be a compact set. Then, given any ε > 0, there exist
Σ′ ⊂ Σ and n0 ∈ N such that dH(fn0(Σ′),Γ) < ε (where dH is the Hausdorff distance
between sets).

Now we are ready to state the main result in this section.

Theorem 3.2 (Topological Birkhoff–Smale theorem). Let M be a surface,
f : M → M a homeomorphism, p ∈ M a periodic topological hyperbolic point of period
n and q ∈ W s(p) � Wu(p). Then f has a periodic point in any neighbourhood of q.
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Figure 4. Support for the proof of Theorem 3.2.

Proof. Let q ∈ W s(p) � Wu(p) and let Γ ⊂ Wu(p) be the compact arc with extremes
p and q. By hypothesis there exists a section Σ which is transversal to W s(p) and con-
taining q. Then, by Lemma 3.1, given any ε > 0, there exist Σ′ ⊂ Σ and n0 ∈ N such that
dH(fn0(Σ′),Γ) < ε. Take a rectangle R such as that in Figure 4, sufficiently thin and suf-
ficiently close to Wu(p) to contain Σ′. We obtain R ∩ fn0(R) �= ∅. Moreover, we can even
ensure that Fix(fn0 , ∂R) = ∅. Indeed, the top and the bottom of R, in a configuration
as in Figure 4, become the bottom and the top of fn0(R) respectively. Of course, such a
configuration can be achieved by allowing a small change in R. Since ∂R is homeomorphic
to S

1, we let Xfn0 (x) be a vector field defined in ∂R as above. The angular variation of
Xfn0 (x) as x moves once around ∂R is not zero. Therefore, fn0 has a fixed point in R.
Consequently, f has a periodic point in any neighbourhood of q. �

Remark 3.1. We point out that the classic Birkhoff–Smale theorem [10] ensures that
the periodic points in any neighbourhood of q are homoclinically related to p. This allows
us to conclude that the periodic orbits in the homoclinic class are dense in the homoclinic
class. However, the arguments used in [10] are clearly not valid outside the differentiable
context. An alternative approach using tubular family theorems (cf. [8]) is also unsuitable
under the C0 hypothesis.

4. Proof of Theorem 1

Let M be a surface, let f : M → M be an area-preserving homeomorphism and let Λ ⊆ M
be a topological homoclinic class of f . We already know by Corollary 2.5 that if f is a
hyperbolic homeomorphism on Λ with expansive constant e, then for each 0 < ε ≤ e/2
there exists δ > 0 such that if x, y ∈ Λ and d(x, y) < δ, then

W s
ε (x) ∩ Wu

ε (y) = {one point} ⊂ Λ. (4.1)

Since Λ is a homoclinic class it is closed by definition. As M is connected, it is sufficient
to prove that Λ is open in M .

The next result will be central in the proof of Theorem 1.
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Lemma 4.1. If x ∈ Λ then Λ ∩ Wu(x) is dense in Wu(x) and Λ ∩ W s(x) is dense in
W s(x).

Proof. The proof is by contradiction. We assume that Λ ∩ Wu(x) is not dense in
Wu(x). Denote by I ⊂ Wu(x) a gap interval in Wu(x) \ Λ, that is, its extremes are in Λ
when I is bounded (from one side, from the other or both) and there are no more points
of Λ in I besides the extremes. Clearly, gap intervals can be bounded (when there are
two distinct extremes) or unbounded (when there is at most a single extreme).

Case 1. We begin by considering that I = [y1, y2] with y1, y2 ∈ Λ. In § 2.3 we con-
sidered small constants such as ε, δ0, δ1 and ρ because the arguments involving the LPS
hold only on a microscopic level. Therefore, we iterate backwards until I is sufficiently
close to x to be under the hypotheses of § 2.3. Clearly, an iterate of I will still be a gap
interval. Using Proposition 2.6, we consider a periodic point z ∈ Λ arbitrarily close to x
and such that Wu(O(x)) ∩ Wu(O(z)) = ∅. Since y1, y2 ∈ Λ, by Corollary 2.5, we obtain
that W s

ε (y1) intersects Wu
ε (z) at a single point x1 ∈ Λ and W s

ε (y2) intersects Wu
ε (z) at a

single point x2 ∈ Λ. Let R be the rectangle with sides I, the segment I1 with extremes y1

and x1, the segment I2 with extremes y2 and x2 and the segment I3 with extremes x1 and
x2. To ensure that R ∩ Λ = ∅, we can pick another periodic point z closer to x, building
another rectangle R satisfying R ∩ Λ = ∅. Indeed, if such z does not exist, then there
would exist a point w ∈ R ∩ Λ such that W s

ε (w) � Wu
ε (x) ∈ I, which contradicts the fact

that I is a gap interval. From Poincaré’s recurrence theorem, λ-almost every point in R
is recurrent and so fn(R) ∩ R �= ∅ for infinitely many choices of n. Moreover, since f is
an area-preserving map, we obtain ∂R ∩ ∂fn(R) �= ∅. In fact, preservation of area avoids
R ⊂ fn(R) or R ⊃ fn(R) and so the intersection of boundaries is inevitable. Furthermore,
from stable/unstable set arguments we get fn(I) ∩ I = ∅, fn(I) ∩ I3 = ∅, fn(I3) ∩ I = ∅,
fn(I3) ∩ I3 = ∅, fn(I1) ∩ I1 = ∅, fn(I1) ∩ I2 = ∅, fn(I2) ∩ I2 = ∅ and fn(I2) ∩ I1 = ∅.
Therefore, we must have an intersection between fn iterates of the segments I, I3 and
the segments I1, I2, i.e. fn(I ∪ I3) ∩ (I1 ∪ I2) �= ∅, contradicting the fact that I is a gap
interval.

Case 2. Finally, we consider the case of having an unbounded interval I = [y1,+∞) ⊂
Wu(x) with y1 ∈ Λ. Once again we pull I near x. Clearly, and since Λ is an f -invariant
set, an iterate of I will still be an unbounded interval. We take a periodic point z ∈ Λ
arbitrarily close to x. Since z ∈ Λ, by Corollary 2.5, we get that Wu

ε (z) ∩ W s
ε (x) �= ∅ and

Wu
ε (z) ∩ W s

ε (y1) �= ∅ and, moreover, each of these intersections is a single point in the
topological homoclinic class Λ.

Therefore, in Wu(z) and since z is periodic, if it exists, a gap interval cannot be
unbounded and we can apply Case 1 and conclude that Wu(z) ∩ Λ is dense in Wu(z).
Since, by Proposition 2.6, we can take periodic points zn ∈ Λ such that Wu(zn) ∩ Λ is
dense in Wu(zn), we obtain that I ∩ Λ �= ∅, which is a contradiction. �

Finally, we prove that Λ is open in M . By Lemma 2.7, f has an LPS on Λ. Consider
δ0 > 0 and δ1 ∈ (0, δ0/2) given by the LPS on Λ. We have that [V u

δ1
(x), V s

δ1
(x)] is an open

set of Λ with diameter less than δ0, and also that [·, ·] : V u
δ1

(x) × V s
δ1

(x) → [V u
δ1

(x), V s
δ1

(x)]
is a homeomorphism.
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By Lemma 4.1, the set V u
δ1

(x) is dense in Wu
δ1

(x) and the set V s
δ1

(x) is dense in W s
δ1

(x).
Clearly, the closure of the Cartesian product V u

δ1
(x) × V s

δ1
(x) is a topological disk and a

neighbourhood of x. Since [·, ·] : V u
δ1

(x) × V s
δ1

(x) → [V u
δ1

(x), V s
δ1

(x)] is a homeomorphism,
[·, ·](V u

δ1
(x) × V s

δ1
(x)) = [V u

δ1
(x), V s

δ1
(x)]. Hence, x is in the interior of Λ in M . Thus, Λ is

open in M .
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