
Robotica: (2020) volume 38, pp. 1605–1626. C© Cambridge University Press 2019
doi:10.1017/S0263574719001656

Observer-Based Consensus of
Higher-Order Nonlinear Heterogeneous
Multiagent Systems with Unmatched
Uncertainties: Application on Robotic
Systems
N. Rahimi, T. Binazadeh∗ and M. Shasadeghi
Department of Electrical and Electronic Engineering, Shiraz University of Technology, Shiraz, Iran
E-mails: n.rahimi@sutech.ac.ir; shasadeghi@sutech.ac.ir

(Accepted October 19, 2019. First published online: November 14, 2019)

SUMMARY
The consensus of higher-order nonlinear heterogeneous multiagent systems with matched and
unmatched uncertainties is studied in this paper. The distributed observer-based controllers for mul-
tiagent systems are achieved using a fixed-time sliding mode controller based on the disturbance
observer. For this purpose, the disturbance observers are designed for finite-time estimation of
matched and unmatched uncertainties. Using the estimated values, the fixed-time distributed slid-
ing mode controllers are designed and the consensus protocol is achieved. In this regard, a theorem
is proved, which guarantees the fixed-time convergence of consensus errors. The effectiveness of the
proposed distributed controllers has been validated through simulations for two robotic multiagent
systems and a numerical example.

KEYWORDS: Fixed/finite-time stability; Consensus; Nonlinear heterogeneous multiagent systems;
Disturbances observer; Matched and unmatched uncertainties; Robotic multiagent systems.

1. Introduction
A multi agent system (MAS) consists of several agents, and each agent is linked to other agents
through a communication topology. Agents work together to solve a problem that is impossible or
difficult to solve by a single agent. In recent years, multiagent systems have been widely considered.
One of the reasons for paying attention to multiagent systems is their abilities to describe many
practical systems and their applications in various fields such as mathematics, physics, computer
sciences, social sciences, aerospace, etc. In addition, many complex systems can be considered as a
network of several agents such as transportation networks, power networks, and mobile networks.1

Many types of research, such as cooperation, coordination, solving distributed problems, con-
sensus, and formation control, have been studied for multiagent systems. One of the important and
significant discussions regarding multiagent systems is the issue of consensus. The consensus prob-
lem can be applied in many areas, such as unmanned air vehicles, autonomous underwater vehicles,
sensor networks, and robotics.3–5 In fact, when all agents in a multiagent system converge to a cer-
tain value, despite unforeseen changes, the consensus is achieved.6 To reach consensus, an algorithm
is needed to guarantee the agreement between the agents. The design of distributed control laws to
achieve consensus depends on a variety of factors like dynamics of agents, consensus rate, and agreed
value.
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In terms of consensus state, the multiagent systems have been divided into two groups of leader–
follower and leaderless consensus. For leaderless consensus, the final agreed value of agents usually
depends on the initial values of the agents,7 and in the leader–follower consensus, the final agreed
value is the leader’s mode. The leader can be virtual or real. If one of the agents is considered to
be a leader, the leader is real. In this case, the rest of the agents are followers. Moreover, the leader
may be virtual. For example, a reference signal can be considered as a leader.8 The leader’s behavior
affects the performance of the followers; however, it is not influenced by the follower’s behavior.

One of the critical elements in solving the consensus problem is the consensus rate. Considering
this, the consensus problem is classified into two groups: asymptotic and finite/fixed-time consensus.
In an asymptotic consensus, the error between the system states and the agreed value decreases as
time goes to infinity. In the past decades, much progress has been made on the asymptotic consen-
sus problem of multiagent systems with different dynamics and different topologies.9, 10 In practical
systems, it is desirable to achieve consensus in the shortest time and with the least error. Therefore,
the finite-time consensus is preferable to the asymptomatic consensus. In a finite-time consensus,
the error between the system states and the agreed value is exactly zero after a finite time and the
multiagent system is more robust against disturbances. Due to these characteristics, the finite-time
consensus has progressed in many aspects in recent years. Finite-time consensus for the nonlin-
ear higher-order multiagent system with uncertainties has been addressed in ref. [11]. Finite-time
observer-based consensus for the second-order multiagent system with external disturbances was
presented in ref. [12]. The authors of ref. [13] investigated the finite-time consensus problem for
event-triggered multiagent systems.

In the finite-time consensus, the settling time depends on the initial value of states. In order to
conquest this problem, the fixed-time consensus was studied. The fixed-time consensus problem
with switching topology was addressed in ref. [14]. The robust fixed-time consensus problem for
nonlinear multiagent systems with external disturbances, under a weighted undirected topology, was
presented in ref. [15]. The adaptive fixed-time consensus problem for the second-order multiagent
system is discussed in ref. [16]. In ref. [17], this issue was studied for integrator-type multiagent
systems.

The existence of uncertainties, due to model uncertainties and external disturbances in the dynam-
ical model of the agents, is one of the challenging issues in solving the consensus problem. In order
to achieve robust performance, uncertainties should be considered in the design procedure. Many
references have been made to resolve the consensus problem in the presence of uncertainties; how-
ever, in most of the references, the authors considered only the matched uncertainties.18–20 Matched
uncertainty enters in the channel where the input is located. In many practical systems, uncertainties
can appear on other channels, which are referred to as unmatched uncertainties. Different approaches
have been proposed to solve the consensus problem in the presence of unmatched uncertainties.21, 22

One of these approaches is the use of disturbance observers.23–27 The authors of refs. [23,24] studied
the asymptotic consensus problem with unmatched uncertainties for linear multiagent systems. The
finite-time consensus for linear multiagent systems with unmatched uncertainties was discussed in
ref. [25]. The asymptotic consensus for a nonlinear multiagent system subjected to unmatched uncer-
tainties has been presented in ref. [26]. The finite-time consensus for nonlinear multiagent systems
in the presence of matched and unmatched uncertainties was proposed in ref. [27].

On the other hand, most of the researches have been devoted to the consensus problem in
multiagent systems with identical agents or homogeneous multiagent systems. While in practical
applications, agents usually have different dynamics and so-called heterogeneous multiagent sys-
tems. Some types of research have addressed the consensus problem for heterogeneous multiagent
systems. The consensus problem for linear heterogeneous multiagent systems was investigated in
refs. [28, 29]. References30–33 addressed the consensus problem for nonlinear heterogeneous mul-
tiagent systems. However, none of these references have considered unmatched disturbance in the
dynamical model of agents. There are few works investigating the consensus problem for higher-
order nonlinear heterogeneous multiagent systems with unmatched disturbance. For instance, in
ref. [34], the authors addressed the consensus problem for these systems; however, it can only
guarantee the asymptotical convergence of consensus error.

As stated, the settling time in the fixed-time consensus does not depend on the initial value of
states and consensus occurs at a specific time. In some practical applications, we tend to achieve a
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precise settling time that is independent of the initial conditions. Furthermore, most practical systems
are subject to matched and unmatched disturbances. Therefore, it is necessary to solve the consensus
problem for nonlinear heterogeneous multiagent systems in the presence of matched and unmatched
disturbances.

To the best of the author’s knowledge, design of distributed controllers based on the disturbance
observers to achieve the fixed-time consensus in the presence of both matched and unmatched uncer-
tainties has not been studied in the literature for higher-order nonlinear heterogeneous multiagent
systems. This paper considers this issue.

In this paper, for solving the fixed-time consensus problem, two steps are considered. The first
step is to estimate the matched and unmatched uncertainties of agents using the distributed finite-
time disturbance observers. Then, the robust distributed controllers are designed based on the sliding
mode approaches such that robust consensus is achieved in fixed time in spite of unknown terms,
nonlinear, and heterogeneous dynamics of agents. Since the traditional sliding mode controller has
robust manner facing matched uncertainties, the sliding mode technique is modified using the esti-
mated values of uncertainties such that the new sliding mode controller is robust against both matched
and unmatched uncertainties. For this purpose, new sliding manifolds are suggested and a theorem,
which guarantees the fixed-time convergence of consensus errors, is given and then is proved. Finally,
simulations are presented for two robotic multiagent systems and a numerical example to show the
effectiveness of the designed distributed controllers.

The rest of this paper is organized as follows: the preliminaries and some definitions are provided
in Section 2. The problem statement is given in Section 3. The main ideas are proposed in Section 4.
Computer simulations are provided in Section 5 to verify the theoretical results. Finally, conclusions
are given in Section 6.

2. Preliminaries

2.1. Graph theory
Consider an MAS consisting of a leader and N followers. A graph G(V, E, A) can be used to show the
relation in the MAS where V = {0, 1, . . . ,N} is the collection of nodes, E ⊆ V × V{(i, j) ∈ V × V}
denotes the set of edges (where (i, j) ∈ E if the agent can obtain data from the agent j else (i, j) /∈ E).
Moreover, A = ⌊

aij
⌋ ∈ RN×N is the weighted adjacency matrix. If (i, j) ∈ E, then aij = 1 else aij = 0.

Besides, it is supposed that aii = 0. Also, L = ⌊
lij

⌋ ∈ RN×N = D − A is the Laplacian matrix, where
D = diag{d1, d2, . . . , dN} and di = ∑N

j=1 aij. The diagonal matrix B = diag{b1, b2, . . . , bN} denotes
the relationship between the leader and followers. If the agent i is linked to the leader then bi = 1
otherwise bi = 0. It is supposed that at least one follower node has linked to the leader node.

Definition 1.35 Consider a dynamical system ẋ = f (x), where f (0)= 0 and f : D → Rn is con-
tinuous on an open neighborhood D ⊆ Rn of the origin. The zero solution of this system is said to be
finite time stable if the solutions of x(t) reach to zero in finite time T (i.e., lim

t→T
x(t)= 0, where T is

the settling time).

Lemma 1.35 Consider a system ẋ = f(x), where f(0)= 0. If there exist a positive definite func-
tion V(x) : D → R and positive constants ω and 0<q< 1 such that V̇(x)≤ −ωVq, then the zero
solution of this system is finite-time stable and the settling time T satisfies T(x0)≤ 1

ω(1−q)V(x0)
(1−q).

If V(x) is radially unbounded, then the zero solution is globally finite-time stable.

Definition 2.36 The zero solution of system ẋ = f(x) with f(0)= 0 is said to be fixed-time
stable, if it is finite-time stable and the settling time function T is bounded and independent from the
initial states.

Lemma 2.36 Consider a system ẋ = f(x), where f(0)= 0. If there exist a positive definite
function V(x) : D → R and constants ς, φ, χ, κ, ι > 0, where χk< 1, κι > 1 such that V̇(x)≤
−[ςVχ + φVκ ]ι, then the zero solution of this system is fixed-time stable and the settling time T satis-
fies T ≤ 1

ςι(1−χι) + 1
φι(κι−1) . If V(x) is radially unbounded, then the zero solution is globally finite-time

stable.
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Lemma 3.37 Consider the following system⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ẋ1 = x2

ẋ2 = x3

...

ẋn−1 = xn

ẋn = u(x)

(1)

where x = [x1, x2, . . . , xn]T ∈ Rn and u(x) ∈ R. The considered system is fixed-time stable if the
controller u is designed as below:

u(x)= −
∑n

m=1
λm

(
sgnμm (xm)+ sgn1 (xm)+ sgnμ́m(xm)

)
(2)

where μm and μ́m are satisfying the following relations:

μn−k = μ

(k + 1)− kμ
μ′

n−k = 2−μ
kμ− (k−1)

k = 0, . . . , n − 1 (3)

where μ ∈ (α, 1) and α ∈ (
n−2
n−1 , 1

)
. Furthermore, the parameters λm for m = 1, . . . , n are chosen

such that the polynomials
(
sn + λnsn−1 + · · · + λ2s + λ1

)
and

(
sn + 3λnsn−1 + · · · + 3λ2s + 3λ1

)
both be Hurwitz.

Notation 1. In this paper, sgnp(x) is defined as |x|psgn(x).

3. Problem Statement
Consider a multiagent system with N + 1 agents consisting of one leader and N followers labeled by
0 and i = 1, . . . ,N, respectively. The dynamical equation of the leader is considered as follows:

⎧⎪⎨
⎪⎩

ẋ0
m = x0

m+1 m = 1, 2, . . . , n−1

ẋ0
n = u0

y0 = x0
1

(4)

where x0 = [x0
1, x0

2, . . . , x0
n]T ∈ D ⊆ Rn and y0 ∈ R are the state vector and the output of the leader,

respectively. Moreover, u0 ∈ R is the control input of the leader. The dynamical equations of the ith
follower are described as:⎧⎪⎨

⎪⎩
ẋi

m = xi
m+1 + δi

m(x
i, t) m = 1, 2, . . . , n − 1

ẋi
n = f i

(
xi, t

) + δi
n(x

i, t)+ hiui(t) i = 1, 2, . . . ,N

yi = xi
1

(5)

where xi = [xi
1, xi

2, . . . , xi
n]T ∈ D ⊆ Rn is the state vector, ui(t) ∈ R is the control input, hi is a con-

stant, and f i ∈ R is the nonlinear known function of ith follower, which may be different in each
follower. This leads to multiagent systems with nonlinear and heterogeneous dynamics of agents.
The unknown parameters δi

m for (m = 1, 2, . . . , n) have been lumped together with various uncer-
tainties due to model simplification, parameter uncertainties, and/or external disturbances. Moreover,
δi(xi, t)= [δi

1(x
i, t), . . . , δi

n−1(x
i, t)]T ∈ Rn−1 and δi

n(x
i, t) ∈ R represent the unmatched and matched

model uncertainties, respectively. Furthermore, yi ∈ R denotes the output of the ith follower.
In this paper, the goal is to design distributed control laws based on the sliding mode approach for

the considered multiagent system, such that the outputs of the followers track the output of the leader
in the presence of the matched and unmatched uncertainties and external disturbances in a fixed time.

4. Main Result
In this section, the robust distributed controllers are proposed such that the error vectors converge
to zero in fixed time and the consensus protocol has a robust manner. For this purpose, distur-
bance observers are designed for each follower to estimate the uncertainties. Then, the robust control
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strategy is proposed to achieve the fixed-time consensus. In this regard, a theorem is presented and
proved.

The consensus error vectors, �i = [�i
1, �

i
2, . . . , �

i
n]T for i = 1, 2, . . . ,N, are defined as follows

based on the given information in the connected graph G(V, E, A).

⎡
⎢⎢⎢⎢⎣

�i
1

�i
2

...

�i
n

⎤
⎥⎥⎥⎥⎦ =

∑N

j=1
aij

⎡
⎢⎢⎢⎢⎢⎣

x i
1 − x j

1

x i
2 − x j

2

...

x i
n − x j

n

⎤
⎥⎥⎥⎥⎥⎦

+ bi

⎡
⎢⎢⎢⎢⎢⎣

x i
1 − x0

1

x i
2 − x0

2

...

x i
n − x0

n

⎤
⎥⎥⎥⎥⎥⎦

(6)

It can be rewritten as below:

�i =
∑N

j=1
aij

(
xi − x j

) + bi(xi − x0) (7)

Therefore, according to Eqs. (4) and (5), the dynamical equations of the ith vector of the consensus
errors are achieved as:

⎡
⎢⎢⎢⎢⎣

�̇i
1

�̇i
2

...

�̇i
n

⎤
⎥⎥⎥⎥⎦ =

∑N

j=1
aij

⎡
⎢⎢⎢⎢⎢⎣

xi
2 + δi

1 − x j
2 − δ

j
1

xi
3 + δi

2 − x j
3 − δ

j
2

...

f i + δi
n + hiui − f j − δ j

n − h ju j

⎤
⎥⎥⎥⎥⎥⎦

+ bi

⎡
⎢⎢⎢⎢⎢⎣

xi
2 + δi

1 − x0
2

xi
3 + δi

2 − x0
3

...

f i + δi
n + hiui − u0

⎤
⎥⎥⎥⎥⎥⎦

(8)

Eq. (8) can also be described as follows:⎧⎨
⎩
�̇i

m = �i
m+1 + δ̄i

m m = 1, 2 . . . , n − 1

�̇i
n =

(
bi + ∑N

j=1 aij

) (
f i + δi

n + hiui
) − ∑N

j=1 aij
(

f j + δj
n + h ju j

) − bi u0
(9)

where δ̄i
m = δi

m

(
bi + ∑N

j=1 aij

)
− ∑N

j=1 aijδ
j
m.

The following finite-time nonlinear disturbance observers are designed for each agent to estimate
their uncertainties: ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ξ̇ i
m0 = ηi

m0 + gi
m(x

i, u)

ξ̇ i
m1 = ηi

m1

...

ξ̇ i
m(n−m+1) = ηi

m(n−m+1)

(10a)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ηi
m0 = −τ i

mo

(
� i

m

) 1
n−m+2

(∣∣ξ i
m0 − xi

m

∣∣ n−m+1
n−m+2

)
sgn

(
ξ i

m0 − xi
m

) + ξ i
m1

ηi
mk = −τ i

mk

(
� i

m

) 1
n−m+2−k

(∣∣∣ξ i
mk − ηi

m(k−1)

∣∣∣
n−m+1−k
n−m+2−k

)
sgn

(
ξ i

mk − ηi
m(k−1)

)
+ ξ i

m(k+1)

ηi
m(n−m+1) = −τ i

m(n−m+1)�
i
msgn

(
ξ i

m(n−m+1) − ηi
m(n−m)

) (10b)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x̂i
m = ξ i

m0

δ̂i
m = ξ i

m1

ˆ̇δi

m = ξ i
m2

...

δ̂i[n−m]
m = ξ i

m(n−m+1)

(10c)

https://doi.org/10.1017/S0263574719001656 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574719001656


1610 Observer-based consensus of higher-order nonlinear heterogeneous multiagent systems

where i = 1, 2, . . .N, m = 1, 2, . . . n and k = 0, 1, . . . , n − m + 1. Moreover, gi
m

(
xi, u

) = xi
m+1 for

m = 1, 2, . . . n − 1, and gi
n

(
xi, u

) = f i
(
xi, t

) + hiui(t). Also, the parameters τ i
mk>0 are the observer

coefficients, which are positive constants. Additionally, x̂i
m, δ̂

i
m,

ˆ̇δi

m, and δ̂i[n−m]
m are the estimates of

xi
m, δ

i
m, δ̇

i
m, and δi[n−m]

m , respectively. Now, the observer errors (ψ i
m0, ψ

i
mk) are defined as:

ψ i
m0 = x̂i

m − xi
m = ξ i

m0 − xi
m (11)

ψ i
mk = δ̂i[k−1]

m − δi[k−1]
m = ξ i

mk − δi[k−1]
m (12)

where x̂i
m is the estimated value of xi

m, which is defined in Eq. (10c). Moreover, δ̂i[k−1]
m is the estimate

of δi[k−1]
m , which is stated in Eq. (10c). The superscript term, which is in the bracket, is the order of

derivation.
Using Eqs. (5), (10), and (11), the dynamical equations of observer errors are obtained as follows:

ψ̇ i
m0 = −τ i

mo

(
� i

m

) 1
n−m+2

(∣∣ψ i
m0

∣∣ n−m+1
n−m+2

)
sgn

(
ψ i

m0

) +ψ i
m1

ψ̇ i
mk = −τ i

mk

(
� i

m

) 1
n−m+2−k

(∣∣ψ i
mk − ψ̇ i

m(k−1)

∣∣ n−m+1−k
n−m+2−k

)
sgn

(
ψ i

mk − ψ̇ i
m(k−1)

) +ψ i
m(k+1) (13)

ψ̇ i
m(n−m+1) ∈ −τ i

m(n−m+1)�
i
msgn

(
ψ i

m(n−m+1) − ψ̇ i
m(n−m)

) + [−� i
m, �

i
m

]

It is shown in ref. [38] that the observer error dynamics (13) is finite-time stable and there is a finite
time tf such that ψ i

mk = 0 for t> tf .
Now, the task is to design the consensus protocol using the estimated values, such that the con-

sensus errors converge to zero in fixed time. Therefore, we define new consensus errors, using the
estimation of the disturbances, its derivations, and the relations of the consensus errors in (6). The
equations of new consensus errors are obtained as:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�̃i
1 = �i

1

�̃i
2 = �i

2 + ˆ̄δi
1

�̃i
3 = �i

3 + ˙̄̂
δ

i

1 + δ̂i
2

�̃i
4 = �i

4 + ¨̄̂
δ

i

1 + ˙̂
δ

i

2 + δ̂
i

3

...

�̃i
n = �i

n + ∑n−1
k=1 δ̂

i[n−k−1]
k

for i = 1, 2, . . . ,N (14)

where ˆ̄δi
k = δ̂i

k(
∑N

j=1 aij + bi)− ∑N
j=1 aijδ̂

j
k. Consequently, the dynamical equations of the new con-

sensus errors are achieved as below:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙̃�i
1 = �̇i

1

˙̃�i
2 = �̇i

2 + ˙̄̂
δ

i

1

˙̃�i
3 = �̇i

3 + ¨̄̂
δ

i

1 + ˙̄̂
δ

i

2

˙̃�i
4 = �̇i

4 +
...ˆ̄δ

i

1 + ¨̄̂
δ

i

2 + ˙̄̂
δ

i

3

...

˙̃�i
n = �̇i

n + ∑n−1
k=1

ˆ̄δi[n−k]
k

for i = 1, 2, . . .N (15)
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Using Eq. (9), one has⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙̃�i
1 = �̇i

1 = �i
2 + δ̄i

1 +
( ˆ̄δi

1 − ˆ̄δi
1

)
= �̃i

2 + δ̄i
1 − ˆ̄δi

1

˙̃�i
2 = �̇i

2 + ˙̄̂
δ

i

1 = �i
3 + δ̄i

2 +
( ˆ̄δi

2 − ˆ̄δi
2

)
+ ˙̄̂
δ

i

1 = �̃i
3 + δ̄i

2 − ˆ̄δi
2

...

˙̃�i
n =

(
bi + ∑N

j=1 aij

) (
f i + δi

n + hiui
) − ∑N

j=1 aij
(

f j + δj
n + hjuj

) − bi u0 + ∑n−1
k=1

ˆ̄δi[n−k]
k

(16)

Moreover, using Eq. (13), the above equations can be rewritten as the following structure:
⎧⎨
⎩

˙̃�i
m = �̃i

m+1 −
(

bi + ∑N
j=1 aij

)
ψ i

m1 + ∑N
j=1 aijψ

j
m1 m = 1, 2, . . . , n − 1

˙̃�i
n =

(
bi + ∑N

j=1 aij

) (
f i + δi

n + hiui
) − ∑N

j=1 aij
(

f j + δj
n + hjuj

) − bi u0 + ∑n−1
k=1

ˆ̄δi[n−k]
k

(17)

where ψ i
m1 = δ̂i

m − δi
m, which is defined in Eq. (12).

In what follows, novel distributed sliding manifolds are constructed based on the new consen-
sus errors. Then, a theorem is given and the robust fixed-time distributed controllers are designed.
Consider the following distributed sliding manifolds (for i = 1, . . . ,N):

σ i = �̃i
n +

∫ t

0

∑n

m=1
λi

m

(
sgnμ

i
m
(
�̃i

m

) + sgn1
(
�̃i

m

) + sgnμ́
i
m
(
�̃i

m

))
dt (18)

where λi
m, μ

i
m, and μ́i

m are chosen based on the introduced Lemma 3. Using Eq. (17), the time
derivative of the ith sliding manifold is governed as below:

σ̇ i = ˙̃�i
n +

n∑
m=1

λi
m

(
sgnμ

i
m
(
�̃i

m

) + sgn1
(
�̃i

m

) + sgnμ́
i
m
(
�̃i

m

))

= �̇i
n +

n−1∑
k=1

ˆ̄δi[n−k]
k +

n∑
m=1

λi
m

(
sgnμ

i
m
(
�̃i

m

) + sgn1
(
�̃i

m

) + sgnμ́
i
m
(
�̃i

m

))

=
(

bi +
∑N

j=1
aij

) (
f i + δi

n + hiui
) −

∑N

j=1
aij

(
f j + δj

n + h ju j
) − bi u0 +

∑n−1

k=1

ˆ̄δi[n−k]
k (19)

+
n∑

m=1

λi
m

(
sgnμ

i
m
(
�̃i

m

) + sgn1
(
�̃i

m

) + sgnμ́
i
m
(
�̃i

m

))

Consequently, Eq. (17) can be rewritten as in the following format:
⎧⎨
⎩

˙̃�i
m = �̃i

m+1 −
(

bi + ∑N
j=1 aij

)
ψ i

m1 + ∑N
j=1 aijψ

j
m1 m = 1, 2, . . . , n − 1

˙̃�i
n = − ∑n

m=1 λ
i
m

(
sgnμ

i
m
(
�̃i

m

) + sgn1
(
�̃i

m

) + sgnμ́
i
m
(
�̃i

m

)) + σ̇ i
(20)

Theorem 1. Consider the nonlinear heterogeneous multiagent system with Eqs. (4) and (5).
The robust distributed controllers (21) guarantee the fixed-time consensus between the followers and
the leader in the presence of unmatched and matched uncertainties.

ui(t)= −1

h i
(

bi + ∑N
j=1 aij

) ((
bi +

∑N

j=1
aij

) (
f i

) −
∑N

j=1
aij

(
f j + h juj

) − bi u0

+
(

bi +
∑N

j=1
aij

)
δ̂i

n −
∑N

j=1
aijδ̂

j
n +

∑n−1

k=1

ˆ̄δi[n−k]
k +

∑n

m=1
λi

m

(
sgnμ

i
m
(
�̃i

m

)

+ sgn1
(
�̃i

m

) + sgnμ́
i
m
(
�̃i

m

)) + sgnc
(
σ i

) + sgn1
(
σ i

) + sgnd
(
σ i

))
, i = 1, . . . ,N (21)
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where ˆ̄δi
n = δ̂i

n

(
bi + ∑N

j=1 aij

)
− ∑N

j=1 aijδ̂
j

n. The parameters c and d are chosen to satisfy the

following relations:

0< c< 1 and d> 1 (22)

Proof. Substituting the controller (21) into the time derivative of the ith sliding manifold, one has

σ̇ i = −sgnc
(
σ i

) − sgn1
(
σ i

) − sgnd
(
σ i

) −
(

bi +
∑N

j=1
aij

)
ψ i

n1 +
∑N

j=1
aijψ

j
n1 (23)

where

ψ i
n1 = ξ i

n1 − δi
n = δ̂i

n − δi
n

As seen, observer errors are entered in (23). Before preceding the proof, it should be guaranteed that
the observer errors will not drive the sliding manifold dynamics (23) to infinity in finite time. For this
purpose, the following Lyapunov function Vi(σ i, �̃i

) is defined:

Vi
(
σ i, �̃i) = 1

2
(σ i)

2 +
∑n

m=1

1

2
(�̃i

m)
2

i = 1, . . . ,N (24)

Taking time derivation of Vi(σ i, �̃i
) yields to:

V̇
i = σ iσ̇ i +

n−1∑
m=1

�̃i
m

⎛
⎝�i

m+1 −
⎛
⎝bi +

N∑
j=1

aij

⎞
⎠ψ i

m1 +
N∑

j=1

aijψ
j

m1

⎞
⎠

− �̃i
n

n∑
m=1

λi
m

(
sgnμ

i
m
(
�̃i

m

) + sgn1
(
�̃i

m

) + sgnμ́
i
m
(
�̃i

m

)) + �̃i
nσ̇

i

≤
(
σ i

)2 +
(

bi + ∑N
j=1 aij

)2(
ψ i

n1

)2

2
+

(
σ i

)2 +
(∑N

j=1 aijψ
j

n1

)2

2
+

n−1∑
m=1

(
�̃i

m

)2 + (
�̃i

m+1

)2

2

+
n−1∑
m=1

(
�̃i

m

)2 +
(

bi + ∑N
j=1 aij

)2(
ψ i

m1

)2

2
+

n−1∑
m=1

(
�̃i

m

)2 +
(∑N

j=1 aijψ
j

m1

)2

2

+
(
�̃i

n

)2 +
(∑n

m=1 λ
i
m

((
�̃i

m

)μi
m

))2

2
+

(
�̃i

n

)2 + (∑n
m=1 λ

i
m

(
�̃i

m

))2

2

+
(
�̃i

n

)2 +
(∑n

m=1 λ
i
m

((
�̃i

m

)μ́i
m

))2

2
+

(
�̃i

n

)2 + ((
σ i

)c)2

2
+

(
�̃i

n

)2 + (
σ i

)2

2

+
(
�̃i

n

)2 +
((
σ i

)d
)2

2
+

(
�̃i

n

)2 +
(

bi + ∑N
j=1 aij

)2(
ψ i

n1

)2

2
+

(
�̃i

n

)2 +
(∑N

j=1 aijψ
j

n1

)2

2

≤�i
vVi + �i

v (25)

where

�i
v = 3 +

n∑
m=1

λi
m
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and

�i
v = max

⎡
⎢⎣

⎛
⎝bi +

N∑
j=1

aij

⎞
⎠

2(
ψ i

n1

)2 +
⎛
⎝ N∑

j=1

aijψ
j

n1

⎞
⎠

2

+
n−1∑
m=1

(
bi + ∑N

j=1 aij

)2(
ψ i

m1

)2

2
+

n−1∑
m=1

(∑N
j=1 aijψ

j
m1

)2

2
+

(∑n
m=1 λ

i
m

((
�̃i

m

)μi
m

))2

2

+
(∑n

m=1 λ
i
m

((
�̃i

m

)μ́i
m

))2

2
+

((
σ i

)c)2

2
+

((
σ i

)d
)2

2
+5

(
�̃i

n

)2

2
+

(∑n−1
m=1

(
�̃i

m+1

))2

2

⎤
⎥⎦

The condition (V̇
i ≤�i

vVi + �i
v) implies that the sliding manifolds and the state of new error dynam-

ics will not escape to infinity in finite time.39 Since the observer errors converge to zero in finite–time
ti
f and after that the dynamical equation of the sliding manifolds (23) will be reduced to (26)

σ̇ i = −sgnc
(
σ i

) − sgn1
(
σ i

) − sgnd
(
σ i

) ∀ t ≥ ti
f (26)

Now consider the following function as a Lyapunov function candidate for stability analysis of (26),

Ṽ i = 1

2
(σ i)

2
(27)

Taking time derivation of Ṽ i, one has

˙̃Vi = σ iσ̇ i (28)

Replacing Eq. (26) into (28):

˙̃Vi = σ i
(−sgnc

(
σ i

) − sgn1
(
σ i

) − sgnd
(
σ i

))
= −∣∣σ i

∣∣c+1 − ∣∣σ i
∣∣2 − ∣∣σ i

∣∣d+1
(29)

It yields

˙̃Vi ≤
(∣∣σ i

∣∣2
) c+1

2 − ∣∣σ i
∣∣2 −

(∣∣σ i
∣∣2

) d+1
2

≤ − (
Ṽ i

) c+1
2 − (Ṽ i)

d+1
2 (30)

According to relation (21), one has

1

2
<

c + 1

2
<1 and

d + 1

2
>1 (31)

Comparing (30) with Lemma 2 results in the satisfaction of the relation ˙̃Vi ≤ −[
ς Ṽ iχ + φṼ iκ

]ι
with

χ = c + 1

2
, κ = d + 1

2
, ς = φ = ι= 1 (32)

Therefore, the states reach the sliding manifolds in fixed time Ti
s. Moreover, Eq. (20) suffers from dis-

turbance error dynamic (13) and sliding manifold dynamic. Since according to the results of Eq. (25),
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Fig. 1. Communication graph G1.

Fig. 2. Single-link robot arm.

and the convergence of the sliding manifolds to zero in fixed time Ti
s, Eq. (20) is reduced to the

following equations for Ti ≥ Ti
s:⎧⎨

⎩
˙̃�i

m = �̃i
m+1 m = 1, 2, . . . , n − 1

˙̃�i
n = − ∑n

m=1 λ
i
m

(
sgnμ

i
m
(
�̃i

m

) + sgn1
(
�̃i

m

) + sgnμ́
i
m
(
�̃i

m

)) ∀ Ti ≥ Ti
s

(33)

According to Lemma 3, the above equation is fixed-time stable. In other words, the consensus error
vectors �̃i = [�̃i

1, . . . , �̃
i
n]T for (i = 1, . . . ,N) converge to zero in fixed time. Since �̃i

1 = �i
1, it implies

that the fixed-time consensus is achieved and the outputs of the followers track the output of the leader
in the fixed time in spite of the matched and unmatched uncertainties. This completes the proof.

5. Computer Simulations
In this section, two practical examples and a numerical example are provided to show the effective
performance of the designed distributed controllers.

The second-order Lagrangian dynamics describe a wide variety of industrial systems, including
robot manipulators, vehicle motion systems, autonomous ground vehicles, and industrial flow. In
practical examples, we consider a group of single-link robots and robot manipulators as followers,
and the objective is to track a prescribed motion trajectory by followers.

Example 1. Consider a multiagent system with a leader and four followers which are inter-
connected under the graph G1 that is shown in Fig. 1.

The followers are single-link robot arms, and each consists of a rigid link coupled through a gear
train to a dc motor, as shown in Fig. 2.

The dynamics of the robot arms is described by the following Lagrangian dynamics:40

θ̈ = −Mgl

J
sin (θ) − B

J
θ̇ + 1

J
u(t) (34)

where θ is the angular position of the single-link robot arm, M is the mass of payload, g is the
gravity acceleration, l is the length of the arm, J is the inertia moment, B is the coefficient of viscous
friction, and u(t) is the control input. Consider θ i = xi

1 and θ̇ i = xi
2, therefore the dynamical equations

of followers are obtained as below:⎧⎪⎨
⎪⎩

ẋi
1 = xi

2+δi
1(x

i, t)

ẋi
2 = f i(xi, t)+ δi

2(x
i, t)+ hiui(t)

yi = xi
1

i = 1, . . . , 4 (35)
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Fig. 3. Time responses of the output variables of the leader (y0) and followers (yi for i = 1, . . . , 4) in Example 1.

where xi = [xi
1, xi

2]T is the state vector, yi ∈ R is the output of the ith follower, f i
(
xi, t

) =
−Migl

i

Ji sin
(
xi

1

) − B
i

Ji xi
2 is the known nonlinear function of the ith follower and hi = 1

Ji . Moreover,

δi(xi, t)= [δi
1, δ

i
2]T represents the unmatched and matched uncertainties.

The dynamical equations of the leader are assumed as:⎧⎪⎨
⎪⎩

ẋ0
1 = x0

2

ẋ0
2 = u0

y0 = x0
1

(36)

where x0 = [x0
1, x0

2]T
is the state vector, and y0 ∈ R is the output of the leader. Moreover, u0 ∈ R is

the known control input of the leader and is defined as u0 = sin(x0
1)

1+e−t , which results in the desirable
sinusoidal behaviors in the steady-state response of the leader’s output (i.e., y0 in (36)).

The goal is the robust fixed-time consensus between the outputs of the followers (yi for i =
1, . . . , 4) and the output of leader (y0) in the presence of the matched and unmatched uncertainties
in the dynamical equations of the followers.

For the simulation, the parameters of the systems are selected as:

J1 = 6.9667, J2 = 7.7, J3 = 8.46, J4 = 10.2

B̄1= B̄2 = B̄3 = B̄4 = 30.5, g = 9.8

l̄1= 0.8,l̄2 = 1, l̄3 = 1.2, l̄4 = 1.5

M1 = 1,M2 = 1.7,M3 = 2,M4 = 2.3

The initial conditions are also considered as:

x0 =
[

pi

1.25
, 0

]T

, x1 = [1, 0]T , x2 = [2, 0]T , x3 = [3, 0]T , x4 = [4, 0]T .

The uncertainties for each follower are supposed as:

δi
1(x

i, t)= 1 + sin
(

i
t

9
+ i
π

4

)
, δi

2(x
i, t)= 0.5 cos

(
xi

1

)
xi

2 + sin(0.1t) for i = 1, . . . , 4.

Furthermore, the disturbance observer parameters are chosen as:

τ i
m0 = 2, τ i

m1 = 1.5, τ i
m2 = 0.01, � i

m = 10 for m = 0, 1, 2.

and the controller parameters are selected as below:

λi
1 = 2, λi

2 = 3, μi
1 = 0.7

1.3
, μi

2 = 0.7, μ́i
1 = 1.3

0.7
, μ́i

2 = 1.3, c = 0.7, d = 1.5

Figures 3–7 display the results of simulations. Figure 3 illustrates the time responses of the controlled
outputs of each agent. It is clearly shown that the outputs of the followers track the output of the leader
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Fig. 4. Time responses of the uncertain terms δi
1(x

i, t) and their estimations δ̂i
1(x

i, t) for i = 1, . . . , 4 in
Example 1.

Fig. 5. Time responses of the uncertain terms δi
2(x

i, t) and their estimations δ̂i
2(x

i, t) for i = 1, . . . , 4 in
Example 1.

and consensus is achieved in fixed time. The time responses of uncertainties and their estimations
are shown in Figs. 4 and 5. As seen, the performance of the disturbance observer is satisfactory and
the estimated values of uncertainties converge to their real values in a short time. Figure 6 shows the
time responses of the control inputs of each follower. As seen, the control signals are chattering free.
The time responses of the sliding manifolds for each follower are also given in Fig. 7.

In the following, to illustrate the superiority of the proposed method in this paper over other
techniques, a comparison is made between this paper and the recent consensus protocol presented
in ref. [34]. As mentioned before, the settling time, in fixed-time consensus, is independent of the
initial values of the state vector. In order to show this issue, Example 1 is simulated for two different
scenarios of initial value conditions of the followers, and in each scenario, the proposed method
is compared with the given method in ref. [34]. In both scenarios, the initial value of the leader is
x0 = [

π
1.25 , 0

]T
.
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Fig. 6. Time responses of the control inputs ui(t) for i = 1, . . . , 4 in Example 1.

Fig. 7. Time responses of sliding manifolds σ i for i = 1, . . . , 4 in Example 1.

First scenario: x1 = [1, 0]T , x2 = [2, 0]T , x3 = [3, 0]T , x4 = [4, 0]T .

Second scenario: x1 = [10, 0]T , x2 = [20, 0]T , x3 = [30, 0]T , x4 = [40, 0]T .

The time responses of the output variables based on ref. [34] are shown in Fig. 8. Besides, Fig. 9
shows the time responses of the output variables via the proposed method. As shown in Fig. 8, when
the initial conditions change, the convergence rate varies. In other words, convergence rate depends
on the initial conditions of the followers. While using the given protocol presented in this paper, the
convergence time is independent of the initial conditions of the followers and has similar values for
both scenarios. This can be seen in Fig. 9.

Another feature of the fixed-time consensus is reaching consensus at a specific time. In other
words, in the asymptotic consensus, as time goes to infinity, the tracking error converges to zero;
however, in fixed-time consensus, the tracking error converges to zero at a given time. To illustrate
this, we simulated Example 1 with both controllers and compared the result. Figure 10 shows the
time responses of output tracking errors (i.e., (yi − y0) for i = 1, . . . , 4) via the method in ref. [34].
Moreover, the time responses of the tracking errors using the proposed consensus protocol in this
paper are given in Fig. 11. As seen, the proposed method results in the convergence of output tracking
errors to zero in fixed time.

Example 2. In this example, a 3-degree-of-freedom manipulator is considered. Each joint is
attached to an encoder for joint position measurement. The manipulator is shown in Fig. 12.
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1618 Observer-based consensus of higher-order nonlinear heterogeneous multiagent systems

Fig. 8. Time responses of the output variables for the first and second scenarios via the method given in ref. [34].

Fig. 9. Time responses of the output variables for the first and second scenarios by the proposed method in this
paper.

Fig. 10. Time responses of the output tracking errors (yi − y0) for i = 1, . . . , 4 via the given method in ref. [34].

The dynamical equation of motion of this manipulator is described by:41

M (q) q̈ + C (q, q̇) q̇ + G (q)+ D(q, q̇, t,w)= U(t) (37)

where q ∈ R3, q̇ ∈ R3, and q̈ ∈ R3 are the angles, angular velocities, and angular accelerations of the
joints, respectively. M (q) ∈ R3×3 is the inertia matrix, C (q, q̇) ∈ R3×3 is the Coriolis and centripetal
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Fig. 11. Time responses of the output tracking errors (yi − y0) for i = 1, . . . , 4 via the proposed method in this
paper.

Fig. 12. 3-degree-of-freedom manipulator.

forces matrix, G (q) ∈ R3 represents the potential forces vector, and D(q, q̇, t,w) ∈ R3 is a vector of
uncertainties and external disturbances. Moreover, U ∈ R3 consists of the control input torques.

M (q)=
⎡
⎣m11 m12 m13

m21 m22 m23

m31 m32 m33

⎤
⎦ , C (q, q̇)=

⎡
⎣ c11 c12 c13

c21 c22 c23

c31 c32 c33

⎤
⎦

G (q)=
⎡
⎣g1

g2

g3

⎤
⎦ ,U =

⎡
⎣u1

u2

u3

⎤
⎦ , q =

⎡
⎣q1

q2

q3

⎤
⎦ (38)

D̄(q, q̇, t,w)=
⎡
⎣ d̄1

d̄2

d̄3

⎤
⎦

where

m11 = ϕ1 + ϕ2cos2 (q2)+ (ϕ3 + ϕ5) sin2 (q3)+2ϕ6 cos (q2) sin (q3),m12 = 0,

m13 = 0,m21 = 0

m22 = ϕ4 + ϕ5 − 2sin (q2−q3),m31 = 0, m23 = m32 = ϕ5 + ϕ6 − 2sin (q2−q3), m33 = θ5
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c11 = − (ϕ2sin (q2) cos (q2) + ϕ6sin (q2) sin (q3)) q̇2 + ((ϕ3 + ϕ5) sin (q3) cos (q3)

+ ϕ6cos (q2) cos(q3)q̇3)

c12 = − (ϕ2sin (q2) cos (q2) + ϕ6sin (q2) sin (q3)) q̇1

c13 = ((ϕ3 + ϕ5) sin (q3) cos (q3) + ϕ6cos (q2) cos(q3)q̇3)

c21 = (ϕ2sin (q2) cos (q2) + ϕ6sin (q2) sin (q3)) q̇1

c22 = ϕ6cos (q2 − q3), c23 = ϕcos (q2 − q3) (q̇2 − q̇3)

c31 = − ((ϕ3 + ϕ5) sin (q3) cos (q3) − ϕ6cos (q2) cos (q3)) q̇1, c32= 0, c33 = 0

g1 = 0, g2 = ϕ7cos (q2), g3 = ϕ8sin (q3)

ϕ1 = 32, ϕ2 = 34, ϕ3= 20,ϕ4= 74,ϕ5= 1,ϕ6 = 2, ϕ7 = −926, ϕ8 = −685

Assuming that q = X1 and q̇ = X2, Eq. (37) can be written as the following form:⎧⎨
⎩

Ẋ1 = X2

Ẋ2 = F (X1, X2,U)+ HU(t)+ Z(X1, X1, t,w)
Y = X1

(39)

where X1 = [x1
1, x2

1, x3
1]T
, X2 = [x1

2, x2
2, x3

2]T
, and Y = [ y1, y2, y3]T

, U = [u1, u2, u3]T
. Moreover, Z =

[δ1
2, δ

2
2, δ

3
2]T = M−1D(X1, X1, t,w) is the vector of the unknown terms and F = [ f 1, f 2, f 3]T =

−M−1C (X1, X2) X2 − M−1G (X1) and H= [h1, h2, h3] = M−1 are the known terms where

f 1 = − g1

m11
− c11

m11
x1

1 − c12

m11
x2

1 − c13

m11
x3

1

f 2 = − 1

(m23)
2 + m22m33

(− (c21m33 − c31m23) x1
1 − c22m33x2

1 − c23m33x3
1 − m23u3)

− 1

(m23)
2 + m22m33

(g3m23 − g2m33)

f 3 = − 1

(m23)
2 + m22m33

((c21m23 − c31m22) x1
1 + c22m23x2

1 + c23m23x3
1 − m23u2)

− 1

(m23)
2 + m22m33

(−g3m22 + g2m23
)
,

h1 = 1

m11
, h2 = − m33

(m23)
2 + m22m33

, h3 = − m22

(m23)
2 + m22m33

.

As already mentioned, one of the applications of multiagent systems is to break down a complex
system into several subsystems. Thus, in this example, we split the manipulator into three subsystems
and each subsystem is considered as a follower.

Therefore, the dynamical equation of the manipulator system can be divided into the following
three subsystems, and their dynamic equations can be described as below:⎧⎪⎨

⎪⎩
ẋi

1 = xi
2

ẋi
2 = f i

(
xi

1, xi
2, ui

) + hiui(t)+ δi
2(x

i, t)

yi = xi
1

i = 1, 2, 3 (40)

where xi = [xi
1, xi

2]T is the state vector and yi ∈ R is the output of the ith follower. All the notations
in the above relation are described after (39). To fit Eq. (40) to the model presented in this paper, we
add the unmatched perturbation (δi

1(x
i, t)) to Eq. (40), therefore one has⎧⎪⎨

⎪⎩
ẋi

1 = xi
2 + δi

1(x
i, t)

ẋi
2 = f i

(
xi

1, xi
2, ui

) + hiui(t)+ δi
2

(
xi, t

)
yi = xi

1

i = 1, 2, 3 (41)
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Fig. 13. Communication graph G2.

Fig. 14. Time responses of the output variables of the leader (y0) and followers (yi for i = 1, 2, 3) in Example 2.

Fig. 15. Time responses of the uncertain terms δi
1(x

i, t) and their estimations δ̂i
1(x

i, t) for i = 1, 2, 3 in
Example 2.

δi
1(x

i, t) and δi
2(x

i, t) represent the unmatched and matched uncertainties, respectively. The commu-
nication graph G2 is given in Fig. 13. The unmatched and matched uncertainties are assumed as
δi

1(x
i, t)= sin(xi

1 + xi
2 + π

i ) and δi
2(x

i, t)= i + isin
(
0.5it + π

i

) +0.5cos(xi
1xi

2). The leader dynamics,
observer parameters, and control parameters have been considered the same as Example 1.

The simulation results are given in Figs. 14–18. The time responses of the output variables of all
agents are illustrated in Fig. 14. It is obviously shown that the followers track the leader in spite of
heterogeneous agents’ dynamics and uncertainties, and the systems reach consensus in fixed time.
Figures 15 and 16 show the time responses of uncertainties and their estimations and verify the
effective performance of the disturbance observers. Figure 17 plots the time responses of the control
input of each follower. The time responses of the sliding manifolds are depicted in Fig. 18. It can be
seen clearly that the sliding manifolds converge to zero in a short time.
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Fig. 16. Time responses of the uncertain terms δi
2(x

i, t) and their estimations δ̂i
2(x

i, t) for i = 1, 2, 3 in
Example 2.

Fig. 17. Time responses of the control inputs ui(t) for i = 1, 2, 3 in Example 2.

Fig. 18. Time responses of sliding manifolds σ i for i = 1, 2, 3 in Example 2.

Example 3. In this section, a numerical example is provided to show the effectiveness of the
designed distributed controllers. Consider a group of agents that include a leader and four followers
which are interconnected under the graph G1, which is shown in Fig. 1. The dynamical equations of
the leader are as follows: ⎧⎪⎪⎪⎨

⎪⎪⎪⎩

ẋ0
1 = x0

2

ẋ0
2 = x0

3

ẋ0
3 = u0

y0 = x0
1

(42)

https://doi.org/10.1017/S0263574719001656 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574719001656


Observer-based consensus of higher-order nonlinear heterogeneous multiagent systems 1623

Fig. 19. Time responses of the output variables of the leader (y0) and followers (yi for i = 1, 2, 3, 4) in
Example 3.

Fig. 20. Time responses of the uncertain terms δi
1 and their estimations δ̂i

1 for i = 1, . . . , 4 in Example 3.

where x0 = [x0
1, x0

2, x0
3]T

is the state vector, and y0 ∈ R is the output of the leader. Moreover, u0 ∈ R is
the known control input of the leader and is defined as u0 = −80x0

1 − 40x0
2 − 20x0

3, which results in
the desirable sinusoidal behaviors in the steady-state response of the output of (42).

The dynamical equations of the followers are considered as follows:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ẋi
1 = xi

2 + δi
1

ẋi
2 = xi

3 + δi
2

ẋi
3 = f i(xi, t)+ δi

3 + ui

yi = xi
1

i = 1, 2, 3, 4 (43)

where xi = [xi
1, xi

2, xi
3]T is the state vector, δi = [δi

1, δ
i
2, δ

i
3]T includes the unmatched and matched

uncertain terms, yi ∈ R is the output, and f i ∈ R is the known nonlinear function of the ith follower.
Moreover, ui ∈ R is the control input of the ith follower.

For simulations, the uncertainties for each follower are supposed as: δi
1 = sin( i

9 t + iπ4 ),
δi

2 = cos(xi
1) and δi

3 = xi
2sin(xi

3), (for i = 1, 2, 3, 4). Moreover, the known nonlinear functions

f i = xi
1xi

2xi
3 for i = 1, 2 and f i = xi

1(x
i
2)

2
for i = 3, 4 are considered. Also, the disturbance observer

parameters are chosen as:

τ i
m0 = 2, τ i

m1= 1.5, τ i
m2 = 1.1, τ i

m3 = 0.01, � i
m = 10, for m = 0, 1, 2, 3

and the controller parameters are considered as follows:

λi
1 = 2, λi

2 = 3, λi
3 = 5 μi

1 = 0.7

1.6
, μi

2 = 0.7

1.3
,

μi
3 = 0.7, μ́i

1 = 1.3

0.4
, μ́i

2 = 1.3

0.7
, μ́

i
3 = 1.3, c = 0.7, d = 1.5
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Fig. 21. Time responses of the uncertain terms δi
2 and their estimations δ̂i

2 for i = 1, . . . , 4 in Example 3.

Fig. 22. Time responses of the uncertain terms δi
3 and their estimations δ̂i

3 for i = 1, . . . , 4 in Example 3.

Fig. 23. Time responses of the control inputs of followers in Example 3.

Figures 19–24 display the results of simulations. Figure 19 illustrates the time responses of the output
of each agent. As can be seen, the outputs of the followers track the output of leader and consensus
is achieved in a fixed time. The time responses of uncertain terms and their estimations are shown in
Figs. 20–22. These figures show that the performance of the disturbance observer is satisfactory and
the estimated values of uncertain terms converge to their real values in a short time. Figure 23 displays
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Fig. 24. Time responses of sliding manifolds in Example 3.

the time responses of the control inputs of each agent. As seen, the control signals are chattering free.
The time responses of the sliding manifolds for each agent are also given in Fig. 24.

6. Conclusion
In this paper, distributed observer-based fixed-time control laws were presented to guarantee the
consensus between the agents in nonlinear heterogeneous multiagent systems of higher-order with
matched and unmatched uncertainties. For this purpose, fixed-time distributed sliding mode con-
trollers were designed based on the disturbance observer to conquer both the matched and unmatched
uncertainties. In this regard, a theorem has been presented and proved which guarantees that the con-
sensus errors converge to zero in a short time and the follower tracks the leader in a robust manner.
Finally, the simulation results show the effectiveness of the proposed controller for two practical
examples and a numerical example.
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