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106.46 On the Gerretsen inequalities in trigonometrical form

The first Gerretsen inequality for a triangle  with semi-perimeter ,
circumradius  and inradius  is

ABC s
R r

s2 − 16Rr + 5r2 ≥ 0. (1)
This is essential for our proof that the incentre  lies on the
symmedicentroidal disc ([1]).

I

A trigonometrical form will now be found in terms of the sum  and
product  of the half-angle tangents ,  and

.

S
P l = tan 1

2A m = tan 1
2B

n = tan 1
2C

Key formulae
Note first that  are positive and that the formulal, m, n

mn + nl + lm = 1 (2)
follows easily from . The
constraint (2) is used to generate ad hoc results such as

cot 1
2A = tan 1

2 (π − A) = tan 1
2 (B + C)

l2 + m2 + n2 = (l + m + n)2 − 2 (mn + nl + lm) = S2 − 2
and

m2n2 + n2l2 + l2m2 = (mn + nl + lm)2 − 2(l + m + n)lmn = 1 − 2SP.
We next find bounds for  and .S = l + m + n P = lmn

So from  we have(m − n)2 + (n − l)2 + (l − m)2 ≥ 0

2 (l + m + n)2 − 2 (mn + nl + lm) = 2 (S2 − 2) − 2 ≥ 0,
that is  or .S2 ≥ 3 S ≥ 3

Now the geometric and harmonic means of  are  and ,
respectively, so

l, m, n P1/3 3P

P1/3 ≥ 3P or  0 < P ≤
1

3 3
.

Hence
S − 9P ≥ 0. (3)

Next from
(1 − 3mn)2 + (1 − 3nl)2 + (1 − 3lm)2 ≥ 0

we have

3 − 6(mn + nl + lm) + 9(m2n2 + n2l2 + l2m2) = 3 − 6 + 9(1 − 2SP) ≥ 0,
that is,

1 − 3SP ≥ 0. (4)
We also have

(m + n) (n + l) (l + m) = (S − l) (S − m) (S − n)
= S3 − (l + m + n) S2 + (mn + nl + lm) S − lmn = S − P. (5)

The first Gerretsen inequality
The formulae  leadr = (s − a) tan 1

2A = (s − b) tan 1
2B = (s − c) tan 1

2C
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easily to 

s = (1
l

+
1
m

+
1
n) r =

r
lmn

=
r
P

. (6)

Then by transposing and squaring the formula
(and using (5)) we have

r = 4R sin 1
2A sin 1

2B sin 1
2C

16R2

r2
= (1 +

1
l2) (1 +

1
m2) (1 +

1
n2)

=
(1 + l2) (1 + m2) (1 + n2)

P2

= ((m + n) (n + l) (l + m)
P )2

= (S − P
P )2

 or  
4R
r

=
S − P

P
. (7)

Hence from (1), (6), (7) we have

s2 − 16Rr + 5r2 = (1 − 4 (S − P) P + 5P2) r2

P2
≥ 0

or  9P2 − 4SP + 1 ≥ 0. (8)
9P2 − 4SP + 1 = (1 − 3SP) − P(S − 9P) ≥ 0Now

shows the weighted competition between the two inequalities (3), (4) which
leads to enhanced sharpness.

The reader may wish to convert the second Gerretsen inequality
 to ,s2 ≤ 4R2 + 4Rr + 3r2 S2 + 2SP + 9P2 ≥ 4

Concluding remarks
Note that (by (7)) the Euler result  corresponds to .

The first Gerretsen inequality (1) is used both as a square and as a linear
term in the symmedicentroidal proof [1], whereas just the linear term (8)
suffices to complete the original trigonometrical proof with

R ≥ 2r S − 9P ≥ 0

S + P − 4S2P + 6SP2 = S (9P2 − 4SP + 1) + P (1 − 3SP) ≥ 0.
The reader may also wish to show that  and4R + r ≥ 3s

a (s − a) + b (s − b) + c (s − c) ≥ 4 3� (triangle area �)
correspond to .S ≥ 3

Note finally that the trigonometrical form may be the more concise.
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