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Results are presented from a laboratory study on the free-surface signal generated
over an array of submerged circular cylinders, representative of submerged aquatic
vegetation. We aim to understand whether aquatic ecosystems generate a surface
signature that is indicative of both what is beneath the water surface as well as how
it is altering the flow. A shear layer forms over the canopy, generating coherent
vortex structures which eventually manifest in the free-surface slope field. We
connect the vortex properties measured at the surface with measurements of the
bulk flow, and show that correlations between these quantities are adequate to create
a parameterized model in which the interior velocity profile can be predicted solely
from measurements taken at the free surface. Experimental surface observations
yield a Strouhal number that is twice the most amplified mode predicted by linear
stability theory, suggesting that vortices may evolve between generation at the canopy
height and their manifestation at the water surface. Additionally, the surface signal
continues evolving with distance downstream, with vortices becoming spread farther
apart and the passage frequency gradually decreasing. By the trailing edge of the
canopy, surface-impacting boils emerge for canopies with higher submergence ratios,
suggesting a transition from coherent two-dimensional rollers to transversely varying
structures.

Key words: channel flow, shallow water flows, shear layers

1. Introduction
Accurate knowledge of near-shore roughness and bathymetry – with adequate

spatial resolution to differentiate between regions of differing depth, substrate or
ecological habitat – is critical to accurate numerical modelling of coastal processes
and shoreline evolution. However, direct measurement of roughness and bathymetry is
usually difficult and expensive. Optical access can be particularly difficult for remote
surveying of submerged environments in more turbid areas. Bathymetry inversion has
thus become a more common approach for determining bathymetry from observed
properties of the ocean surface (Narayanan, Rama Rao & Kaihatu 2004).

† Email address for correspondence: tmandel2@ucmerced.edu

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

17
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://orcid.org/0000-0002-5425-0828
https://orcid.org/0000-0002-4080-1174
https://orcid.org/0000-0003-2121-4844
mailto:tmandel2@ucmerced.edu
https://doi.org/10.1017/jfm.2019.170


634 T. L. Mandel, S. Gakhar, H. Chung, I. Rosenzweig, and J. R. Koseff

Chickadel et al. (2009) studied the surface expression of coherent structures
generated by a submerged estuarine sill. They found that the locations at which these
structures erupted as ‘boils’ agreed with an idealized model of vortex propagation.
This work showed that submerged bathymetric structures can create a signature of
their hydrodynamic effects on the water surface. Direct numerical simulations by Tsai
(1998) showed that hairpin-shaped vortices were generated by a shear layer, and that
these vortices created localized upwelling regions when they impinged on the water
surface. Sanjou, Nezu & Okamoto (2017) measured divergence of surface velocities
and dissolved oxygen concentrations in open-channel flow, and observed positive
and negative regions of divergence that were transported downstream, similar to boil
phenomena. They concluded that gas transfer at the air–water interface was related
to near-bottom turbulence.

Submerged aquatic vegetation is a particularly important bathymetric property from
both a physical and ecological standpoint. In both lowland rivers and coastal zones,
submerged aquatic vegetation provides habitat, controls oxygen, carbon and nutrient
levels in the water column, and alters light availability. Physically, aquatic vegetation
provides hydraulic resistance, reduces near-bed velocities and stabilizes soil substrates
(Tanino & Nepf 2008; Nepf, Rominger & Zong 2013).

A significant body of work has focused on the coherent vortex structures generated
by submerged canopies. Ghisalberti & Nepf (2002) applied a mixing layer model
to submerged aquatic vegetation; for canopies of non-dimensional frontal area
density λf > 0.1, all vertical profiles of mean velocity contained an inflection
point, making the flow susceptible to Kelvin–Helmholtz instability (Poggi, Katul
& Albertson 2004; Luhar, Rominger & Nepf 2008). They observed the generation of
large, coherent vortices in the mixing layer. Further work has shown the importance
of these structures in vertical exchange of mass and momentum and the waving of
aquatic vegetation (‘monami’), and has also investigated their dominant frequencies
and length scales (Ghisalberti & Nepf 2006, 2009; Nezu & Sanjou 2008; Okamoto,
Nezu & Sanjou 2016).

In this study, we examined the free-surface expression created by a canopy-
generated shear instability. Motivated by the prospect of bathymetry (or in this
case, roughness) inversion from free-surface measurements, our primary questions
were: (i) how do interactions between aquatic ecosystems and the surrounding flow
manifest at the water surface? And (ii) can the water surface indicate both what is
at the bed, and how it is altering flow? By measuring small perturbations of the
water surface slope in a controlled laboratory setting, we detected properties of the
canopy-generated vortices, and were able to connect surface properties to subsurface
geometry and flow structure. The surface measurements allowed us to generate a
parameterized model of the mean velocity profile over depth based solely on surface
characteristics. Spatial information also allowed us to understand how confinement by
the free surface may affect shear layer and vortex development.

2. Experimental approach
2.1. Experimental set-up

Experiments were conducted in a 6 m long by 0.61 m wide by 0.61 m deep
recirculating flume. A variable speed pump fills a constant head tank, which in turn
drives flow to the inlet section of the flume. The inlet section converges through a
series of homogenizing grids of decreasing size into the glass-walled rectangular test
section. The test section is 3 m long with a 1.5 m buffer zone both upstream and
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FIGURE 1. (Colour online) Schematic of experimental set-up and variables.

downstream to mitigate entrance and exit effects on the flow profile. A sharp-crested
downstream control weir is used in conjunction with the pump’s variable speed
control to independently change flow rate and flow depth. A complete description of
the facility is available in O’Riordan, Monismith & Koseff (1993).

A model vegetative canopy composed of an array of rigid wooden cylinders was
set up at the inlet of the test section to generate the shear instability. The canopy was
2.25 m in length (Lc). Geometry and definitions of variables are shown in figure 1.
The circular ends of the cylinders were painted white to maximize contrast. Water
depth at the trailing edge of the canopy was kept constant at H = 31.2 cm for all
experiments by varying the height of the outlet weir in conjunction with pump power.

Experiments were conducted for a range of canopy heights, canopy densities
and incident flow speeds. These conditions, along with relevant non-dimensional
parameters, are summarized in table 1. The submergence ratio, H/hc, indicates how
deeply submerged the canopy is. The Reynolds numbers Red and ReH are defined as

Red =Uuod/ν; ReH =UuoHν, (2.1a,b)

where Uuo is the time- and depth-averaged velocity for given flume settings in an
unobstructed channel (0.20, 0.15 and 0.10 m s−1 for fast, medium and slow cases,
respectively), d is the element diameter (6.35 mm), hc is the canopy height and ν is
the kinematic viscosity of water (1×10−6 m2 s−1). Although these same three flume
settings were used for all experiments, actual free-stream and within-canopy velocities
vary based on the geometry of the cylinder array present.

The non-dimensional canopy density parameters λp (planform density) and λf

(frontal area) are defined as:

λp =
π

4
d2

1S2
; λf = ahc, (2.2a,b)

where 1S is the average spacing between vegetation elements and a= d/1S2 is the
frontal area per canopy volume. Elements were arranged in a regular, staggered array;
see Mandel et al. (2017) for more detail.
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hc Density a Uuo

Experiment (cm) H/hc (stems m−2) (cm−1) λp λf (cm s−1) Red ReH

20A1 20 1.6 1300 0.090 0.18 1.8 20 1270 63 000
20A2 20 1.6 1300 0.090 0.18 1.8 15 950 47 000
20A3 20 1.6 1300 0.090 0.18 1.8 10 640 31 000
20B1 20 1.6 800 0.040 0.080 0.78 20 1270 63 000
20B2 20 1.6 800 0.040 0.080 0.78 15 950 47 000
20B3 20 1.6 800 0.040 0.080 0.78 10 640 31 000
20C1 20 1.6 500 0.025 0.050 0.49 20 1270 63 000
20C2 20 1.6 500 0.025 0.050 0.49 15 950 47 000
20C3 20 1.6 500 0.025 0.050 0.49 10 640 31 000
15A1 15 2.1 1300 0.090 0.18 1.4 20 1270 63 000
15A2 15 2.1 1300 0.090 0.18 1.4 15 950 47 000
15A3 15 2.1 1300 0.090 0.18 1.4 10 640 31 000
15B1 15 2.1 800 0.040 0.080 0.60 20 1270 63 000
15B2 15 2.1 800 0.040 0.080 0.60 15 950 47 000
15B3 15 2.1 800 0.040 0.080 0.60 10 640 31 000
15C1 15 2.1 500 0.025 0.050 0.38 20 1270 63 000
15C2 15 2.1 500 0.025 0.050 0.38 15 950 47 000
15C3 15 2.1 500 0.025 0.050 0.38 10 640 31 000
10A1 10 3.1 1300 0.090 0.18 0.90 20 1270 63 000
10A2 10 3.1 1300 0.090 0.18 0.90 15 950 47 000
10A3 10 3.1 1300 0.090 0.18 0.90 10 640 31 000
10B1 10 3.1 800 0.040 0.080 0.40 20 1270 63 000
10B2 10 3.1 800 0.040 0.080 0.40 15 950 47 000
10B3 10 3.1 800 0.040 0.080 0.40 10 640 31 000
10C1 10 3.1 500 0.025 0.050 0.25 20 1270 63 000
10C2 10 3.1 500 0.025 0.050 0.25 15 950 47 000
10C3 10 3.1 500 0.025 0.050 0.25 10 640 31 000

TABLE 1. Ranges of canopy height, density and flow conditions varied across experiments,
with associated non-dimensional parameters. Estimates of uncertainty are as follows:
canopy height is accurate to ±0.3 cm; canopy density to within ±5 stems m−2;
depth-averaged velocity in an unobstructed flow to ±1 cm s−1.

2.2. Experimental methods
To measure perturbations in the slope of the water surface, we used an adaptation of
the free-surface synthetic schlieren method (FS-SS) developed by Moisy, Rabaud &
Salsac (2009). In our set-up, we track the apparent distortion of the circular tips of
the submerged cylinders. Using particle tracking codes (Ouellette, Xu & Bodenschatz
2006), the apparent displacement of the cylinder tips is measured over time and
converted to the surface slope field. A full description and validation of this approach
can be found in Mandel et al. (2017). A sample snapshot of the perturbations
in streamwise surface slope is shown in figure 2; obvious quasi-two-dimensional
structures are observable.

An array of eight Basler Ace (model number acA1300-60gm) monochrome cameras
was set up to image the length of the cylinder array. Camera synchronization and
image logging were performed using a LabVIEW program. Cameras were triggered
by a function generator (BNC Model 555 Pulse/Delay Generator), and images were
transferred by Ethernet cables onto two data acquisition computers. Camera frame rate

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

17
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.170


On the surface expression of a canopy-generated shear instability 637

-4

-3

-2

-1

0

1

2

3

4

-4

-3

-2

-1

0

1

2

3

4

-4

-3

-2

-1

0

1

2

3

4

-4

-3

-2

-1

0

1

2

3

4

-4

-3

-2

-1

0

1

2

3

4

-4

-3

-2

-1

0

1

2

3

4

(÷10-3)

™˙/™x, t = 10 s
(a)

(b)

(c)

(d)

(e)

(f)

™˙/™x, t = 10.5 s

™˙/™x, t = 11.0 s

™˙/™x, t = 11.5 s

™˙/™x, t = 12.0 s

™˙/™x, t = 12.5 s

1/4 Lc 1/2 Lc 3/4 Lc Lc

FIGURE 2. (Colour online) Snapshots of perturbations in streamwise surface slope over
time for case 20A2. Black-edged circles indicate the location of the vegetation elements,
and shading that fills the circles represents the streamwise surface slope ∂η/∂x. The
surface slope is interpolated between elements to better show features. The horizontal
axis indicates the streamwise direction x, and vertical axis represents the transverse
direction y. Snapshots are of the centre 30 cm of a 60 cm wide test section. The apparent
displacement of the tips of the cylindrical elements is very small, of the order of 1–2
pixels, so positions of the elements appear identical in all frames.

was set to 10 frames per second, with all cameras taking images simultaneously. Each
camera was equipped with a Tamron lens with an f-stop of F/2.1, focal length of 35
mm and exposure time of 12 000 µs. Images were 1280 × 1024 pixels, yielding a
field of view (FOV) of approximately 30 cm × 25 cm. The cameras were positioned
206 cm above the flume bottom.
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In addition to the FS-SS measurements, we also collected two-component laser
Doppler anemometry (LDA) measurements approximately 1 cm downstream of the
end of the canopy so that the mean velocity, shear length scale and turbulence within
the water column could be compared to surface measurements. The LDA system
consists of a Laser Quantum Ventus 250 laser emitting at 532 nm, in conjunction
with a Dantec optical assembly consisting of two beam splitters, two Bragg cells and
focusing and receiving optics. For each experimental case, a vertical profile of seven
points was taken: a free-stream measurement approximately 8 mm below the free
surface; a ‘within-canopy’ measurement 3 cm above the bed; and five points measured
within the canopy shear layer. At each point, horizontal and vertical velocities were
recorded for 12 min at sampling rates of 500–1200 Hz, then filtered to a uniform
sampling rate of 25 Hz.

The within-canopy and near-surface measurements are used to represent Us and Uc,
the asymptotic limits of the time-averaged mixing layer profile shown in figure 1. The
vertical position to measure Uc was chosen based on the profiles, with finer vertical
resolution, of Rosenzweig (2017). From this, we concluded that the profile beneath
z = 5 cm above bed was relatively constant, to within ±0.4 cm s−1. Similarly, the
relative error in choosing a fixed point to represent Us is expected to be ±1 cm s−1.
These uncertainties are also considered when computing the velocity difference 1U=
Us −Uc and depth-averaged velocity U = (Us +Uc)/2 discussed in § 3.

2.3. Image processing
For these studies, a few additional postprocessing steps on the images were required.
First, because of strong surface-impacting boils, some tracked cylinder tips towards
the downstream edge of the canopy had discontinuous time series. These tracks were
merged by clustering tracks into groups with the same mean [X,Y] pixel location and
linearly interpolating short gaps in the time record. Second, in a few experimental
cases with the densest canopies, drag was high enough that the canopy itself moved
during the experiments. While this shift was negligible from a physical standpoint,
it did yield an overall drift in the streamwise pixel location of cylinder tips of the
order of 61 pixel. This low-frequency trend was subtracted from the high-frequency
deflections of interest by applying a median filter to the signal and subtracting the
mean trend to yield a signal centred about zero.

3. Results
3.1. Vortex properties and connection to the bulk flow

Following the methods described in Mandel et al. (2017), we calculated the
propagation speed, peak instability frequency and characteristic length scales of
the vortices from their surface signal. The vortex velocity at the surface, Uv, was
computed using values of spatial distance 1x between two signals and their associated
correlation peak in time 1t. These values were computed along the centreline of the
flume, and Uv was computed as the slope of a fit to a plot of 1x versus 1t.

In figure 3, the vortex speed at the surface is compared with two subsurface flow
properties: the mean velocity at the canopy height, Uhc ; and a representation of the
depth-averaged velocity,

U =
Us +Uc

2
, (3.1)

where Us is the time-averaged velocity near the free surface and Uc is the
time-averaged within-canopy velocity. The vortex speed is linearly proportional to the
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FIGURE 3. Vortex speed, as measured at the surface, for varying canopy height, density
and flow speed. Measurements at the free surface are compared to LDA measurements of
depth-averaged velocity U and Uhc . It is apparent that the speed of the vortex at the free
surface is a sufficient analogue for common representations of the shear layer velocity.

depth-averaged flow velocity U. It is also representative of the velocity at z= hc≈ hi,
the mean velocity at the canopy height and at the slightly raised inflection point of
the velocity profile. Thus, the vortex speed at the surface is reflective of bulk flow
properties and the shear that induces this instability. This agrees well with previous
observations in both terrestrial and aquatic canopies (Finnigan 1979; Ghisalberti &
Nepf 2002), as well as previous work in idealized free shear layers (Ho & Huerre
1984).

Nepf (2011) noted that in a canopy shear layer, vortices are displaced upward
relative to the canopy due to the canopy drag, and that as a result, the translation
speed of the vortices is higher than the velocity at the inflection point. Ghisalberti &
Nepf (2002) observed that the velocity ratio Uv/Uhc increased with increasing depth
of submergence (H/hc), with a value of Uv/Uhc = 1.8 observed at H/hc = 4.5. Nepf
(2011) suggests that this value is the asymptotic limit for unconfined canopies, as
Uv/Uhc is also 1.8 in terrestrial canopies (Finnigan 1979). As shown in figure 4, we
found a maximum velocity ratio around 1.8 for more strongly submerged canopies.
However, we also observed significant spread due to the canopy density at different
submergence ratios. The velocity ratio is highest for the densest canopy case,
indicating that vortex centres are more significantly displaced upwards when the
canopy is providing more resistance and restricting within-canopy flow.

We also examined two metrics of the physical vortex scale, based on the spatial
correlation function:

Rxx(r, x)=
〈
∂η

∂x
(x, t) ·

∂η

∂x
(x+ r, t)

〉
, (3.2)

where angle brackets represent a time average. Evaluating this function at any given
downstream location x, we found both the value of r at which the function (i) first
crosses zero, i.e. a decorrelation length; and (ii) reaches its second correlation peak.
We define the first as a representation of the vortex size Lv and the second as a
representation of the streamwise vortex spacing or wavelength λv.
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FIGURE 4. (Colour online) Ratio of vortex velocity to velocity at the canopy height as
a function of submergence ratio. The velocity ratio is highest for the densest canopy
case (black circles), indicating that vortex centres are more significantly displaced upwards
when the relative porosity of the canopy is lower. The dashed line at Uv/Uhc = 1.8
indicates the asymptotic limit postulated by Nepf (2011).

Figure 5 shows these two length scales as a function of downstream distance. Once
a coherent signal has emerged at the free surface, the vortex size stays approximately
constant with downstream distance. The vortex spacing, however, grows at a constant
rate. The predominant instability frequency, shown in figure 5(b), also changes at a
constant rate with downstream distance. This behaviour is seen for all experimental
cases and will be examined more closely in § 3.4.

Figure 6 compares the two surface vortex length scales Lv and λv against the
canopy height hc. The vortex size shown is the median value over the region of
the canopy where x/Lc > 0.55, i.e. where a surface signature is significant and
relatively coherent for all cases. The vortex spacing shown is the median of the
last three measurements at the end of the canopy, so that these end-canopy surface
measurements can be compared with end-canopy velocity measurements. The vortex
size is inversely proportional to the canopy height. While previous work found that
vortex size scales directly with hc, these results show that instead the vortex size
decreases with increasing canopy height – at least for the more strongly confined
flows studied here. This suggests that there is some submergence limit beyond which
the dominant turbulent length scale is H − hc, the distance between the top of the
canopy and the free surface. Previous studies have generally normalized the measured
vortex length scales by the canopy height. Shown in figure 7 is a comparison of
data from a number of previous studies of estimated vortex size as a function of
submergence ratio. The data of Okamoto & Nezu (2009) are comprised of the
integral length scale at the canopy height for both flexible (open circles) and rigid
(filled circles) vegetation. Okamoto et al. (2016) also computed the integral length
scale, but at the canopy height and near the surface. Finally, the data of Ghisalberti &
Nepf (2002) are estimates of vertical vortex size based on momentum thickness θ and
mixing layer thickness tml. Normalizing the vortex length scale Lx (as defined in each
study) by (H− hc) yields a much better collapse (indicated by a more coherent trend
in the data, not simply a reduction in the vertical spread of the data), particularly
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FIGURE 5. (Colour online) Vortex length scales and predominant frequency at the free
surface for case 20A1 versus distance downstream. (a) Length scales are normalized by
the canopy height hc. A coherent signal emerges at the free surface around x/Lc∼ 0.4, at
which time spatial correlations become significant. The vortex size Lv remains fairly fixed
over the canopy length, while the vortex spacing λv grows at a constant rate. The vortex
spacing has almost doubled by the end of the canopy. (b) The predominant frequency
observed at the surface shows a similar linear trend with downstream distance. Shaded
error bars indicate the order of magnitude of error in each measurement point.

for the data of Ghisalberti & Nepf (2002). This collapse also minimizes some of the
variation due to canopy rigidity/flexibility. This result, that vortex size scales well
with the canopy–surface gap (H − hc), agrees with some prior discussions in the
literature; Nepf & Vivoni (2000), for example, noted that for H/hc < 2, penetration
of turbulence into the canopy is depth limited.

The shear length scale Ls is the dominant flow length scale (Raupach, Finnigan &
Brunet 1996; Finnigan 2000):

Ls =
Uz=hc

∂U/∂z z=hc

. (3.3)

The vortex size and spacing are compared with the shear length scale Ls in figure 8.
While vortex size is uncorrelated with shear length, the vortex spacing has some
correlation (R2

= 0.39) with the shear length scale. Raupach et al. (1996) found
that in a terrestrial canopy, dominant eddies scaled with the shear length scale, and
that the streamwise spacing λv of these eddies equalled 8.1Ls. Again, it seems that
confined shear layers behave differently from the free shear layers of terrestrial flows.
In our experiments, flows with stronger shear (and thus shorter shear length) have a
larger vortex wavelength. The canopy geometry that generates the strongest shear is,
as expected, the densest canopy. Thus, the frequency and wavelength of the structures
shed from the canopy are related to the canopy density.
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FIGURE 6. (Colour online) Vortex length scales as a function of canopy geometry. (a)
The vortex size shows an inverse proportionality to the canopy height hc. While previous
work found that in unconfined canopies, vortex size ∼ hc, these results in more strongly
submerged canopies find the inverse, that vortex size decreases for larger canopy heights;
hc of 10 cm corresponds to a submergence ratio H/hc of 3.1, while hc of 20 cm
corresponds to H/hc of 1.6. (b) The vortex spacing shows a similar dependence on the
canopy height, in addition to dependence on the canopy density, here represented by
the dimensionless planform density λp. Denser canopies generate a larger vortex spacing
relative to sparser canopies.

3.2. Stability of measured velocity profiles
Ghisalberti & Nepf (2002) used a mixing layer model for a canopy velocity profile:

U −U
1U

=
1
2

tanh
(

z− z
2θ

)
, (3.4)

where z is a reference height such that (z− z)/θ at the inflection point. Rearranging
to obtain U as a function of depth,

U(z)=
1
2
1U tanh

(
z− hi

2θ

)
+U. (3.5)

In canopy shear layers, the inflection point of the velocity profile is shifted upwards
from the actual canopy height. Because this shift was not known a priori, to compute
this correction to the location of the inflection point, we ran a nonlinear optimization
algorithm to fit (3.5) to all 27 measured velocity profiles, with hi as a free variable.
The effect of this correction in more accurately capturing the measured behaviour
can be seen in figure 9. Both models in the figure use values of 1U (= Us − Uc),
θ and U from subsurface measurements. Following Ghisalberti & Nepf (2002) and
Rosenzweig (2017), who found that the momentum thickness θ scales with the mixing
layer thickness tml (tml/θ = 7.1± 0.4 and tml/θ = 6.7± 0.4, respectively), we computed
the momentum thickness as

θ =
tml

7
=

H − (hc − δe)

7
. (3.6)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

17
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.170


On the surface expression of a canopy-generated shear instability 643

(a) (b)

0

0.5

1.0

1.5

2.0

2.5

0

0.5

1.0

1.5

2.0

2.5

3.0
ON2009
ONJ2016
GN2002
Present study
Fit to previous work
Fit to all data

H/hc

L x
/h

c

L x
/(

H
 -

 h
c)

H/hc

1 2 3 4 5 1 2 3 4 5

FIGURE 7. (Colour online) Comparison of vortex size estimates from this study and
previous studies. Data for rigid model vegetation are shown as filled symbols, and data for
flexible vegetation as open symbols. The data of Okamoto & Nezu (2009) are comprised
of the integral length scale at the canopy height for both flexible and rigid vegetation.
Okamoto et al. (2016) also computed the integral length scale, but at the canopy height
and near the surface. Finally, the data of Ghisalberti & Nepf (2002) are estimates of
vertical vortex size based on θ and tml. The data for the present study are the vortex size
estimates Lv , based on the decorrelation length. Best fit lines in (b) show an exponential
fit of the form y= aebx for data from previous work (a= 5.5, b=−0.71), and all work
including the data from the present study (a= 2.5, b=−0.48).
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shear length scale shows very little correlation with the vortex size at the surface. (b) The
shear length correlates reasonably well with the vortex spacing at the end of the canopy.
A linear relation is found with R2

= 0.39.

Following the derivation of the penetration depth in Nepf (2011), the penetration depth
δe is approximated as being equal to the measured shear length scale Ls.

Our measurements of the canopy velocity profiles indicated that for every case, there
is an inflection point making the flow susceptible to Kelvin–Helmholtz instability. We
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FIGURE 9. (Colour online) Correction of the inflection point height hi for sample velocity
profiles 20A1, 15A1 and 10A1. Black circles indicate mean velocities measured using
LDA. The solid blue line shows the model of U(z) using the canopy height as the location
of inflection. The dot-dashed black line shows (3.5), where a corrected inflection height
has been fitted from the data. Both models use values of 1U, θ and U from subsurface
measurements. The horizontal dotted line indicates the canopy height.

thus conducted a linear instability analysis to understand the most unstable modes
generated by these profiles. As discussed in Raupach et al. (1996), linear stability
theory ceases to apply as soon as the instabilities grow to a finite size; however, the
analysis is informative in identifying the amplified modes that should dominate the
flow.

To assess the stability of these velocity profiles, we followed the methods of
Biancofiore et al. (2017), which we will summarize here. First we began with the
non-dimensionalized, two-dimensional Navier–Stokes equations linearized about the
mean flow profile U(z):

∂u
∂t
+U

∂u
∂x
+w

∂U
∂z
=−

∂p
∂x
+

1
Re
∇

2u, (3.7)

∂w
∂t
+U

∂w
∂x
=−

∂p
∂z
+

1
Re
∇

2w. (3.8)

And continuity,
∂u
∂x
+
∂w
∂z
= 0. (3.9)

These equations can be written in operator form as:

0=

−
∂t 0 0

0 ∂t 0
0 0 0

+
−U∂x +

I
Re∇

2 Uz −∂x

0 −U∂x +
I

Re∇
2
−∂z

∂x ∂z 0

u
w
p

 . (3.10)

We decomposed the solutions u, w and p into normal modes, assuming oscillating
behaviour in x and time:

u= û(z)ei(kx−ωt), (3.11)
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where û is the amplitude function of u as a function of z, k is the streamwise spatial
wavenumber and ω is the temporal oscillation frequency. Similar equations were made
for ŵ and p̂. The derivative operators in (3.10) can now be expressed in terms of ω
and k (i.e. ∂t =−iω, ∂x = ik):

0 =

−ω
−i 0 0

0 −i 0
0 0 0


︸ ︷︷ ︸

E

+

A︷ ︸︸ ︷
I

Re
∂zz Uz 0

0
I

Re
∂zz −∂z

0 ∂z 0


︸ ︷︷ ︸

A00

+ k

−Ui 0 −i
0 −Ui 0
i 0 0


︸ ︷︷ ︸

A1

+ k2

−I/Re 0 0
0 −I/Re 0
0 0 0


︸ ︷︷ ︸

A2


×

 û
ŵ
p̂


︸︷︷︸

q̂

. (3.12)

This equation is a dispersion relation: if k is given, ω is the eigenvalue of the
generalized eigenvalue problem

ωE q̂= Aq̂, (3.13)

where A is the matrix shown above in (3.12). This equation is solved numerically for
the unstable eigenvalues. The Chebyshev differentiation matrices in A00 were generated
using the MATLAB differentiation matrix suite developed by Weideman & Reddy
(2000). Neumann boundary conditions (no flux, no stress) were used at the bottom
(z= 0) and top (z=H) of the domain.

Given a Reynolds number Re = 1Uθ/ν, we took the dimensional base profile
defined in (3.5) and non-dimensionalized with U = (1U)U∗ and z = θz∗. The base
profile which was inserted into (3.12) (with dropped ∗) is thus

U∗(z∗)=
1
2

tanh
(

z∗

2
−

hi

2θ

)
+

U
1U

(3.14)

and the first derivative of the base profile with respect to z∗ is

∂U∗

∂z∗
=

1
4

cosh
(

z∗

2
−

hi

2θ

)−2

. (3.15)

We have focused here on the temporal problem. Using the measurements of
vortex wavelength at the free surface, we defined a non-dimensional wavenumber k
(k= 2πθ/λv) to find non-dimensional frequency ω. We solved the eigenvalue problem
defined in (3.13) and found the one unstable eigenmode. For the temporal case, the
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FIGURE 10. (Colour online) Non-dimensional growth rate and oscillation frequency as a
function of wavenumber for all 27 experimental cases. Colour bars show non-dimensional
planar density parameter λp, a representation of canopy density. Canopies with the highest
density experience faster growth rates of the instability, and shed vortices at a lower
frequency.

unstable eigenvalue is that which has a positive imaginary component, e.g. for a
given k and complex eigenvalue ω=ωr + iωi,

e−iωt
= e−i(ωr+iωi)t = (e−iωr t)︸ ︷︷ ︸

Real→ oscillation

∗

Positive imaginary→ growth︷︸︸︷
(eωit) . (3.16)

The unstable eigenmode for each velocity profile is shown in figure 10. Colour bars
show non-dimensional planform area λp, a representation of canopy density. Canopies
with the highest density experience faster growth rates of the instability, and shed
vortices at a lower frequency. The slope of figure 10(b) represents the propagation
speed of the vortices, ωr/k=U/1U ≈ 0.7.

We can compare the dimensional frequency computed in this stability analysis
( f = (1U/2πθ)ωr) with the peak frequency observed in the spectra of surface slope,
fp, again as measured at the downstream end of the canopy. Figure 11 shows these two
quantities, as well as the Strouhal shedding frequency ( f = 0.032U/θ ) defined in Ho
& Huerre (1984) and observed in Ghisalberti & Nepf (2002), Nezu & Sanjou (2008),
Okamoto & Nezu (2009) and Okamoto et al. (2016). While solving the dispersion
relation given the observed wavelengths yields agreement with our experimentally
measured frequencies, these observed frequencies do not agree with f = 0.032U/θ
previously shown in the literature.

Based on our surface slope spectra, we instead observed a Strouhal number closer
to twice the classical value of 0.032 cited from Ho & Huerre (1984), with St ranging
from 0.05 to 0.08 and a mean of St = 0.064. For three sample velocities profiles,
the dispersion relation was next solved given a wide range of forcing wavenumbers.
Figure 12 shows this range of observed Strouhal numbers in comparison with the
results of our linear stability analysis in determining the most amplified wave. The
maximum theoretical growth rate occurs for St = 0.032, while the shaded region
indicates the relative occurrence of actual observed Strouhal shedding frequencies,
with the average centred about twice the most amplified St.

As noted in the review of Ho & Huerre (1984), the Strouhal number of the most
amplified wave corresponds to the natural frequency of the mixing layer; the most
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FIGURE 11. (Colour online) Observed instability frequency from measured surface slope
spectrum versus computed values of the instability frequency, given measured instability
wavelengths. Black circles show the unstable mode computed in the above analysis. Red
squares show the commonly used Strouhal shedding frequency defined in Ho & Huerre
(1984).
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FIGURE 12. (Colour online) Non-dimensional instability growth rate versus range of
Strouhal numbers for three sample velocity profiles. Lines indicate the theoretical growth
rate of the most unstable mode for a range of forcing wavenumbers/frequencies. Shaded
region indicates the relative frequency of occurrence of experimentally observed Strouhal
numbers, with darker regions indicating the most common St.

unstable mode at St = 0.032 may indeed be representative of the local instability
at the shear layer at the top of the canopy. It is possible that we are observing a
transformation of shedding frequency between the top of the canopy and the free
surface, the reasons for which warrant additional work beyond the scope of this paper.
One possible explanation is nonlinear vortex-pairing or vortex-breakup interactions
occurring between the generation of vortices at the canopy height (where previous
measurements in the literature have focused), and the point at which vortices manifest
at the free surface.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

17
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.170


648 T. L. Mandel, S. Gakhar, H. Chung, I. Rosenzweig, and J. R. Koseff

Parameterization R2

U = 0.95Uv 0.98
1U = 1.4Uv 0.81
hi =H − 1.3Lv 0.88
θ = 0.30Lv 0.81

TABLE 2. Parameterization of interior flow variables with surface variables.

Ghisalberti & Nepf (2004) also reported agreement with Ho & Huerre (1984),
and further assert that while there is a clear frequency peak inside the shear layer,
there is not one outside – which conflicts with our findings here and those presented
in Rosenzweig (2017). While Ghisalberti & Nepf (2004) interpret their findings as
indicating that shear kinetic energy is not transported outside the shear layer, the
presence of a clear surface signature, which agrees with our linear stability analysis,
indicates that kinetic energy produced in the shear layer has a strong influence at
the free surface. This work thus has important implications for the role of aquatic
vegetation in air–sea gas exchange as well.

3.3. Reconstructing velocity profiles from surface measurements
Given these surface measurements of vortex size, spacing, speed and frequency,
another question arises: How predictive are surface measurements of the interior
flow? Can surface measurements be used to reconstruct a full velocity profile?

Cornelisen & Thomas (2004, 2006) and others have shown that nutrient uptake
rate within seagrass communities is strongly dependent upon current velocity and
Reynolds stress at the canopy height. Because of the complexity of canopy velocity
profiles, near-surface velocity measurements are not adequate to predict within-canopy
velocities or bulk, depth-averaged quantities. Thus, being able to accurately predict the
velocity both above and within vegetation from remote sensing measurements would
be advantageous to ecologists. Beyond velocities, Orth, Luckenbach & Moore (1994)
showed that one primary predictor of particle transport downstream of a submerged
canopy is the canopy height (i.e. the height at which a seed or propagule is released).
Thus, understanding where in the water column the region of seed release occurs,
and what velocities that seed is subjected to, may be indicative of how far seeds and
sediment may be transported or where scour may be particularly strong.

The velocity profile defined by (3.5) is a function of 1U, hi, θ and U. These
values are all correlated with measurements at the free surface, suggesting that a
model for the velocity profile may be constructed based on parameterizations of
surface measurements. These linear fits are shown in figure 13, and the equations are
summarized in table 2. The equations in this table can then be substituted into (3.5)
to allow for prediction of U(z) simply from surface measurements of Uv and Lv.

The primary limitation of this approach is that knowledge of the water depth H is
required. Additionally, while a simple linear fit to predict 1U as a function of Uv

is possible, including the canopy density in the parameterization would increase the
accuracy of this prediction and capture more of the spread in 1U. However, we have
not found a surface-based parameter that is directly predictive of canopy density, so
we did not include this refinement in the analysis.

Figure 14 shows the performance of the surface model parameterization versus LDA
data for the intermediate Reynolds number case. Shown with the black dot-dashed

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

17
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.170


On the surface expression of a canopy-generated shear instability 649

0

5

10

15

20

25

30(a) (b)

(c) (d)

0

10

20

30

40
¬p = 0.18
¬p = 0.08
¬p = 0.05

0

5

10

15

20

25

30

1

2

3

4

5

6

7

10 20

U- = 0.95U√, R2 = 0.98 ÎU = 1.4U√, R2 = 0.81

30 10 20 30

5 10 15
L√ (cm) L√ (cm)

U√ (cm s-1)

U-
 (c

m
 s-

1 )

Î
U

 (c
m

 s-
1 )

œ 
(c

m
)

H
-

 h
i (

cm
)

U√ (cm s-1)

20 25 0 5 10 15 20 25

H -hi = 1.3L√, R2 = 0.88 œ = 1.3L√, R2 = 0.81

FIGURE 13. (Colour online) Correlation of surface measurements with interior flow
measurements to obtain parameterizations for the velocity profile, equation (3.5). While
in (a), (c) and (d), all densities are plotted as black circles, (b) shows how scatter in 1U
is a function of canopy density λP. We expect this single linear fit to perform best for
the intermediate density, λP = 0.08.

line is the hyperbolic tangent model of (3.5) using inputs based on LDA data, and
an optimized inflection point height. The dashed red line represents the hyperbolic
tangent model using inputs based solely on surface measurements using FS-SS. The
surface-based model performs reasonably well in predicting the measured velocity
profile, with the main error occurring (as expected based on figure 13) in predictions
of 1U, the difference between the free-stream and within-canopy velocities.

To quantitatively assess the goodness of fit, the normalized root-mean-squared error
for each case is computed as

RMSE=
1
1U

√√√√ 1
N

N∑
i=1

(Ui,data −Ui,model)2, (3.17)

where i= 1 to N are points in each measured vertical velocity profile and N = 7 is
the number of vertical measurements. The error is plotted against the non-dimensional
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FIGURE 14. (Colour online) Performance of surface model parameterization versus
LDA data for the intermediate Reynolds number case. Black circles represent velocity
measurements taken using LDA. The canopy height is indicated by the light dashed
horizontal line. The dot-dashed black line represents the hyperbolic tangent model
of (3.5) using inputs based on LDA data, and an optimized inflection point height. The
dashed red line represents the hyperbolic tangent model using inputs based solely on
surface measurements using FS-SS. The surface-based model performs reasonably well in
predicting the measured velocity profile, with the main error occurring in predictions of
1U, the difference between the free-stream and within-canopy velocities.

canopy frontal area λf in figure 15. The surface model performs reasonably well, with
RMSE 610 % for the majority of the cases. The largest error occurs for the lowest
Re cases.
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FIGURE 15. (Colour online) Performance of surface model parameterization versus
measured values for all experimental cases. The root-mean-squared error for each case,
normalized by 1U, is plotted against the non-dimensional canopy frontal area λf . The
model performs reasonably well, with RMSE 610 % for the majority of the cases. The
largest error occurs for the lowest Re cases.

We thus are able to predict the velocity profile where U(z)= f (z,H,Uv,Lv). In other
words, if the local water depth is known, and spatially and temporally resolved surface
measurements can be taken, then a reasonable estimate of the subsurface velocity
profile is possible, including important interior flow parameters such as within-canopy
velocities and inflection point of the profile. As mentioned before, these parameters
are useful to estimates of nutrient uptake and seed dispersal by aquatic plants.

3.4. Streamwise evolution of the vortices
While we have been able to measure consistent bulk flow parameters from these
surface measurements, the streamwise evolution of the surface signal also provides
an interesting opportunity for exploration.

First, we examined the spectral evolution of the instability signal. One might
expect the power spectral density at the predominant instability frequency to grow
with distance downstream, then reach some constant value once the flow has adjusted
to the canopy drag and a fixed mean velocity profile has developed. Instead, we see
a different behaviour at the end of the canopy, as demonstrated in figure 16, which
plots the power spectral density at the measured peak instability frequency versus
downstream distance for all experimental cases. The ratio between the distance to a
peak in power spectral density LPSD and the vortex wavelength (LPSD/λv) ranges from
approximately 3 to 5. According to Ho & Huerre (1984), for a Kelvin–Helmholtz
wave and its harmonic, a peak and subsequent roll-off in the energy integral of the
natural frequency wave occurs at approximately X/λ≈ 4. This suggests that the length
scale of evolution we are observing is not unreasonable.

In several of the cases where a significant local maximum in power spectral density
occurs, strong surface-impacting ‘boils’ were visually observed towards the end of
the canopy. An example of such a structure can be seen in figure 17. These boils
indicated increased cross-stream variability at the surface, as well as significant
upwelling velocities. Beyond capillary wave generation by impinging eddies, one
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FIGURE 16. (Colour online) Power spectral density at the measured peak instability
frequency versus downstream distance x/Lc for all experimental cases. Rows show
differing canopy heights, and columns show different flow speeds. Markers indicate the
canopy density. The densest canopy generates the most power at the instability frequency.
Note the significant dropoff in power that occurs for many cases between x/Lc=0.5 and 1.

possible explanation for the loss in power spectral density in figure 16 is the transition
from two-dimensional rollers to three-dimensional vortices.

A schematic view of this transition was postulated by Finnigan, Shaw & Patton
(2009) from a large-eddy simulation study of a terrestrial canopy. Following the
initial Kelvin–Helmholtz roll-up and development of transverse instability, the authors
observed a characteristic eddy consisting of an upstream head-down sweep-generating
hairpin vortex superimposed on a downstream head-up ejection-generating hairpin.
This formation of a dual-hairpin eddy, or similar structure, could explain both
the approximate doubling of the vortex spacing (shown in figure 5), as well as
the upward pumping of fluid from the head-up ejection-generating hairpin. Another
hypothetical view is that of Bailey & Stoll (2016), who saw smaller three-dimensional
vortex structures superimposed on the two-dimensional rollers as plant canopy flow
developed.
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(i)

(ii)

(iii)

(iv)

(v)

¡3.75 cm

b ¡ 5.5 cm

FIGURE 17. Images of a representative ‘boil’ structure impacting the free surface and
propagating downstream (from right to left) towards the trailing edge of the canopy for
experimental case 20A2. The side wall of the flume is in the lowermost portion of the
images; the boil structure at the top of the image is approximately 30 cm from the side
wall, moving along the centreline of the flume. By image (v), the centre boil structure is
approximately 5.5 cm in diameter. The circumference of the primary upwelling structure
is marked with a dotted circle. Small waves can be seen radiating away from the centre
of the structure, causing optical distortion beyond its edges, so that the area of disturbed
fluid is larger than the boil itself. Note that these photos were taken with a wider-angle
lens than those used for actual FS-SS measurements. The arrow points to the region of
lensing due to surface disturbance.
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To get a heuristic view of whether this dynamics may be at play in our aquatic
canopy, we postulated that the streamwise location of the local maximum occurring in
figure 16 may be the distance at which eddies begin having a significant interaction
with the free surface. Chickadel et al. (2009) observed the surface manifestation of
boils generated by a submerged sill, and modelled their behaviour using a vertical boil
propagation model. The authors posited that the boils observed were the expression
of a three-dimensional hairpin vortex, and that their upward propagation could be
explained as the self-advection of a vortex dipole. Following Batchelor (1967), they
defined the upward velocity of the vortex loop as

wv =
Γv

2πb
, (3.18)

where wv is the upward velocity of the vortex loop, Γv is the circulation of the vortex
pair and b is the distance between vortex pair centres. Chickadel et al. (2009) used
the lateral scale of the boils at the surface as a metric for this distance between vortex
pair centres b, assuming that this surface scale was approximately equal to the depth
of the sill-induced shear layer. The circulation of each individual vortex in the pair is
defined as the integral of vorticity ω over the vortex cross-section dA,

Γv =

∫
ω dA≈ωπ

(
b
2

)2

. (3.19)

We assume that vorticity is primarily generated by the canopy and that mean cross-
stream and vertical velocities are zero, so that ω≈ ∂U/∂z. We approximate the shear
in terms of the bulk flow parameters 1U and H − hc, yielding

Γv =
1Uπ

H − hc

(
b
2

)2

. (3.20)

Substituting into the vertical vortex velocity equation (3.18),

wv =
1
8
1Ub

H − hc
. (3.21)

Using this value of the vertical vortex velocity, the downstream eruption point – that
is, the distance from vortex generation to manifestation at the free surface – is found
as L1 = U(H − hc)/wv. Using representative bulk flow measurements, we obtain the
expression

L1 =
8(H − hc)

2

b
U
1U

. (3.22)

Here, U, 1U and H − hc are known from LDA measurements. For case 20A2,
boils at the surface were observed to have a diameter of approximately 5.5 cm (see
figure 17). Robust quantitative information about the diameter of the boils and their
dependence on canopy parameters is more difficult to obtain, as this was not the
intent of the initial experiment design. However, we can use this order of magnitude
as a starting point to examine how downstream distance to the local maximum in
the power spectral density, LPSD, compares with the Chickadel et al. (2009) model of
L1. A comparison is shown in figure 18 for the two taller canopy heights, hc = 20
and 15 cm, as only one of 9 cases with the shortest canopy experienced a local
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FIGURE 18. (Colour online) Distance to vortex–surface interaction. (a) PSD dropoff
distance LPSD versus estimated boil eruption point L1 computed using naive single-value
estimate of boil diameter b. (b) L1 computed using fitted canopy height-dependent estimate
of boil diameter. Dashed lines indicate a 1:1 correspondence.

maximum. Figure 18(a) shows estimates of L1 using a single-value estimate of b =
5.5 cm. Figure 18(b) shows the estimate when allowing b to vary for different canopy
heights to force a 1:1 relationship.

This result suggests that canopies with smaller submergence ratios may produce
smaller boil expressions at the surface. Chickadel et al. (2009) found that the lateral
scale of boils observed at the water surface was similar to the depth of the shear layer.
If this is true, then variation in boil size may be correlated with the measured shear
length scale and vortex spacing as well. Further research is warranted to quantify the
spatial scale of these boils with higher-resolution methods.

What might be causing the development of transverse variability in the free surface?
Beyond development of secondary vortices, one possible explanation for the observed
behaviour is the significant mean water surface slope set up by the canopy drag,
causing gradually varying water depths over the entire canopy length. While the
majority of canopy studies have a sloping flume bottom, allowing for uniform-depth
flow to develop, for our pressure head-driven set-up we observed a change in the
mean water level of the order of 1.5 cm over the length of the canopy for case
20A1. This means that while vortices are being shed, advecting over the canopy and
eventually impinging on the free surface, they are also being gradually constrained
by a decreasing mean water level. Although more rarely studied, significant gradients
in mean water level comparable to those observed here (S≈ 0.006 m m−1) have been
observed previously in both the laboratory (Järvelä 2002) and the field (Nikora et al.
2008). The effects of non-uniform flow depth on mixing layer and vortex structure
may thus be important in studies like these, where submergence levels are such that
vortices interact considerably with the free surface.

4. Discussion
4.1. Surface signature development

A discussion of the development of the surface signature in the context of previous
work is warranted. A great deal of focus in the canopy literature has focused on the
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distance for a canopy shear layer to become fully developed. An adjustment length
based on the drag length scale was first proposed by Coceal & Belcher (2004) as

XD = 3LD ln
(

Uhc

u∗

hc

LD

)
, (4.1)

where the drag length scale is defined as

LD =
2hc(1− λp)

CDλf
=

2(1− λp)

CDa
. (4.2)

Lowe, Koseff & Monismith (2005) found that XD/LD ∼ 3 to 5. Defining the
development length as the point of 95 % decay in w, Chen, Jiang & Nepf (2013)
came up with an equation for XD based on canopy drag, density and height,

XD = 1.5LD(1+ 2.3CDahc) (4.3)

as well as a scaling for the mixing layer adjustment length (defined as the distance
from the leading edge at which Reynolds stress at the canopy height reached a
constant value),

X∗ ∼
ULs

u∗
, (4.4)

where u∗ is the friction velocity at the canopy height, u∗=
√
−u′w′. Chen et al. (2013)

found that the turbulent characteristics of the mixing layer were fully developed at
[8± 2]X∗.

For Red ∼ 600–1300 and canopy solid volume fraction (SVF) of 1–5 %, we expect
drag coefficients CD of the order of 1–2 (Tanino & Nepf 2008). Using CD = 1.5 and
the range of experimental parameters used here, we computed the expected adjustment
lengths. These are shown in figure 19. According to these mean velocity adjustment
models, all experimental cases should be fully developed by the end of the canopy.
The mixing layer as well should be fully developed for a portion of the cases with
the highest canopy density, λP= 0.18. However, based on the surface signals of power
spectral density, vortex spacing and the emergence of significant transverse variability
with the emergence of boils, it is unlikely that the mixing layer and its turbulent
characteristics are ‘fully developed’. While conditions at the canopy height may reach
some asymptotic state, it is probable that the expression of canopy turbulence at the
free surface requires an even greater distance to develop.

4.2. Uniqueness of the surface signature and model applicability
We have assumed that the reasons we are seeing a surface signature is because
there is a subsurface perturbation of some kind. In our case, we are observing the
surface manifestation of the periodic vortices generated by a submerged canopy.
Extreme bottom roughness such as bottom ripples (Davies & Heathershaw 1984)
and submerged sills (Chickadel et al. 2009) may have a surface signature as well,
although in some cases the bedforms may be intertwined with surface behaviour, e.g.
the sand ripples of Stegner & Wesfreid (1999) and many others. The main questions
moving forward are thus (i) how unique are these surface signatures? (ii) Can they
be detected with noise present? And (iii) how well will the velocity model perform
in systems outside the range of these experiments?
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FIGURE 19. (Colour online) Estimates of adjustment lengths versus canopy density for the
full range of experimental conditions in this study. Three different estimates of adjustment
length are used. The first two, XD, estimate the distance required for the mean flow to
adjust to the presence of a canopy. The third, X∗, estimates the distance for the mixing
layer to develop. The dotted line indicates the end of the canopy at X/Lc = 1.

The surface signature of this shear instability is unique in that its frequency and
wavelength are a direct result of the linear instability of the inflected velocity profile.
However, there are other natural phenomena that may occur in the same range
of frequencies and wavelengths. Rosenzweig (2017) performed some preliminary
studies and found that in surface slope spectra, the broad-banded instability peak
was distinguishable from monochromatic waves at the same frequency, as well as
high-frequency simulated wind chop. However, more systematic studies are warranted,
including studies of this surface signature in the presence of random wave fields.
Savelsberg & van de Water (2008), for example, found that while regular vortices
shed from a cylinder had a strong correlation with the surface expression, the large
eddies of fully developed turbulence excite capillary–gravity waves that can also
confound the surface signature. Additionally, one of the most obvious next steps is
to characterize a similar surface signature over real aquatic vegetation in the field.
Both laboratory and field studies will be useful in determining how separable the
instability signature is from other surface forcing, such as wind chop, whitecapping
and capillary waves.

The velocity profile model presented here performs well for the data set upon which
it was based. However, it may be expected that additional canopy aspects, such as
the flexibility of vegetation, submergence depth and canopy length would have an
impact on the model performance. Studies on flexible vegetation are particularly
important; the vortices generated in the presence of flexible vegetation tend to be less
coherent (Ghisalberti & Nepf 2006), so it is expected that the correlations between
vortex properties at the surface and in situ velocity profiles may be less strong. We
also expect that the surface signature diminishes with increasing submergence ratio.
Rosenzweig (2017), for example, found that a frequency peak was not detectable at
the surface for H/hc of 0.22. However, this conclusion was reached from near-surface
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velocity measurements using LDA, which does not appear to be as sensitive in
detecting these small surface perturbations as FS-SS.

Finally, we expect the model to apply for situations in which the mixing layer has
reached the free surface, and in which fully developed mean flow has been achieved.
For the first condition, Rosenzweig (2017) found growth angles α of a canopy mixing
to be between 9.5 and 11◦ for experimental conditions similar to those studied in
this paper. In the field or in the laboratory, we would thus expect that the surface
signature model would be appropriate at a distance of ds = (H − hc)/ tan α. For the
second condition, we chose our location to measure velocity profiles to comply with
the conditions of fully developed mean flow. One limitation in this experimental set-up
is that the mean velocity profile never strictly achieves a fully developed state, as
the flume has no bottom slope and the mean water surface must slope relative to
the channel bottom in order to drive flow. Thus for our experiments, Us gradually
increases over the canopy length, but reaches 95 % of its final velocity by x/Lc =

0.6. The surface-based measurements of Lv are constant beyond x/Lc ≈ 0.5 for all
experimental cases (see figure 5). We therefore expect the linear correlations in our
velocity profile model to remain relatively unchanged with distance downstream. These
correlations could likely be improved in a facility in which uniform flow could be
achieved, and in which vortices were not subjected to decreasing mean water levels
as they propagated downstream.

5. Conclusions
To summarize, we have examined the surface expression of a canopy-generated

shear instability by measuring small perturbations in the water surface slope. The main
conclusions of this work are:

(i) We are able to remotely observe the length scales and speed of the vortices of
a canopy-generated shear instability at the free surface and connect them to the
bulk flow properties. We find that for submergence ratios ranging from H/hc of
1.6 to 3.1, the vortex size is directly proportional to the canopy–surface gap H−
hc, rather than scaling directly with the canopy height, due to confinement of the
flow by the free surface.

(ii) We observe a Strouhal shedding frequency at the surface of St= 0.064, twice that
of the theoretical growth rate of the most unstable mode. This suggests that there
may be some evolution of the vortices between their generation at the canopy
height and their manifestation at the free surface.

(iii) By correlating surface variables with interior flow properties, we are able to
reasonably reconstruct the shape and magnitude of canopy velocity profiles, with
RMSE of the order of 10 % of 1U. More broadly, these results suggest that
the surface signature generated by bottom roughness can be used to characterize
the structure of the bed and the flow conditions. Remotely detecting dominant
flow length scales, depth-averaged velocities and within-canopy velocities would
be particularly useful to both ecologists and numerical modellers, who have
previously relied on more difficult-to-obtain in situ measurements.

(iv) The vortex signal measured at the surface undergoes a streamwise evolution
characterized by a constant growth rate of the spacing between consecutive
rollers, a transfer of power from the peak instability frequency to other scales
and the emergence of surface-impacting boils. This extended flow development
has not been thoroughly explored in the aquatic canopy literature, in which
mean velocity profiles and mixing layer characteristics are assumed to be fully
developed after a prescribed distance, and therefore warrants further study.
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