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Abstract

Motivated by applications to a wide range of areas, including assemble-to-order systems,
operations scheduling, healthcare systems, and the collaborative economy, we study a
stochastic matching model on hypergraphs, extending the model of Mairesse and Moyal
(J. Appl. Prob. 53, 2016) to the case of hypergraphical (rather than graphical) matching
structures. We address a discrete-event system under a random input of single items,
simply using the system as an interface to be matched in groups of two or more. We
primarily study the stability of this model, for various hypergraph geometries.
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1. Introduction

Matching models have recently received growing interest in the literature on queueing mod-
els in which compatibilities between the requests need to be taken into account. These are a
natural enrichment of service systems in which the requests must be matched, or put in relation,
rather than being served. Among other fields of applications, this is a natural representation of
peer-to-peer networks, interfaces of the collaborative economy (such as car- and ride-sharing,
dating websites, and so on), assemble-to-order systems, job search applications, and health-
care systems (blood banks and organ transplant networks). All these applications share the
same common ground: elements/items/agents enter a system that is just an interface to put
them in relation to one another, and relations are possible only if the ‘properties’ (whatever
this means) of the elements make them compatible.

A (graphical) stochastic matching model can roughly be defined as follows: items enter a
system at random times, and need to be matched into pairs. The possible pairs are given by a
compatibility graph whose nodes represent the classes of items, and the classes of incoming
items are randomly drawn from a prescribed distribution on the set of nodes. Unmatched items
are queued, waiting for a future compatible item, and leave the system in pairs as soon as they
are matched. If the items enter the system individually, as in [16] and [19], and more recently
in [2] and [18], we say that the system is a general stochastic matching model (GM), following
the terminology of [16]. If the classes of items are partitioned into two subsets (say the classes
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of ‘customers’ and the classes of ‘servers’) and enter the system pairwise, as in the seminal
papers [3, 11] (which viewed such systems as generalizations of skill-based customer/server
queueing systems) and then in [1], [2], [9], and [17], we say that the system is a bipartite
stochastic matching model (BM). Stabilizing policies and fluid/diffusion approximations of
two-sided systems are obtained respectively in [7, 8]. Other references address specific models
for designated applications: [5] on kidney transplants, [22] on housing allocations systems, and
[21] on ride-sharing models. In another line of research, such stochastic matching architectures
are addressed from the point of view of stochastic optimization in [10], [13], and [20], among
others.

In the seminal papers on general and bipartite matching models, the matching of items is
exclusively pairwise: a job or a house with an applicant, a kidney with a patient, a cab with a
customer, two users of a dating website, etc. However, several of the above applications should
naturally incorporate the possibility of matching items in groups of more than two. Let us
illustrate this with a concrete example: in organ transplants, (in-)compatibility between givers
and receivers may be due to a variety of factors, mainly blood types and immunological factors.
In kidney exchange programs, each item represents an intra-incompatible couple (A, B) (e.g.
a patient A waiting for a transplant and a relative B of his/hers, who is incompatible with A
for a potential organ donation), entering the system to find another intra-incompatible couple
(A′, B′) that is compatible with it, in the sense that A can receive an organ from B′ and A′ can
receive from B. The ability of such a system to accommodate all requests and to maximize the
number of successful transplants and avoid congestion is translated into the positive recurrence
of a stochastic process representing the stochastic system over time. Then if we view the items
as the couples, and translate ‘cross-compatibility’ (i.e. A can receive from B′ and A′ can receive
from B) into the existence of an edge between node (A, B) and node (A′, B′), such a system is
a typical application of the GM introduced in [16].

But let us now consider the case where such exchanges (A, B) ↔ (A′, B′) and (A′, B′) ↔
(A′′, B′′) cannot be realized, but A can receive from B′, A′ can receive from B′′, and A′′ can
receive from B. Then it is natural to consider the possibility of executing the three transplants
contemporaneously, i.e. to match the triplet (A, B), (A′, B′), (A′′, B′′) all together. In several
countries, including the U.S., such ‘exchanges’ in groups of three (or more) are allowed, which
raises the issue of maximizing ‘matchings’ that coincide not with sets of edges, but with sets
of subsets of nodes of cardinality 3 or more. Hence the need to consider matching models on a
compatibility structure that is not a graph but a hypergraph, i.e. a set of nodes V equipped with
a set of subsets of V of cardinality 3 or more.

Among other fields of applications, the same modeling is suitable for assemble-to-order
systems, in which components are produced by independent processes and assembled in groups
in a given order. All the same, in operations management, specific operations may be made
available at given random times, to be coordinated later into groups of two or more. In all
cases, the system controller confronts a random flux of arrivals of items (or operations) and
needs to match (or combine/coordinate) them into subgroups of two or more, hence following
a hypergraphical structure.

The main purpose of this paper is to study the long-run stability of stochastic match-
ing models, in the sense defined above, on a hypergraphical compatibility structure. Thus,
the two closest references to the present work are [13, 20]: in both cases, a general match-
ing model is addressed on a hypergraphical matching structure (notice that [20] also allows
matchings including several items of the same class). The first reference addresses continuous-
time models; the second considers discrete-time models, but most of the results therein can
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easily be extended to the continuous-time setting. In [13] a matching control is introduced
that asymptotically minimizes the holding cost of items in an unstable system (we justify the
instability of such systems under the assumptions of [13] in Remark 4 below). The paper
[20] introduces an algorithm that is a variant of the ‘primal dual algorithm’, allowing stabil-
ity to be achieved, if this is feasible at all, for a very large class of models. The proposed
algorithm furthermore optimizes utility functions that are convex functions of the average
matching rates. Both references allow idling policies; i.e., scheduling algorithms are allowed
to perform no matching at all, even if matchable items are present in the system, in order to
wait for more profitable future matches. Allowing idling makes sense in applications such as
assemble-to-order systems, advertisement, or operations scheduling, but is much less suitable
to kidney transplant networks, in which practitioners always perform a transplant whenever
one is possible. In the present work all the matching policies we consider are non-idling, i.e.
entering items are always matched right away if this is possible at all. Thus, the model stud-
ied in the present paper is a special case of the model studied in [20], for simple arrivals,
no same-class matchings, and non-idling matching policies. Our approach is in fact comple-
mentary to that in [13] and [20]: generalizing the approach of [16] to hypergraphs instead of
graphs, in this paper we are mostly concerned with the structural properties of the underly-
ing hypergraph of the matching model, and determine classes of hypergraph for which there
does, or does not, exist a non-idling policy that is able to stabilize the system. In a sense, the
present work addresses an upstream problem to that of implementing a performant match-
ing algorithm: we provide simple and comprehensive criteria, based only on the structural
properties of the considered hypergraph, for the (non-)existence of a stabilizing non-idling
policy.

This hypergraphical stochastic matching model addressed in this paper is formally defined
as follows: items enter the system by single arrivals, and get matched in groups of two or
more, following compatibilities that are represented by a given hypergraph. A matching policy
determines the matchings to be executed in the case of a multiple choice, and the unmatched
items are stored in a buffer, waiting for a future match.

We address the problem of existence of a steady state for the system: we formally define
the stability region of the system as the set of measures on the set of nodes rendering the
natural Markov chain of the system positive recurrent, for a given compatibility hypergraph
and a given matching policy. We assess the form of the stability region of specific stochastic
matching models as a function of the geometry of the underlying hypergraphs. In a nutshell,
we show that such systems are not easily stabilizable, by exhibiting wide classes of models
having an empty stability region, whatever the non-idling matching policy is. We then provide,
or give bounds for, the stability region of particular stabilizable systems.

This paper is organized as follows: we start with some preliminaries in Section 2, in partic-
ular introducing the main definitions and properties of hypergraphs. In Section 3 we formally
introduce the present model. In Section 4 we provide necessary conditions of stability for
the present class of systems: as will be developed therein, and unlike the particular case of
the GM on graphs (see [16]), for which a natural necessary condition could be obtained, we
introduce various necessary conditions that depend on distinct geometrical properties of the
considered hypergraphs. From this we then deduce classes of hypergraphs for which the corre-
sponding matching model cannot be stable; see Section 5. Finally, in Section 6 we provide the
precise stability region in the particular case where the compatibility hypergraph is complete
3-uniform, complete 3-uniform k-partite, and then complete up to a partition of its hyperedges
(see the precise definitions of these objects below). We conclude this work in Section 7.
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2. Preliminaries

2.1. General notation

Let R, R+, N, and N
+ denote respectively the sets of real numbers, nonnegative real num-

bers, natural integers, and positive integers, respectively. For a and b in N, denote by [[a, b]]
the integer interval [a, b] ∩N. We let a ∧ b and a ∨ b denote respectively the minimum and the
maximum of two numbers a, b ∈R.

Given a finite set B, we denote by M (B) the set of probability measures on B having B as
exact support. Denote by B̄ the complement of B (within a set of reference that is fixed by the
context).

Let q ∈N
+. We write any vector u ∈R

q as u = (u(1), ..., u(q)). We denote by 	 the
coordinate-wise partial ordering on R

q; that is, for any u, v ∈R
q we write u 	 v if and only if

u(i) ≤ v(i) for any i ∈ [[1, q]]. For any i ∈ [[1, q]], let ei denote the vector in N
q with components

ei(j) = δij, j ∈ [[1, q]].
The null vector in N

q is denoted by 0. The norm of any vector u ∈N
q is denoted by

‖ u ‖=
q∑

i=1
u(i). Let A be a finite set. The cardinality of A is denoted by |A|. We let A∗ denote the

free monoid associated to A, i.e. the set of finite words over the alphabet A. The length of a word
w ∈ A∗ is denoted by |w|. We write any word w ∈ A∗ as w = w(1)w(2)...w(|w|). For any a ∈ A we
denote by |w|a the number of occurrences of the letter a in the word w. Having set an ordering
on A, and denoting by 1, 2, ..., |A| the elements of A in increasing order, we define the com-
mutative image of a word w ∈ A as the N|A|-valued vector [w] given by [w] = (|w|1, ..., |w||A|

)
,

i.e. the vector whose ith coordinate is the number of occurrences of the letter i in the word w.
Finally, for a word w ∈ A∗ and an ordered list of letters (a, b, c, ...) appearing in that order in
w, we denote by w\(a,b,c,...) the word of A∗ obtained by just deleting the letters a, b, c, ... in w.

2.2. Hypergraphs

For easy reference, let us first introduce the basics of hypergraph theory that will be used in
this paper. A thorough presentation of the topic can be found e.g. in [4].

Definition 1. A hypergraph H is defined as a couple (V,H) for which the following hold:

• The finite set V is the set of nodes of H. We let q(H) be the cardinality of V , and say that
the hypergraph is of order q(H).

• H := {
H1, ..., Hm(H)

}
is a set of subsets of V , called hyperedges of H, such that⋃m(H)

i=1 Hi = V .

We then say that the hypergraph is simple (or a Sperner family) if Hi ⊂ Hj implies i = j
for all i, j ∈ [[1, m(H)]], i.e., no hyperedge is included in another one. Whenever no ambiguity
is possible, we often write q := q(H), m := m(H). A sub-hypergraph of H is a hypergraph
H

′ = (V,H′) such that H′ ⊂H.

Definition 2. Let H= (V,H) be a hypergraph. The rank of H is the largest size of a hyper-
edge, i.e. the integer r(H) = maxj∈[[1,m(H)]] |Hj|. The anti-rank of H is defined as a(H) =
minj∈[[1,m(H)]] |Hj|, i.e. the smallest size of a hyperedge. If there exists a constant r such that
r(H) = a(H) = r, then H is said to be r-uniform. The degree of a node i ∈ V is the number of
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FIGURE 1. Complete 3-uniform hypergraph of order 4.

hyperedges to which i belongs, i.e.

d(i) =
m(H)∑
�=1

1H�(i).

If there exists a constant d such that d(i) = d for any i, then H is said to be d-regular.

Example 1. Figure 1 represents the hypergraph H= (V,H) with V = {1, 2, 3, 4} and H=
{{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}}. The hypergraph H is of order 4; it is 3-uniform since
all hyperedges are of cardinality 3, and 3-regular because all nodes are of degree 3 (they
all belong to exactly 3 hyperedges). As all hyperedges of cardinality 3 appear in H, this
hypergraph is said to be complete 3-uniform of order 4.

Definition 3. The representative graph of a hypergraphH= (V,H) is the graph L(H) = (H, E)
whose nodes are the elements of H, and such that (Hi, Hj) ∈ E (i.e. Hi and Hj share an edge
in the graph) if and only if Hi ∩ Hj = ∅. The hypergraph H is said to be connected if L(H) is
connected.

As is easily seen, any 2-uniform hypergraph is a graph, whose edges are the elements of
H, and any simple and connected hypergraph contains no isolated node, i.e. has anti-rank at
least 2.

Definition 4. A set T ⊂ V is a transversal of H if it meets all its hyperedges, that is, T ∩ H =
∅, for any H ∈H. The set of transversals of H is denoted by T (H). A transversal T is said to
be minimal if it is of minimal cardinality among all transversals of H. The transversal number
of the hypergraphH is the cardinality of its minimal transversals. It is denoted τ (H).

Example 2. (Example 1, continued.) Consider again the hypergraph represented in Figure 1.
Then any subset of V of cardinality 2 is a transversal of H, since it intersects all hyperedges of
H. On the other hand, it is immediate that no singleton of V is a transversal, as all nodes are of
degree 3. Thus the transversal number of H is τ (H) = 2.

For any set A ⊂ V , we denote by

H(A) = {H ∈H : H ∩ A = ∅} (1)
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FIGURE 2. The matching model in action, on the matching hypergraph of Figure 1.

the set of hyperedges that intersect A. With some abuse of notation, for any node i ∈ V we write
H(i) := H({i}).

Throughout this paper, all considered hypergraphs are simple and connected.

3. The model

All the random variables hereafter are defined on a common probability space (�,F , P).

3.1. Stochastic matching model on a hypergraph

A (discrete-time, hypergraphical) stochastic matching model is specified by a triple
(H, �, μ), such that

• H= (V,H) is a simple and connected hypergraph, termed the matching hypergraph of
the model;

• � is a matching policy, precisely defined in Section 3.3 below;

• μ is an element of M (V).

The matching model (H, �, μ) is then defined as follows. At each time point n ∈N, the
following occurs:

1. An item enters the system. Its class Vn is drawn from the measure μ on V , indepen-
dently of everything else. (Thus the sequence of classes of incoming items {Vn, n ∈N}
is independent and identically distributed (i.i.d.) with common distribution μ.)

2. The incoming item then faces the following alternative:

(i) If there exists in the buffer at least one set of items whose respective set of classes
forms, together with Vn, a hyperedge of H, then it is the role of the matching policy
� to select one of these sets of classes, say {i1, ..., im}. Then the m + 1 items of
respective classes i1, ..., im, Vn are matched together and leave the system right away.
Defining Hj := {i1, ..., im, Vn} ∈H, we then say that Vn completes a matching of type
Hj at time n, and we write H(n) = Hj for the matching performed at n.

(ii) Else, the item is stored in the buffer of the system, waiting for a future match, and we
write H(n) = ∅.

Example 3. Consider again the matching hypergraph H= (V,H) of Figure 1. The dynamic
matchings of the realization {Vn(ω), n ∈N} = 2, 3, 4, 1, 1, 2, 3, 3, 4, 2, 2, ... is represented in
Figure 2.

3.2. System dynamics

Fix a hypergraphical matching model on a hypergraphH of order q. Define for all n ∈N the
N

q-valued random variable Xn = (Xn(1), ..., Xn(q)) , where, for each i ∈ V , Xn(i) is the number
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of items of class i in the buffer at time n (taking into account the arrival occurring at time n).
The vector Xn is then called class-content of the system at time n. For any subset B of V , define
Xn(B) to be the class-content of elements of B:

Xn(B) =
∑
i∈B

Xn(i),

in such a way that the total number of items in the buffer at time n is given by ‖ Xn ‖. The
buffer-content of the system at time n is the word of V∗ whose letters are the classes of the
items in the buffer, in increasing order of their arrivals. That is,

Wn = Wn(1)Wn(2).....Wn(|Wn|),
where for any �, Wn(�) is the class of the �th oldest item in line. Notice that Xn is nothing but
the commutative image of Wn, i.e. Xn = [Wn], n ∈N.

To simply describe the dynamics of the processes {Xn, n ∈N} and {Wn, n ∈N}, for any
u ∈N

q and H ∈H we define the following elements of {0, 1}q: pu is the vector of coordinates
pu(i) = 1{u(i)>0}, i ∈ [[1, q]], and γH is the trace of H, i.e. the vector in {0, 1}q defined by γH(i) =
1H(i) for all i ∈ [[1, q]]. We then set

	(u) = {H ∈H: pu � γH} .

In other words, a hyperedge H belongs to 	(u) if and only if u(i) > 0 for any i ∈ H.

3.3. Matching policies

Formally, an admissible matching policy is a rule of choice, for any n ∈N, of the item(s)
matched with the incoming item at time n + 1, in case of a multiple choice, that can be
made solely on the basis of the knowledge of the buffer-content Wn, on the class Vn+1 of
the incoming item, and possibly on a independent toss. Notice that at all n, 	

(
Xn + eVn+1

)=
	
(
[Wn] + eVn+1

)
represents the (possibly empty) set of all hyperedges in H that can be

completed by the arrival of Vn+1 in a system having buffer-content Wn at time n. Using
queueing-related terminology, all admissible matching policies we consider hereafter are fur-
thermore assumed ‘non-idling’, in the sense that at any n, a match is necessarily performed
whenever 	

(
Xn + eVn+1

)
is non-empty.

3.3.1 Matching policies that depend on the arrival times.
First come, first matched. In the first come, first matched (FCFM) policy, the chosen match
of the incoming item Vn+1 at time n + 1 is the hyperedge containing the oldest item in line
among all hyperedges that can be completed by Vn+1. Specifically,

Wn+1 =
{

WnVn+1 if 	
(
[Wn] + eVn+1

)= ∅;

WnVn+1\(i,j,...,k) else, for H(n) = {i, j, ..., k} ∈ 	
(
[Wn] + eVn+1

)
,

where, in the case where
∣∣	 (

Xn + eVn+1

)∣∣≥ 2, i.e. there is more than one possible matching
containing Vn+1 at n + 1, H(n) = {i, j, ..., k} is the hyperedge whose first element i appearing
in Wn appears first among all elements of 	

(
[Wn] + eVn+1

)
.

Last come, first matched. Likewise, in the last come, first matched (LCFM) policy, the newly
arrived item at n + 1 is matched to form the hyperedge containing the youngest possible
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element, i.e.

Wn+1 =
{

WnVn+1 if 	
(
[Wn] + eVn+1

)= ∅;

WnVn+1\(i,j,...,k) else, for H(n) = {i, j, ..., k} ∈ 	
(
[Wn] + eVn+1

)
,

where H(n) = {i, j, ..., k} is the hyperedge whose last element k appearing in Wn appears last
among all elements of 	

(
[Wn] + eVn+1

)
.

3.3.2 Matching policies that depend only on the class-content. A wide class of natural match-
ing policies can be implemented given the sole knowledge of the class-content upon arrival
times. In such cases we have, for all n,

Xn+1 =
{

Xn + eVn+1 if 	
(
Xn + eVn+1

)= ∅;

Xn + eVn+1 − γH(n) else, for some H(n) ∈ 	
(
Xn + eVn+1

)
,

(2)

where the choice of the hyperedge H(n) depends on the matching policy. Several examples are
provided below.

Match the longest. The matching policy � is match the longest (denoted by ML) if, for all n,
the match realized is that of the hyperedge having the most elements in storage at n. In other
words, the chosen hyperedge H(n) in the second case of (2) satisfies

H(n) = argmax
{
Xn(H) : H ∈ 	

(
Xn + eVn+1

)}
,

ties being broken uniformly at random (and independently of everything else) among
hyperedges.

Remark 1. Observe that ml is a particular case of the class of the ‘max weight’ used in [20],
constrained to be non-idling (i.e. whenever the entering item can be matched, it is matched
right away) and with constant rewards and coefficients in Equation (5) therein.

Match the shortest. Analogously, the match the shortest policy (denoted by MS) corresponds
to the choice

H(n) = argmin
{
Xn(H) : H ∈ 	

(
Xn + eVn+1

)}
,

ties being broken uniformly at random, as above.

Fixed priority. In the context of fixed priorities, each vertex i ∈ V is assigned a full ordering
of the hyperedges and chosen to be matched with the first matchable hyperedge following this
order. Formally, to each node i is associated a permutation σi of the index set [[1, d(i)]], and if
we write H(i) = {

Hi1, Hi2, ..., Hid(i)

}
, then at any time n,

H(n) = Hiσi(j)
, where j = min

{
k ∈ [[1, d(i)]] : Xn

(
Hiσi(k)

)
> 0

}
. (3)

Random. For this matching policy, the priority order defined above is not fixed, and is drawn
uniformly at random upon each arrival; i.e. for any n, H(n) is defined as in (3), for a permu-
tation σi(n) that is drawn, independently of everything else, uniformly at random among all
permutations of [[1, d(i)]].

It is easily seen that under any admissible policy the sequence {Wn, n ∈N} is a
V∗-valued Markov chain with respect to the filtration generated by the sequence {Vn, n ∈N}.
Additionally, in the cases where � = ML, MS, a fixed priority, or a random policy, the sequence
{Xn, n ∈N} is an N

|V |-valued Markov chain.
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3.4. Stability of the matching model

We say that the matching model (H, �, μ) is stable if the Markov chain {Wn, n ∈N} (and
thereby {Xn, n ∈N}) is positive recurrent. For a given hypergraph H= (V,H) and a given
matching policy �, we define the stability region associated to H and � as the set of probability
measures on V rendering the model (H, �, μ) stable, i.e.

STAB(H, �) = {μ ∈ M (V): (H, �, μ) is stable} .

We then say that a hypergraphH is stabilizable if STAB(H, �) is non-empty for some matching
policy �. If not, H is said to be non-stabilizable.

4. Necessary conditions for stability

Fix a matching model (H, �, μ) on a hypergraphH= (V,H). For any n, B ⊂ V , and B ⊂H,
denote by An(B) the number of arrivals of elements in B and by Mn(B) the number of matchings
of hyperedges in B realized up to n; i.e.,

An(B) =
n∑

k=1

1{Vk∈B},

Mn(B) =
n∑

k=1

1{H(k)∈B}.

With some abuse of notation, write An(i) = An({i}) and Mn(H) = Mn({H}) for any i ∈ V and
H ∈H. Observe that the following key relation holds for all B ⊂ V:

Xn(B) = An(B) −
∑

H∈H
|H ∩ B| Mn (H) ≥ 0, n ∈N, (4)

since the number of items of classes in B at any time n is precisely the number of arrivals of
such items up to time n, minus the number of these items that leave the system upon each
matching of a hyperedge that intersects B.

4.1. General conditions

We start by introducing several ‘universal’ stability conditions. Fix a hypergraph H=
(V,H) throughout the section.

Definition 5. We say that I ⊂ V is an independent set of H if I does not include any hyperedge
of H, i.e, for any H ∈H, H ∩ Ī = ∅. We also let I(H) be the set of all independent sets of H.

Let us define, for any μ ∈ M (V) and any B ⊂ V , the set

Lμ(B) = argmin {μ(j) : j ∈ B} , B ⊂ V . (5)

To clarify the exposition of the following result, we need to introduce the following notion.

Definition 6. For any μ ∈ M (V) we say that the independent set I ∈ I(H) is μ- minimal if the
intersection of any hyperedge H ∈H with I is either empty, or reduced to a singleton {vH } such
that
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• vH is of degree 1, i.e., H is the only hyperedge to which vH belongs;

• Lμ(H) = {vH }, i.e., vH is the only minimum of μ over the set H.

An independent set I ∈ I(H) that is not μ-minimal is said to be non-μ-minimal. We let
Iμ(H) be the set of μ-minimal independent sets of H, and I ′

μ(H) the set of non-μ-minimal
independent sets of H, that is, the complement of Iμ(H) in I(H).

In other words, a μ-minimal independent sets gathers nodes that are the only minimum of μ

over the only hyperedge they belong to. Notice that the collection Iμ(H) can be empty. This is
the case if and only if all nodes are of degree at least 2, or all nodes of degree 1 are not the only
minimum of μ on the single hyperedge they belong to. Observe the following characterization.

Lemma 1. Let H= (V,H) be a hypergraph, and let H= {H1, ..., Hm}. An independent set
I = {v1, ..., vp} is μ-minimal if and only if for all n and all k1, ..., km such that kj ∈ Lμ(Hj) for
all j,

An(I) =
m∑

j=1

|Hj ∩ I|An(kj). (6)

Proof. First, it is clear that if I ∈ Iμ(H), then m ≥ p and the mapping

ϕ:

{{
j ∈ [[1, m]] : I ∩ Hj = ∅} −→ [[1, p]],

j �−→ i : Lμ(Hj) = Hj ∩ I = {vi} (7)

is bijective. Thus we have, almost surely for all n,

An(I) =
m∑

j=1

An(vϕ(j)) =
∑

j∈[[1,m]]:
Hj∩I =∅

|Hj ∩ I|An(vϕ(j)) =
m∑

j=1

|Hj ∩ I|An(kj).

Let us now assume that I ∈ I ′
μ(H). Then the following hold:

• If some hyperedge Hj is such that |Hj ∩ I| ≥ 2, then upon each arrival of an element of
class kj, the right-hand side of (6) increases by |Hj ∩ I|, while the left-hand side increases
by 1 if kj ∈ I, or by 0 otherwise.

• If, for some hyperedge Hj intersecting I, there exists kj ∈ Lμ(Hj) ∩ Ī, then upon each
arrival of a class-kj item, the right-hand side of (6) increases while the left-hand side
does not.

• Finally, if for all j ∈ [[1, m]], |Hj ∩ I| ≤ 1, and for all j such that |Hj ∩ I| = 1, Lμ(Hj) =
{vϕ(j)} (again defining ϕ by (7)), then if ϕ(j) = ϕ(l) for some l = j, upon each arrival
of a class-vϕ(j) item, the right-hand side of (6) increases by 2 while the left-hand side
increases by 1.

In all cases, (6) cannot hold for all n, which concludes the proof. �
Now define the following set of measures:

N 1(H) =
{

μ ∈ M (V):for all I ∈ I ′
μ(H), μ(I) <

∑
H∈H

|H ∩ I| min
k∈H

μ(k)

}
.

We have the following result.
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Proposition 1. For any connected hypergraph H and any admissible matching policy �,

STAB(H, �) ⊂ N 1(H).

Proof. Fix H= (V,H) and an admissible policy �. Denote by H1, ..., Hm the hyperedges of
H. Suppose that μ ∈ M (V) is such that there exists an independent set I ∈ I ′

μ(H) such that

μ(I) >
∑
H∈H

|H ∩ I| min
k∈H

μ(k). (8)

For any i ∈ [[1, m]] and any ki ∈ Lμ(Hi) we have that

Mn(Hi) ≤ min
k∈Hi

An(k) ≤ An (ki) , n ≥ 0.

Thus, from the equality in (4), for any k1, ..., km such that ki ∈ Lμ(Hi) for all i, we have that

Xn(I)

n
≥ An(I)

n
−

m∑
i=1

|Hi ∩ I| An (ki)

n
, n ≥ 1. (9)

The strong law of large numbers (SLLN) applied to the right-hand side of (9) implies that for
any such k1, ..., km,

lim sup
n

Xn(I)

n
≥ μ(I) −

m∑
i=1

|Hi ∩ I| μ (ki) = μ(I) −
∑

H∈H
|H ∩ I| min

k∈H
μ (k) > 0,

so that Xn(I) goes almost surely to infinity, which (as Xn = [Wn] for all n) implies the transience
of {Wn, n ∈N}.

Assume now that μ is such that for some independent set I ∈ I ′
μ(H), equality holds in

(8). Then, for any k1, ..., km such that kj ∈ Lμ(Hj) for all j, the Markov chain {Yn, n ∈N}
defined as

Yn = An(I) −
m∑

j=1

∣∣Hj ∩ B
∣∣ An

(
kj
)
, n ∈N,

is a random walk with drift 0 that is different from the identically null process, in view of
Lemma 1. Hence {Yn, n ∈N} is null recurrent. If the chain {Wn, n ∈N} were positive recurrent,
the sequence {Xn, n ∈N} would visit the state 0 infinitely often, with inter-passage time at 0
of finite expectation. Thus from (9), the sequence {Yn, n ∈N} would be positive recurrent, an
absurdity. This concludes the proof. �

Define the following sets of measures:

N +
1 (H) =

{
μ ∈ M (V): ∀I ∈ I(H), μ(I) <

∑
H∈H

|H ∩ I| min
k∈H∩Ī

μ(k)

}
;

N ++
1 (H) =

{
μ ∈ M (V): ∀B ⊂ V, μ(B) ≤

∑
H∈H

|H ∩ B| min
k∈H

μ(k)

}
.

We have the following result.

Corollary 1. For any connected hypergraph H and any admissible matching policy �,

STAB(H, �) ⊂ N +
1 (H) ∩ N ++

1 (H).
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Proof. We simply show that N 1(H) is included in N +
1 (H) ∩ N ++

1 (H). Again set H=
{H1, ..., Hm} and fix μ ∈ N 1(H). To show that μ ∈ N +

1 (H), first observe that for any inde-
pendent set I = {v1, ..., vp} ∈ Iμ(H), for any hyperedge Hj intersecting with I, we have that

min
k∈Hj

μ(k) = μ(vϕ(j)) < min
k∈Hj∩Ī

μ(k).

Therefore,

μ(I) =
p∑

i=1

μ(vi) =
m∑

j=1

|Hj ∩ I|μ(vϕ(j)) <
∑

H∈H
|H ∩ I| min

k∈H∩Ī
μ(k),

whereas if I ∈ I ′
μ(H), as μ ∈ N 1(H) we have that

μ(I) <
∑

H∈H
|H ∩ I| min

k∈H
μ(k) ≤

∑
H∈H

|H ∩ I| min
k∈H∩Ī

μ(k),

and hence μ ∈ N +
1 (H).

It remains to show that μ ∈ N ++
1 (H), and for this, we first observe the following:

For all I ∈ I(H), μ(I) ≤
∑
H∈H

|H ∩ I| min
k∈H

μ(k). (10)

To see this, it suffices to observe that for any independent set I ∈ Iμ(H), recalling (7),

μ(I) =
m∑

j=1

μ(vϕ(j)) =
∑

j∈[[1,m]]:
Hj∩I =∅

|Hj ∩ I|μ(vϕ(j)) =
m∑

j=1

|Hj ∩ I|μ(kj) =
∑
H∈H

|H ∩ I| min
k∈H

μ(k);

hence (10). Now fix B, a subset of V that is not an independent set of H. Then we construct by
induction the family of sets B := B0 ⊃ B1 ⊃ B2 ⊃ ... ⊃ Br, where r is properly defined below,
as follows: for any i ≥ 0, if Bi is not an independent set of I(H), then we take an arbitrary
hyperedge Hji ∈H such that Hji ⊂ Bi, and set Bi+1 = Bi \ {ki}, for an arbitrary ki ∈ Lμ(Hji).
Then there exists an integer r ≤ |B| − 1 such that Br is an independent set of I(H), and we stop
the construction at this point. Observe that for any i ∈ [[0, r − 1]],

μ(Bi+1) ≤
∑
H∈H

|H ∩ Bi+1| min
k∈H

μ(k) =⇒ μ(Bi) ≤
∑

H∈H
|H ∩ Bi| min

k∈H
μ(k). (11)

To see this, fix i and suppose that the left-hand side of the above holds true. Then we have

μ(Bi) = μ(Bi+1) + μ(ki), (12)

and on the other hand,∑
H∈H

|H ∩ Bi| min
k∈H

μ(k) =
∑

H∈H(ki)

|H ∩ Bi| min
k∈H

μ(k) +
∑

H∈H(ki)

|H ∩ Bi| min
k∈H

μ(k)

=
∑

H∈H(ki)

|H ∩ Bi+1| min
k∈H

μ(k) +
∑

H∈H(ki)

(|H ∩ Bi+1| + 1) min
k∈H

μ(k)

=
∑

H∈H
|H ∩ Bi+1| min

k∈H
μ(k) +

∑
H∈H(ki)

μ(kH), (13)
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where for any H ∈H(ki), kH is an arbitrary element of Lμ(H). But μ(ki) is less than or equal
to the second term of the latter sum, because μ(ki) = μ(kHi), and we assumed that Bi+1 is less
than the first term. This completes the proof of (11) in view of (13). To conclude, as Br ∈ I(H)
and in view of (10), we have that μ(Br) ≤∑

H∈H |H ∩ Br| mink∈H μ(k), which implies, by an
immediate induction using (11), that μ(B) ≤∑

H∈H |H ∩ B| mink∈H μ(k). This completes the
proof. �
Remark 2. (Graphical case.) Let us consider the special case where H= (V,H) is a graph.
Then it is shown in Proposition 2 of [16] that the stability region of the model is included in
the set

NCOND(H) = {μ ∈ M (V) : ∀I ∈ I(H), μ(I) < μ(E(I))} ,

where for any set B ⊂ V , E(B) = {j ∈ V : (i, j) ∈H for some i ∈ B} . It is then easy to check by
hand that Ncond(H) is included in N ++

1 (H). Indeed, if we let μ ∈ NCOND(H) and I ∈ I(H)
(meaning that I is an independent set of the graph H, in the usual sense), then, for any edge
H ∈H, |H ∩ I| = 1 if I contains a vertex of the edge H, and 0 otherwise, so we get that

∑
H∈H

|H ∩ I| min
j∈H∩Ī

μ(j) =
∑

(i,j)∈H : i∈I

μ(j) ≥
∑

j∈E(I)

μ(j) = μ(E(I)),

where the inequality above is an equality whenever each element of E(I) shares an edge with
a single element of I, and is otherwise a strict inequality. Thus μ ∈ N ++

1 (H). In fact, it is
necessarily the case that NCOND(H) ⊂ N 1(H), because if this were not true, there would exist
in particular a μ ∈ N 1(H) ∩ NCOND(H), making the system (H, ML, μ) unstable (in view of
Proposition 4.1) despite the fact that μ ∈ NCOND(H), a contradiction to Theorem 2 in [16].
Observe however that NCOND(H) = N 1(H) in general. To see this, consider the case where H
is the cycle of size 5, 1 − 2 − 3 − 4 − 5 − 1. For a small enough ε > 0, set⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

μ(1) = 1
2 − 3ε

4 ;

μ(2) = μ(5)= 1
4 − ε

8 ;

μ(3) = 4ε
5 ;

μ(4) = ε
5 .

It is then easily checked that μ ∈ N 1(H). However, μ ∈ NCOND(H), since the independent set
I = {1, 3} is such that

μ(I) = 1

2
+ ε

20
>

1

2
− ε

20
= μ({2, 4, 5}) = μ(E(I)).

In conclusion, if H is a graph, the necessary condition ‘μ ∈ NCOND(H)’ is stronger than the
necessary condition ‘μ ∈ N 1(H)’.

Let us now define the following set of measures:

N 2(H) =
{
μ ∈ M (V): ∀T ∈ T (H) , μ(T) >

1

r(H)

}
.

We also have the following result.

Proposition 2. For any connected hypergraph H and any admissible matching policy �,

STAB(H, �) ⊂ N 2(H).
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Proof. Suppose that there exists a transversal T ∈ T (H) such that μ(T) ≤ 1
r(H) . As each

match contains at least one element whose class is an element of T, at any time the overall
number of completed matches cannot exceed the number of arrivals of elements whose class
belongs to T; in other words Mn(H) ≤ An(T) for all n. Thus, for all n we have that

Xn(V)

n
≥ 1

n
(An(V) − r(H)Mn(H)) ≥ 1

n
(An(V) − r(H)An(T)) .

Taking n to infinity in the above yields

lim sup
n

Xn(V)

n
≥ 1 − r(H)μ(T),

and we conclude as in the previous proof. �
Remark 3. As an immediate consequence of Proposition 2, if H= (V,H) is of order q,
and such that τ (H) ≤ q

r(H) , then STAB(H, �) does not contain the uniform measure μU =
(1/q, ..., 1/q) on V; in other words the model (H, �, μU) is unstable for any �. Indeed, for
any minimal transversal T of H we have that

μU(T) = τ (H)

q
≤ 1

r(H)
.

We now introduce two necessary conditions for stability based on the anti-rank of the
considered hypergraph. We first introduce the following sets of measures:

N +
3 (H) =

{
μ ∈ M (V): ∀i ∈ V, μ(i) ≤ 1

a(H)

}
; (14)

N −
3 (H) =

{
μ ∈ M (V): ∀i ∈ V, μ(i) <

1

a(H)

}
. (15)

We have the following.

Proposition 3. For any connected hypergraph H= (V,H) and any admissible policy �,

STAB(H, �) ⊂ N +
3 (H). (16)

If the hypergraph H= (V,H) is r-uniform (i.e. a(H) = r(H) = r) we have that

STAB(H, �) ⊂ N −
3 (H). (17)

In other words, the model (H, �, μ) cannot be stable unless μ(i) < 1/r for any i ∈ V.

Proof. To prove the first statement, we argue again by contradiction. Suppose that μ(i0) >
1

a(H) for some node i0. As the function{
R

+ −→R
+

x �−→ r(H)−a(H)+x
xa(H)

strictly decreases to 1
a , there exists x0 > 0 such that

μ(i0) >
r(H) − a(H) + x0

x0a(H)
. (18)
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Then, applying the inequality in (4) to B ≡ V \ {i0}, we readily obtain that almost surely for
all n,

r(H) + x0

a(H)
An (V \ {i0}) ≥ r(H) + x0

a(H)

⎛
⎝ ∑

H∈H(i0)

|H − 1| Mn (H) +
∑

H∈H(i0)

|H| Mn (H)

⎞
⎠

≥
(

r(H) + x0 − r(H) + x0

a(H)

)
Mn (H(i0)) + (r(H) + x0)Mn

(
H(i0)

)
.

(19)

Likewise, applying the equality of (4) to {i0} and then V \ {i0} also yields

Xn (V \ {i0}) +
(

x0 + 1 − r(H) + x0

a(H)

)
Xn(i0)

= An (V \ {i0}) −
∑

H∈H(i0)

|H − 1| Mn (H) −
∑

H∈H(i0)

|H| Mn (H)

+
(

x0 + 1 − r(H) + x0

a(H)

)
(An(i0) − Mn (H(i0)))

> An (V \ {i0}) +
(

x0 + 1 − r(H) + x0

a(H)

)
An(i0)

−
(

r(H) + x0 − r(H) + x0

a(H)

)
Mn(H(i0)) − (r(H) + x0)Mn

(
H(i0)

)
.

Combining this with (19) implies that almost surely for all n,

Xn (V) +
(

x0 − r(H) + x0

a(H)

)
Xn(i0) >

(
1 − r(H) + x0

a(H)

)
An (V) + x0An(i0).

Therefore we have that

lim sup
n

1

n

(
Xn (V) +

(
x0 − r(H) + x0

a(H)

)
Xn(i0)

)
≥ 1 − r(H) + x0

a(H)
+ x0μ(i0); (20)

hence the chain {Wn, n ∈N} is transient, since the right-hand side of the above is positive from
(18).

It remains to check that in the case where the hypergraph is r-uniform, the model cannot be
stable whenever

μ(i0) ≥ 1

a(H)
= 1

r

for some i0 ∈ V . For this, notice that, as r(H) = a(H) = r, a weak inequality holds true in (8)
for any x0 > 0. It then readily follows from (20) that for any x0,

lim sup
n

1

n

(
Xn (V) +

(
x0 − r(H) + x0

a(H)

)
Xn(i0)

)
≥ 0,

and we conclude, as in the proof of Proposition 1, that the chain (Wn) is at best null
recurrent. �
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FIGURE 3. Any hypergraph with two isolated nodes is non-stabilizable.

5. Non-stabilizable hypergraphs

Having Corollary 1 and Propositions 1, 2, and 3 in hand, one can identify classes of
hypergraphs H such that (H, �, μ) has an empty stability region for any admissible �.

We start with the following elementary observation.

Proposition 4. If a hyperedge of H= (V,H) contains two isolated nodes, i.e. there exist H ∈
H and i, j ∈ H such that d(i) = d(j) = 1, then the model cannot be stable, i.e. STAB(H, �) = ∅
for any admissible �.

Proof. Let μ ∈ N +
1 (H). Then, considering successively the sets {i} and {j}, as j ∈ H ∩ ¯{i}

and i ∈ H ∩ ¯{j} we obtain that μ(i) < μ(j) and μ(i) > μ(j), an absurdity. �

5.1. Stars

First recall that, as for any bipartite graph (see Theorem 2 in [16]), graphical matching
models on trees are always unstable. This is true in particular if the matching graph is a ‘star’,
i.e. a connected graph in which all vertices but one are of degree 1. The following two results
can be seen as generalizations of this fact to hypergraphical models.

Proposition 5. If an r-uniform hypergraph H= (V,H) has transversal number τ (H) = 1, then
it is non-stabilizable.

Proof. Fix � and μ in STAB(H, �). Let T be a transversal of cardinality 1, i.e. T = {i0},
where the vertex i0 belongs to all hyperedges in H. Then from Proposition 3, we have
that μ(i0) < 1/a(H) = 1/r. However, Proposition 2 implies that μ(i0) > 1/r(H) = 1/r, an
absurdity. �

In other words, any uniform hypergraph whose hyperedges all contain the same node i0
cannot make the corresponding system stable. Moreover, we have the following.

Proposition 6. Suppose that there exists a subset B ⊂ V in the hypergraph H= (V,H) such
that

• all hyperedges of H(B) contain at least one node of degree 1;

• at least one of these nodes of degree 1 lies outside of B.

Then H is non-stabilizable.

Proof. Let k = |H(B)|, i.e. the number of hyperedges intersecting B. Denote by H1, ..., Hk

these intersecting hyperedges, and for any l ∈ [[1, k]], denote by il ∈ V a node of degree 1
belonging to Hl. Observe that the nodes i1, ..., ik are not necessarily distinct. On the one hand,
for any l ∈ [[1, k]] we have that

Xn(il) = An(il) − Mn(Hl).

https://doi.org/10.1017/apr.2021.8 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2021.8


A stochastic matching model on hypergraphs 967

FIGURE 4. Two intersecting hyperedges, each containing an isolated node outside of their intersection,
make the system unstable.

Thus, applying again the inequality in (4), we get that for all n,

An(B) ≥
k∑

l=1

|Hl ∩ B|Mn(Hl) = 1

n

k∑
l=1

|Hl ∩ B|(An(il) − Xn(il)).

This entails that if μ ∈ N ++
1 (H),

lim sup
n

1

n

k∑
l=1

|Hl ∩ B|Xn(il) ≥
k∑

l=1

|Hl ∩ B|μ(il) − μ(B) ≥ 0.

If the above inequality is strict, then the chain {Wn} is transient. If the inequality is weak, then
as above we can stochastically lower-bound the chain by a zero-drift chain {Ỹn}, defined by

Ỹn =
(

An(B) −
k∑

l=1

|Hl ∩ B|An(il)

)
, n ∈N,

which is not identically null, thanks to the assumption that at least one of the nodes il,
l = 1, ..., k, is not an element of B. This concludes the proof. �
Example 4. Any hypergraph H= (V,H) such that there exist two hyperedges H1 and
H2 with H1 ∩ H2 = ∅ and two nodes i1 ∈ H1 ∩ H2, i2 ∈ H2 ∩ H1 with d (i1) = d (i2) = 1 is
non-stabilizable (see Figure 4). To see this, take B = H1 ∩ H2 in Proposition 6.

Remark 4. (On the DI condition in [13].) Most of the results of [13] hold under Assumption 1
therein, which states that the dedicated item (DI) condition is satisfied; namely, each hyperedge
contains an isolated node. The above example shows that any matching model (H, �, μ) on a
hypergraph H satisfying the DI condition is unstable for any admissible � (the case where H

contains a single hyperedge H is trivial).

5.2. r-partite hypergraphs

We now turn to hypergraphical generalizations of bipartite graphs.

Definition 7. An r-uniform hypergraph H= (V,H) is said to be r-partite if there exists a par-
tition V1, V2, ..., Vr of V such that every hyperedge in H meets each Vi at precisely one vertex,
i.e. for any H ∈H and any i ≤ r, |H ∩ Vi| = 1. With some abuse, we say that an r-uniform
hypergraph H is r-uniform bipartite if there exists a partition V1, V2 of V such that for any
H ∈H, |H ∩ V1| = 1 and |H ∩ V2| = r − 1.

Remark 5. Notice, first, that in the case r = 2, H being 2-partite means exactly that it is
bipartite. Second, a 2-uniform bipartite hypergraph cannot be 2-partite unless it is a bipartite
graph.
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FIGURE 5. The Fano plane minus the hyperedge {4, 5, 7}.

Proposition 7. Any r-uniform bipartite hypergraph H= (V,H) is non-stabilizable.

Proof. Applying (4) successively to V1 and V2 readily implies that for all n,

Xn(V1) = An(V1) − Mn(H) ≥ 0 and Xn(V2) = An(V2) − (r − 1)Mn(H) ≥ 0,

and thus

Xn(V1) ≥ An(V1) − 1

r − 1
An(V2).

Then, the usual SLLN-based argument implies that the model cannot be stable unless μ(V2) ≥
(r − 1)μ(V1). But as μ(V1) + μ(V2) = 1 we have that μ(V1) ≤ 1

r
, and hence μ ∈ N 2(H) since

V1 is a transversal. �
Example 5. The so-called Fano plane is a well-known object in discrete geometry. It is the
smallest projective plane, namely, the smallest set of points and lines such that any two points
share a line, any two lines intersect at a single point, and on every line lie the same number
of points. In the setting of hypergraphs (points being nodes and lines being hyperedges), the
Fano plane is thus the smallest uniform hypergraph H in which each pair of nodes belongs to
a single hyperedge, and each pair of hyperedges intersects at a single node. It can be checked
that H= (V,H) is of order 7, for V = [[1, 7]] and e.g.

H= {{1, 2, 4}, {1, 5, 6}, {1, 3, 7}, {2, 3, 5}, {4, 5, 7}, {4, 3, 6}, {6, 2, 7}} .

Supported by simulations, we conjecture that Fano planes are stabilizable. However, if H′ =
(V,H′) is the sub-hypergraph defined by H′ =H\H, where H is an arbitrary hyperedge of H,
then it is easily seen that H′ is a 3-uniform bipartite hypergraph with V1 = H and V2 = V\H. So
we deduce from Proposition 7 that H′ is non-stabilizable. A Fano plane minus the hyperedge
{4, 5, 7} is represented in Figure 5.

We know from Theorem 2 in [16] that bipartite graphs are not stabilizable. The next result
shows that this can be generalized to r-partite hypergraphs (which generalize bipartite graphs—
see Remark 5).

Proposition 8. Any r-partite hypergraph H is non-stabilizable.

Proof. As in the above proof we get that for any i = j and any n,

Xn(Vj) = An(Vj) − Mn(H) ≥ 0 and Xn(Vi) = An(Vi) − Mn(H) ≥ 0,
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implying that Xn(Vi) ≥ An(Vi) − An(Vj) and, in turn, that the model cannot be stable unless
μ(Vi) ≤ μ(Vj). By symmetry, this implies that μ(Vi) = μ(Vj). As the Vi are disjoint, we thus
have that μ(Vi) = 1/r for all i. Thus, as any Vi is a transversal of H, μ is not an element of
N 2(H). �
Definition 8. A hypergraphH= (V,H) satisfies Hall’s condition if |V2| ≥ |V1| for any disjoint
subsets V2 and V1 of V satisfying |H ∩ V2| ≥ |H ∩ V1| for all hyperedges H ∈H.

It is well known (see [14] for the particular case of graphs, and the general result in [15])
that Hall’s condition is necessary and sufficient for the existence of a perfect matching on
H, i.e. a spanning sub-hypergraph of H in which all nodes have degree 1, in the case where
the hypergraph is balanced, i.e. it does not contain any odd strong cycle. It is intuitively clear
that the construction of stable stochastic matching models on hypergraphs is somewhat rem-
iniscent of that of perfect matchings on a growing hypergraph that replicates the matching
hypergraph a large number of times in the long run (in the case of graphs, see the discussion
in Section Section 7 of [19]). This connection has a simple illustration in the next proposition,
which provides a family of probability measures, naturally including the uniform measure on
V, that cannot stabilize a matching model on the hypergraph H unless the latter satisfies Hall’s
condition. In what follows we define, for any H= (V,H) and any measure μ ∈ M (V),

μmin = min {μ(i) : i ∈ V} and μmax = max {μ(i) : i ∈ V} . (21)

Proposition 9. For any hypergraph H= (V,H) that violates Hall’s condition, any matching
policy �, and any μ ∈ M (V) such that

μmin

μmax
>

⌊
q(H)+1

2

⌋
− 1⌊

q(H)+1
2

⌋ , (22)

the model (H, �, μ) is unstable. In particular, (H, �, μU) is unstable for μU the uniform
distribution on V.

Proof. Fix H, �, and a measure μ satisfying (22). We first show that μ is monotonic with
respect to the counting measure on V , i.e.

∀E, F ⊂ V, |E| < |F| =⇒ μ(E) < μ(F). (23)

Let E and F be such that |E| < |F|, and let k = |F|. Also, let α be a bijection from [[1, q(H)]] to
V such that

μmin = μ(α(1)) ≤ μ(α(2)) ≤ ... ≤ μ(α(q(H))) = μmax; (24)

in other words (μ(α(1)), μ(α(2)), ..., μ(α(q(H)))) is an ordered (in increasing order) version
of the family {μ(i); i ∈ V}. As |E| ≤ k − 1 we clearly have

μ(F) − μ(E) ≥
k∑

i=1

μ(α(i)) −
q∑

i=q−k+2

μ(α(i)). (25)

First, if

k ≤
⌊

q(H) + 1

2

⌋
,
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then (22) entails that kμmin > (k − 1)μmax, whence

k∑
i=1

μ(α(i)) −
q∑

i=q−k+2

μ(α(i)) ≥ kμmin − (k − 1)μmax > 0. (26)

If

k >

⌊
q(H) + 1

2

⌋
,

then the index sets [[1, k]] and [[q − k + 2, q]] intersect precisely on [[q − k + 2, k]]. Thus

k∑
i=1

μ(α(i)) −
q∑

i=q−k+2

μ(α(i)) =
q−k+1∑

i=1

μ(α(i)) −
q∑

i=k+1

μ(α(i))

≥ (q − k + 1)μmin − (q − k)μmax > 0, (27)

where the last inequality follows, as in (26), from the fact that

q − k + 1 ≤
⌊

q(H) + 1

2

⌋
.

Combining (25) with (26)–(27) concludes the proof of (23) in all cases.
Now fix V2 and V1 such that |H ∩ V2| ≥ |H ∩ V1| for any H ∈H, and |V2| < |V1|, which

from (23) implies that μ(V2) < μ(V1). Then, again applying (4) to V2 and V1, we get that

Xn(V2) + Xn(V1) ≥ An(V2) + An(V1) − 2
∑

H∈H
|H ∩ V2| Mn(H)

≥ An(V2) + An(V1) − 2An(V2).

Thus, by the usual argument, the model cannot be stable unless μ(V2) ≥ μ(V1), a
contradiction. �

5.3. Cycles

Definition 9. An r-uniform hypergraph H (r ≥ 2) is called an �-(Hamiltonian) cycle (0 < � <

r) if there exists an ordering V = (
v1, v2, ..., vq(H)

)
of the nodes of V such that the following

hold:

• Every hyperedge of H consists of r consecutive nodes modulo q(H).

• Any pair of consecutive hyperedges (in an obvious sense) intersects in exactly � vertices.

Proposition 10. Any r-uniform �-cycle of order q such that r divides q is non-stabilizable.

Proof. The partition V1, V2, ..., Vr of V defined by

Vi =
{
vi+(j−1)r ; j ∈ [[1, q/r]]

}
satisfies Proposition 8. �

Figure 6 shows a 3-uniform 2-cycle of order 12.
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FIGURE 6. A 3-uniform 2-cycle of order 12.

6. Stable systems

We next show that stable matching models on hypergraphs exist. With a view to showing
how stability can be established in concrete examples, we provide below two case studies
of simple hypergraphs on which a stable stochastic matching model can be defined: complete
3-uniform hypergraphs, and sub-hypergraphs of the latter where several hyperedges are erased.

6.1. Complete 3-uniform hypergraphs

We first consider the case of a complete 3-uniform hypergraph H, an example of which for
q(H) = 4 is represented in Figure 1. We show that, in this case, the necessary condition given
in Proposition 3 is also sufficient.

Theorem 1. Let H= (V,H) be a complete 3-uniform hypergraph of order q(H) ≥ 4. Then, for
any admissible policy �, we have that

STAB(H, �) = N −
3 (H);

that is, the model (H, �, μ) is stable if and only if μ(i) < 1/3 for any i ∈ V .

Proof. The necessity of the condition having been shown in Proposition 3, only the suf-
ficiency remains to be proven. Suppose that μ(i) < 1/3 for any i ∈ V , and fix α such that
maxi∈V μ(i) < α < 1/3. Define the planar Markov chain

{
Uα

n , n ∈N
}

having the following
transitions on N

2:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

First axis: Pα
(x,0),(x+1,0) = α, x ∈N

+,

Pα
(x,0),(x,1) = 1 − α, x ∈N

+,

Second axis: Pα
(0,y),(0,y+1) = α, y ∈N

+,

Pα
(0,y),(1,y) = 1 − α, y ∈N

+,

Interior: Pα
(x,y),(x+1,y) = α, x, y ∈N

+,

Pα
(x,y),(x,y+1) = α, x, y ∈N

+,

Pα
(x,y),(x−1,y−1) = 1 − 2α, x, y ∈N

+,
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FIGURE 7. Auxiliary Markov chain of the complete 3-uniform hypergraph.

and arbitrary transitions from (0,0) to any element of N2. (These transitions are represented in
Figure 7.)

Denote by � = (�x, �y), �′ = (�′
x, �′

y), and �′′ = (�′′
x, �′′

y) the mean (horizontal and
vertical) drifts of the chain {Uα

n }, respectively on the interior, on the first axis, and on the second
axis, so that we have the following:⎧⎪⎨

⎪⎩
First axis: �′

x = α, �′
y = 1 − α;

Second axis: �′′
x = 1 − α, �′′

y = α;

Interior: �x = 3α − 1, �y = 3α − 1.

Thus, �x < 0 and �y < 0. Also, we have that

�x�
′
y − �y�

′
x = �x�

′′
y − �y�

′′
x = (3α − 1)(1 − 2α) < 0,

so we can apply [12, Theorem 3.3.1(a)] to claim that the Markov chain {Uα
n } is positive

recurrent. Specifically, it can be checked that, setting

u = 1 − 3α

2
> 0,

for any w such that

3α − 1 < w <
(3α − 1)α

1 − α
< 0

we have that ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2u�x + w�y < 0,

2u�y + w�x < 0,

2u�′
x + w�′

y < 0,

2u�′′
y + w�x < 0.

(28)

Second, as 4u2 > w2, the quadratic form Q : (x, y) �→ ux2 + uy2 + wxy is positive definite.
Then, in view of Lemma 3.3.3 in [12], it follows from (28) that, defining the mapping

Lα :

{
N

2 −→R
+

(x, y) �−→ √
Q(x, y) =√

ux2 + uy2 + wxy,
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we have that for some compact set Kα ⊂N
2, for any (x, y) ∈ (Kα),

E
[
Lα

(
Uα

n+1

)− Lα(Uα
n ) | Uα

n = (x, y)
]
< 0. (29)

Now, as H is complete 3-uniform, the states of the Markov chain {Xn, n ∈N} have at most
two nonzero coordinates; in other words, its state space is

E =
{

x = (x1, ..., xq) ∈N
q : xixjxk = 0 for any distinct i, j, k ∈ [[1, q]]

}
.

Define the mapping

L:

⎧⎪⎪⎨
⎪⎪⎩
E −→R

+

x �−→
⎧⎨
⎩

0 if x = 0,

Lα((x, 0)) if x = x.ei, for some x > 0, i ∈ V,

Lα((x, y)) if x = x.ei + y.ej, for some x, y > 0, i = j,

where the above definition is unambiguous because Lα is a symmetric form on N
2. Also define

the compact set
K = {

x := x.ei + y.ej ∈ E : (x, y) ∈Kα
}

.

Then, first, if x ∈ K̄ ∩ E is such that x = x.ei + y.ej for some x, y > 0 and i, j ∈ V , i = j, we get
that

E
[
L (Xn+1) − L(Xn) | Xn = x

]
= (1 − μ(i) − μ(j))

(
L
(
x − ei − ej

)− L(x)
)

+ μ(i) (L (x + ei) − L(x)) + μ(j)
(
L
(
x + ej

)− L(x)
)

= (1 − μ(i) − μ(j))
(
Lα (x − 1, y − 1) − Lα(x, y)

)
+ μ(i)

(
Lα (x + 1, y) − Lα(x, y)

)+ μ(j)
(
Lα (x, y + 1) − Lα(x, y)

)
< (1 − 2α)

(
Lα (x − 1, y − 1) − Lα(x, y)

)
+ α

(
Lα (x + 1, y) − Lα(x, y)

)+ α
(
Lα (x, y + 1) − Lα(x, y)

)
=E

[
Lα

(
Uα

n+1

)− Lα(Uα
n ) | Uα

n = (x, y)
]
,

where, in the inequality above, we used the facts that Lα is nondecreasing in its first and second
variables, and that Lα (x − 1, y − 1) < Lα(x, y). Likewise, if x ∈ K̄ ∩ E is such that x = x.ei for
some x > 0 and i ∈ V , we have that

E
[
L (Xn+1) − L(Xn) | Xn = x

]
=
∑
j =i

μ(j)
(
L
(
x + ej

)− L(x)
)+ μ(i) (L (x + ei) − L(x))

= (1 − μ(i))
(
Lα (x, 1) − Lα(x, 0)

)+ μ(i)
(
Lα (x + 1, 0) − Lα(x, 0)

)
< (1 − α)

(
Lα (x, 1) − Lα(x, 0)

)+ α
(
Lα (x + 1, 0) − Lα(x, 0)

)
=E

[
Lα

(
Uα

n+1

)− Lα(Uα
n ) | Uα

n = (x, 0)
]
,

remarking that Lα(x, 1)< Lα(x, 0). Recalling that Xn = [Wn] for all n, using (29) in both cases,
we conclude using the Lyapunov–Foster theorem (see e.g. [6, Section 5.1]) that the chain
{Wn, n ∈N} is positive recurrent. �
Definition 10. A 3-uniform hypergraph H= (V,H) is said to be complete k-partite if there
exists a partition of V into k independent sets I1, ..., Ik such that H contains exactly all subsets
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of cardinality 3 of the form {v1, v2, v3}, where v1 ∈ Ii1 , v2 ∈ Ii2 , and v3 ∈ Ii3 , for three distincts
independent sets Ii1 , Ii2 , and Ii3 .

The complete 3-uniform k-partite hypergraphs generalize the complete k-partite graphs
introduced in [17, p. 4], also called separable graphs in [16] and [19], or blow-ups of the
complete graph of order k in some other references. Roughly speaking, a complete 3-uniform
k-partite hypergraph is a version of the complete 3-uniform graph of order k, in which the k
nodes are replicated several times, each of the k sets of replicas forming an independent set
Ii, such that all replicas of the same set do not share any hyperedge with each other, but all
share hyperedges of size 3 with all other pairs of replicas belonging to two different other sets
of replicas. Observe that in the particular case where all the sets I1, ..., Ik are of cardinality 1
(i.e. there are no replicas), the complete 3-uniform k-partite hypergraph is just the complete
3-uniform hypergraph of order k. We can then easily generalize the latter result.

Corollary 2. For k ≥ 4, let H̃ be a complete 3-uniform k-partite hypergraph, and let I1, ..., Ik

be the corresponding partition into independent sets. Then, for any admissible policy �, the
model (H̃, �̃, μ̃) is stable if and only if μ̃(Ii) < 1/3 for any i ∈ [[1, k]].

Proof. Macroscopically (i.e., if we do not distinguish between items of classes that belong
to the same independent set in the partition I1, ..., Ik), the system has the same behavior as
the complete 3-uniform hypergraph. Specifically, let q be the order of the hypergraph H̃, and
define the mapping

�:

{
N

q −→N
k

x̃ = (x̃1, ..., x̃q) �−→ x = (x1, ..., xk): ∀i ∈ [[1, k]], xi =∑
j∈[[1,q]]; j∈Ii

x̃i.

In words, � maps the detailed class-content of the model onto a class-content where one puts
together all the elements of classes belonging to the same independent set of the partition
I1, ..., Ik. Take L to be the Lyapunov function introduced in the previous proof. Fix an admis-
sible policy �̃ and a probability measure μ̃ ∈ M (Ṽ), and let

{
X̃n, n ∈N

}
be the class-content

process of the model (H̃, �̃, μ̃). On the other hand, let {Xn, n ∈N} be the class-content process
of the model (H, �, μ) defined on H= (V,H), the complete 3-uniform hypergraph of order k,
for an arbitrary matching policy � and a probability measure μ ∈ M (V) such that μ(i) = μ̃(Ii)
for any i ∈ [[1, k]]. Then it is easily seen that

{
X̃n, n ∈N

}
and {Xn, n ∈N} are connected by the

following relation: for all n and all x̃ ∈N
q,

E
[
L ◦ �

(
X̃n+1

)− L ◦ �(X̃n) | X̃n = x̃
]=E

[
L (Xn+1) − L(Xn) | Xn = �(x̃)

]
,

and the argument in the proof of Theorem 1 shows that the Markov chain
{
X̃n, n ∈N

}
is

positive recurrent whenever μ̃(i) < 1/3, that is, μ(Ii) < 1/3, for all i ∈ [[1, k]]. This concludes
the proof. �

6.2. Incomplete 3-uniform hypergraphs

As is shown in Theorem 1, complete 3-uniform hypergraphs are stabilizable for a large class
of measures. We show below that incomplete hypergraphs can also be stabilizable.

Theorem 2. Let H= (V,H) be a complete 3-uniform hypergraph of order q ≥ 5, and let H′ =
(V,H′) be the (3-uniform) sub-hypergraph of H obtained by setting H′ =H\J , where J is a
subset of H containing disjoint hyperedges. Let J be the union of the elements of J . Then the
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model (H′, ML, μ) is stable for any μ in

S (H′) =
{
μ ∈ M (V) :

(
max
i∈J

λi(μ) ∨ max
i∈J̄

νi(μ)

)
< 0

}
∩ N 2(H′) ∩ N −

3 (H′),

where the λi(μ) : i ∈ J and νi(μ) : i ∈ J̄ are defined respectively by (31) and (32).

Proof. Fix � = ML, and let μ ∈ S (H′). For such H
′ the study of {Yn, n ∈N} does not boil

down to that of a planar Markov chain. Instead, we study the embedded chain {Yn, n ∈N} =
{X4n, n ∈N}, and consider the following quadratic Lyapunov function:

Q :

{
N

q −→R
+

x �−→∑q
i=1 (xi)2.

Fix n ∈N. We have the following alternatives given the value of the embedded chain {Yn} at
time n:

(i) First, for any i ∈ J and any integer xi ≥ 2, the chain {Yn, n ∈N} makes the following
transitions from the state Yn = xi.ei:

Yn+1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Yn + 4ei w.p. μ(i)4;
Yn + 3ei + ej w.p. 4μ(i)3μ(j);
Yn + 2ei + 2ej w.p. 6μ(i)2μ(j)2;
Yn + ei + 3ej w.p. 4μ(i)μ(j)3;
Yn + 4ej w.p. μ(j)4;
Yn + ei w.p. 12μ(i)2μ(j)μ(k);
Yn + ej w.p. 12μ(i)μ(j)2μ(k);
Yn − 2ei w.p. 10μ(j)2μ(k)μ(�)

(the input has 2 j, 1 k, and 1 �, but does not end in jj);

Yn − ei + 2ej w.p. 2μ(k)μ(�)μ(j)2

(the input has 2 j, 1 k, and 1 �, and ends in jj);

Yn − 2ei w.p. 6μ(j)2μ(k)2;
Yn − ei + 2ej w.p. 4μ(j)3μ(k);
Yn + ej w.p. 24μ(i)μ(j)μ(k)μ(�);
Yn − 2ei w.p. 24μ(j)μ(k)μ(�)μ(m).

(30)

From this, we deduce using simple algebra that

�i := E
[
Q (Yn+1) − Q (Yn) |Yn = xi.ei

]= λi(μ)xi + βi(μ),

for some bounded βi(μ) and for

λi(μ) = 8μ4(i) + 24μ3(i)
∑
j =i

μ(j) + 24μ2(i)
∑
j =i

μ2(j)

+ 8μ(i)
∑
j =i

μ3(j) + 24μ2(i)
∑
j,k =i

μ(j)μ(k) − 44
∑

j,k,� =i

μ2(j)μ(k)μ(�)

− 24
∑
j,k =i

μ2(j)μ2(k) − 8
∑
j,k =i

μ(j)μ3(k) − 96
∑

j,k,�,m =i

μ(j)μ(k)μ(�)μ(m). (31)

Consequently, as the above is negative, there exists a∗
1 such that �i < 0

whenever xi ≥ a∗
1.
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(ii) For any i ∈ J and any integer xi ≥ 2, the transitions of {Yn, n ∈N} from the state xi.ei

can be retrieved in a similar fashion to (30). It follows that

�′
i =E

[
Q (Yn+1) − Q (Yn) |Yn = xi.ei

]= νi(μ)xi + β ′
i(μ)

for some bounded β ′
i(μ), and setting H = {i, j, k} as the only element of J such that

i ∈ H, we obtain that

νi(μ) = 8μ4(i) + 24μ3(i)
∑

�∈V\{i}
μ(�) + 24μ2(i)

∑
�∈V\{i}

μ2(�) + 8μ(i)
∑

�∈V\{i}
μ3(�)

− 8
∑
�∈H

μ(j)μ3(�) − 4
∑
�∈H:

ends with kk

μ(j)μ2(k)μ(�) − 20
∑
�∈H:

otherwise

μ(j)μ2(k)μ(�)

− 48μ(j)μ(k)
∑
�∈H

μ2(�) − 4
∑
�∈H:

ends with ��

μ(j)μ2(�)μ(m) − 40
∑
�∈H:

otherwise

μ(j)μ2(�)μ(m)

+ 48μ2(i)μ(j)μ(k) − 8μ(j)μ(k)
∑

�,m∈H:
ends with jk

μ(�)μ(m)80μ(j)μ(k)
∑

�,m∈H:
otherwise

μ(�)μ(m)

− 96
∑

�,m∈H

μ(j)μ(�)μ(m)μ(p) + 24μ2(i)
∑
�∈H

μ(j)μ(�) + 24μ2(i)
∑

�,m∈H

μ(�)μ(m)

− 24
∑
�∈H

μ2(j)μ2(�) − 4
∑
�∈H:

ends with jj

μ2(j)μ(�)μ(m) − 40
∑
�∈H:

otherwise

μ2(j)μ(�)μ(m)

− 8
∑
�∈H

μ3(j)μ(�) + 24μ(i)
∑

j,k∈H

μ(j)μ2(k) − 8
∑

�,m∈H

μ3(�)μ(m)

− 24
∑

�,m∈H

μ2(�)μ2(m) − 4
∑

�,m,p∈H:
ends with ��

μ2(�)μ(m)μ(p)

− 40
∑

�,m,p∈H:
otherwise

μ2(�)μ(m)μ(p) − 96
∑

�,m,p,s∈H

μ(�)μ(m)μ(p)μ(s). (32)

Thus, there exists a∗
2 such that �′

i < 0 whenever xi ≥ a∗
2.

(iii) For any i = j such that {i, j} is not included in a hyperedge of the family J , for any
integers xi, xj > 0, we obtain that

�ij := E
[
Q (Xn+1) − Q (Xn) |Xn = xi.ei + xj.ej

]= λij(μ)xi + λji(μ)xj + βij(μ),

for a bounded βij(μ) and for

λij(μ) = 2
(
μ(i) −

∑
�∈V\{i,j}

μ(�)
)

and λji(μ) = 2
(
μ(j) −

∑
�∈V\{i,j}

μ(�)
)

. (33)

Now observe that V\{i, j} ∈ T (H), so

∑
�∈V\{i,j}

μ(�) >
1

3
;
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then λij(μ) < 0 and λji(μ) < 0. Thus, there exists a∗
3 such that �ij < 0 whenever xi ∨ xj ≥

a∗
3.

(iv) For any i,j such that i = j and {i, j} ⊂ H for some H ∈J , for any integers xi, xj > 0, we
obtain that

�′
ij := E

[
Q (Xn+1) − Q (Xn) |Xn = xi.ei + xj.ej

]= νij(μ)xi + νji(μ)xj + β ′
ij(μ)

for a bounded β ′
ij(μ) and

νij(μ) = 2
(
μ(i) −

∑
�∈H

μ(�)
)

and νji(μ) = 2
(
μ(j) −

∑
�∈H

μ(�)
)

. (34)

As H ∈ T (H), we have ∑
�∈H

μ(�) >
1

3
;

then νij(μ) < 0 and νji(μ) < 0.
Again, there exists a∗

4 such that �′
ij < 0 whenever xi ∨ xj ≥ a∗

4.

(v) We finally consider the case where Xn = xi.ei + xj.ej + xk.ek for H = {i, j, k}, for some
H ∈J and integers xi, xj, and xk such that xi, xj ≥ xk > 0. We have

�H := E
[
Q (Xn+1) − Q (Xn) |Xn = xi.ei + xj.ej + xk.ek

]
= αi(μ)xi + αj(μ)xj + αk(μ)xk + βH(μ),

for a bounded βH(μ) and for

αi(μ) = 2
(
μ(i) −

∑
�∈H

μ(�)
)
, αj(μ) = 2

(
μ(j) −

∑
�∈H

μ(�)
)

and αk(μ) = 2μ(k). (35)

As H ∈ T (H), we have αi(μ) < 0 and αj(μ) < 0. From this, we deduce as above the
existence of an integer a∗

5 such that �H < 0 whenever xi ∨ xj ≥ a∗
5.

To conclude, if we let K be the finite set

K=
{

x ∈ E : xi ≤ max
(

a∗
1, ..., a∗

5, 2
)

; i ∈ V
}

,

then it follows from the above arguments that for any x ∈ E ∩ K̄ and any n ∈N,

E
[
Q (Yn+1) − Q (Yn) |Yn = x

]
< 0.

We deduce from the Lyapunov–Foster theorem (see [6, Section 5.1]) that the chain {Yn, n ∈N}
is positive recurrent. This is the case in turn for the chain {Xn, n ∈N}. �
Remark 6. Observe that the only incomplete (in the sense of Theorem 2) 3-uniform hyper-
graph of order 4 would be obtained from the complete one by deleting only one hyperedge.
However, as easily seen, the transversal number of the resulting hypergraph is 1, so the latter
is non-stabilizable from Proposition 5.
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In the following examples, we show how stability can be established for various incomplete
3-uniform hypergraphs using Theorem 2.

Corollary 3. Consider an incomplete 3-uniform hypergraph H
′ satisfying the assumptions of

Theorem 2. Recall (21), and define the sets

A(H′) :=
{
μ ∈ M (V) :

μmax

μmin
<

(
2q4 − 9q3 + 12q2 − 13q + 12

6q2 + 10q + 24

)1/4 }

and
S 1(H′) := A(H′) ∩ N 2(H′) ∩ N −

3 (H′).
Then the model (H′, ML, μ) is stable for any μ ∈ S 1(H′).

Proof. Recalling (31) and (32), simple algebra shows that

A(H′) ⊂
{
μ ∈ M (V):

(
max
i∈J

λi(μ) ∨ max
i∈J̄

νi(μ)

)
< 0

}
;

thus S 1(H′) ⊂ S (H′). �
Example 6. Observe that for any such H

′ = (V,H′) satisfying the assumptions of Theorem
2, the model (H′, ML, μU) is stable for μU the uniform distribution on V . Indeed, we have
μU ∈ S 1(H′). To see this, first observe that

2q4 − 9q3 + 12q2 − 13q + 12

6q2 + 10q + 24
> 1.

Moreover, it is immediate that μU ∈ N −
3 (H′). It remains to show that μU ∈ N 2(H′). We pro-

ceed in three steps. First, for q = 5 the only incomplete 3-uniform hypergraph in the sense
of Theorem 2 is the complete hypergraph on [[1, 5]] minus one hyperedge, say {1, 2, 3}. It is
then easily seen that {4, 5} is the only minimal transversal of H′. So τ (H′) = 2, so that for all
T ′ ∈ T (H′), μU(T ′) ≥ 2/5 > 1/3, showing that μU ∈ N 2(H′).

Now, if q = 6 there are two incomplete 3-uniform hypergraphs in the sense of Theorem
2: the complete 3-uniform hypergraph on [[1, 6]] minus one hyperedge, say {1, 2, 3}, and the
complete 3-uniform hypergraph on [[1, 6]] minus two disjoint hyperedges, say {1, 2, 3} and
{4, 5, 6}. In both cases, {4, 5, 6} is a minimal transversal of H′, so τ (H′) = 3, and thus μU(T ′) ≥
3/6 > 1/3 for all T ′ ∈ T (H), proving again that μU ∈ N 2(H′).

We now address the case where q > 6. First observe that

q − 2 −
⌊q

3

⌋
>

q

3
. (36)

Then let p = |J | (using the notation of Theorem 2), and let J = {H1, ..., Hp}. It is easily seen
that a transversal of H can be constructed from any minimal transversal of H′, by induction, as
follows:

• Take a minimal transversal T ′ of H′, and set H0 := H′ and T0 := T ′.

• For any i = 1, ..., p, set Hi =Hi−1 ∪ {Hi}, and let Ti be a transversal of (V,Hi) of
minimal size among those including Ti−1. (Ti necessarily exists since Ti−1 ∪ {Hi} is a
transversal of (V,Hi), as easily seen by induction.)
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• We obtain H=Hp by construction, and T := Tp is a transversal of H.

We claim that
|T| ≤ |T ′| + p. (37)

To see this, observe that for any i = 1, ..., p we have the following alternative: either Hi ∩
Ti−1 = ∅, in which case we can take Ti of the form Ti−1 ∪ {k} for any k ∈ Hi, or Hi ∩ Ti−1 =
∅, in which case Ti = Ti−1. In all cases we have that |Ti| ≤ |Ti−1| + 1, and (37) follows by
induction. Observing that |T| ≥ τ (H) = q − 2 and that, as the Hi are disjoint, p ≤ � q

3�, and
using (36) and (37), we finally obtain that

μU(T ′) = |T ′|
q

≥ |T| − p

q
>

1

3
.

Hence, once again, μU ∈ N 2(H′).
To conclude, μU is in all cases an element of S 1(H′), implying that the model (H′, ML, μU)

is stable for all such H
′.

7. Conclusion and perspectives

In this paper, we have studied a generalization of stochastic matching models on a graph, by
allowing the matching structure to be a hypergraph. This class of models appears to have a wide
range of applications in operations management, healthcare, and assemble-to-order systems.
After formally introducing the model, we have proposed a simple Markovian representation,
under i.i.d. assumptions. We have then addressed the general question of stochastic stability,
viewed as the positive recurrence of the underlying Markov chain. For this class of systems,
solving this elementary and central question turns out to be an intricate problem. As the results
of Sections 4 and 5 demonstrate, stochastic matching models on hypergraphs are in general
difficult to stabilize. Unlike the GM on graphs, the non-emptiness of the stability region on
matching models on hypergraphs depends on a collection of conditions on the geometry of the
compatibility hypergraph: rank, anti-rank, degree, size of the transversals, existence of cycles,
and so on.

Nevertheless, we show in Section 6 that the ‘house’ of stable systems is not empty, but
shelters models on various uniform hypergraphs that are complete, complete k-partite, or
complete up to a partition of their nodes (which is a reasonable assumption for kidney
exchange programs with 3-cycles, where, according to the compatibility of blood types and
immunological characteristics, most but not all hyperedges of size 3 appear in the compat-
ibility graph). We provide the exact stability region of the system in the first two cases,
and a lower bound in the third. For this, we resort to ad-hoc multidimensional Lyapunov
techniques.

There is still much to do regarding this class of systems. Providing the precise stability
region of a wider class of systems appearing in other applications is a tedious task, and is
the subject of our ongoing research on this topic. As the present results tend to demonstrate,
such advances are likely to be obtained only on a case-by-case basis. To go beyond the study
of stability, crucial questions of interest are, among others, steady-state performance evalu-
ation and a qualitative comparison of systems and matching policies. We believe that the
present work thus represents a good starting point for a fruitful avenue of research on such
systems.
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