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Animals must eat, necessitating their encounter with
food. At least one of the two, predator or prey, must move
for the two to meet. Many predators forage for prey by one
of two strategies, or foraging modes. They forage either
actively, in which case their prey may be mobile or sessile,
or passively by waiting in ambush, depending on prey
motility. These two foraging modes have been studied
extensively in lizards as a model organism (Cooper 1995,
Huey & Pianka 1981, Pianka 1966, Pietruzska 1986).
Many aspects of a species’ biology are correlated with
its foraging mode. For example, active foragers employ
their chemosensory apparatus for following the prey’s
trail. Sit-and-wait foragers rely on their eyes to identify
approaching prey (Cooper 1995). Other differences are
briefly referenced elsewhere (Werner et al. 1997, 2004).

Many geckos (Gekkota) mix both active and sit-and-
wait foraging modes (Bauer 2007). Their behaviour
shows interspecific, intraspecific and intra-individual
variation (Werner et al. 1997). Therefore geckos were
used to try to identify the organismic and external
factors that affect foraging behaviour, with partial success
(Seligmann et al. 2007, Werner et al. 2004, 2006).

Among the external factors affecting gecko foraging,
natural illumination plays manifold roles. Among
nocturnal geckos, moonlight enhances locomotor activity
in some species (Bouskila et al. 1992, Frankenberg &
Werner 1979, Werner et al. 2006), while depressing
it in others (Seligmann et al. 2007). Among diurnal
geckos, in sit-and-wait-foraging species of Gonatodes
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locomotor activity increases with the intensity of
daylight. Presumably improved illumination increases
the incidence of discovering prey, extends the range of
sighting prey, or both (Persaud et al. 2003). While natural
light often enhances foraging locomotion, man’s artificial
lights may encourage sit-and-wait tactics in nocturnal
house geckos feeding on photo-tactical insects (Petren &
Case 1996).

Against this background we report here the foraging
strategy of a gecko population that is active day and
night in a tropical environment. The Malagash day gecko
Phelsuma laticauda (Boettger, 1880) comprises a thriving
invasive population in Hawaii. This diurnal arboreal
species also inhabits house walls (Glaw & Vences 1994)
and is considered a commensal with humans (Ota & Ineich
2006). Its occurrence at night lights at Kona, Hawaii, has
been reported without detail (Perry & Fisher 2006, Perry
et al. 2008). We aimed to see whether its foraging strategy
at night differs from that in daytime and how. To our
knowledge this is the first project addressing this issue.
We hypothesized that at night the pauses between moves
would increase, because geckos would await phototactic
insects. Because assorted organismic variables may affect
foraging behaviour (Werner et al. 2006), we noted the
morphology characterizing the study population (data
available from authors).

The study site comprised Patey’s Place Hostel, in
Kailua-Kona (19◦38′60′′N, 155◦59′39′′W), on Hawaii
Island. The property approximated 1000 m2 surrounded
by a fence (part wire mesh, part wooden planks). It
included two two-storey wooden buildings, illuminated at
night by assorted lamps on the walls, and surrounded by
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Table 1. The measures of foraging mode of Phelsuma laticauda at night and in daytime. N, number of individuals observed; CV, coefficient of variation.

Foraging-mode measure N Mean ± SE Range CV

Average pause (min) Night 10 5.80 ± 2.80 0.40–30.0 153
Day 16 3.25 ± 0.92 0.30–15.5 114

Average crawl (min) Night 10 0.09 ± 0.06 0–0.63 210
Day 16 0.14 ± 0.07 0–1.15 211

Average move (min) Night 10 0.48 ± 0.32 0–3.33 210
Day 16 0.13 ± 0.03 0–0.50 107

Pause frequency (min−1) Night 10 0.52 ± 0.16 0.03–1.67 99
Day 16 0.72 ± 0.18 0.06–2.48 102

Crawl frequency (min−1) Night 10 0.07 ± 0.02 0–0.17 96
Day 16 0.23 ± 0.12 0–1.90 202

Move frequency (min−1) Night 10 0.43 ± 0.16 0–1.55 119
Day 16 0.51 ± 0.14 0–2.04 113

% pause Night 10 86.6 ± 3.83 67.3–100 14
Day 16 89.8 ± 2.60 67.5–99.9 12

% crawl Night 10 1.01 ± 0.63 0–6.44 197
Day 16 2.87 ± 1.19 0–17.2 166

% move Night 10 12.4 ± 3.83 0–30.9 98
Day 16 7.28 ± 2.28 0–31.7 125

paved walks and, towards the fences, a narrow irrigated
garden with some assorted trees and stemless Pandanus-
like shrubs. Gecko activity was in daytime greater on the
vegetation and less on the buildings and fences, and at
night more on the building walls near the lights. The
gecko fauna comprised almost exclusively P. laticauda; we
found only one Hemidactylus frenatus Schlegel and it was
in poor condition.

Two to three observers visited the site on 3–5 and
18–19 March 2000 and conducted observations during
06h30–18h00 (daytime) and 20h00–22h30 (night-
time). Night-time observations were conducted only
when the moon rose during the day. We scanned the
habitat visually, and at night also with electric torches.

Observations were conducted from the greatest possible
distance to minimize observer effects (Kerr et al. 2004,
Sugerman & Hacker 1980). We observed each gecko for
30 min, unless it escaped from view. This long observation
bout reduced the number of observations but enabled
discovery of temporal variation in behaviour (Stanner
et al. 1998, Werner et al. 1997). We avoided observing
the same individual again.

When possible, individuals were captured (by noose)
after the observation, and were marked. Since individuals
could not be marked with adhesive tape, due to mucus
glands (Hiller & Werner 2008), we clipped half of one
or two toes. Upon capture we recorded body (rectal)
temperature (in some cases), air temperature (1 m above
ground, in shade) and (sometimes) substrate temperature
(Miller–Weber small-animal mercury thermometer);
time; sex and location where the gecko had
been.

The behavioural data comprised the basic foraging-
mode measures: (1) stationary pause duration (average
pause); (2) crawling duration – advancing so slowly

that movement is difficult to detect (average crawl); (3)
duration of moves other than crawl (average move);
(4) the frequency at which a gecko switched from any
locomotion to being stationary (pause frequency); (5) the
frequency at which a gecko started crawling locomotion
(crawl frequency); (6) the frequency at which a gecko
started any move other than crawl (move frequency); (7)
per cent of time that the gecko spent being stationary (%
pause); (8) per cent of time that the gecko spent crawling
(% crawl); (9) per cent of time that the gecko spent moving
(locomoting) other than crawling (% move). Observations
suspected to be due to social effects were excluded from
the analyses.

Behavioural data were obtained from 15 individuals of
known sex and 11 of unknown sex. Foraging parameters
for day and night can be found in Table 1 (and for males
and females are available from the authors).

To rule out observer effect, we tested changes of the acts
(move, crawl and pause) during the bouts, using ANOVA,
separately for day and night observations. No observer
effects were found (P > 0.10 for all tests).

We applied Multivariate analyses of variance
(MANOVA, using SPSS 15) tests to investigate the
correlation between the dependent variables and the
potential effects of sex and day time on them. The two
explanatory variables were tested separately due to small
sample sizes. Each test was conducted on a group of
measurements that were related to each other: the single-
act duration measures; the frequency of act occurrence
and each act performance time in per cent (due to
redundancy, only move and pause were used). The
MANOVA results (male-female and day-night) showed no
significant correlation between the dependent variables
(P > 0.10, all tests). Additionally, no significant sexual
differences in any of the criteria were found (P > 0.10, all
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Figure 1. The effects of substrate temperature at night on the per cent of
time spent pausing (�) and pause frequency (�).

tests). Two individuals (male and female) were observed
during both daytime and night-time.

The nine foraging-mode measures were tested for
effects of body, substrate and air temperatures. Each
measure was tested for each temperature type separately
for daytime and night-time. Due to data paucity, effects
of body temperature and substrate temperature during
daytime were not tested. Moreover, the small number
of temperature readings prevents our conducting more
complex statistics (e.g. using temperature as a covariate
in the day-night tests). To test temperature effects on
behaviour, we applied linear regression, and evaluated
the significance of the slope.

Air temperature ranged in daytime between 24–31
◦
C

(12 readings), and at night 23–24
◦
C (N = 3); it had

no significant effect on any foraging-mode measure.
Other temperatures were taken mainly at night: body
temperature, 17–28

◦
C (N = 8), too, had no significant

effect on any foraging-mode measure. In contrast,
substrate temperature at night, 19–24

◦
C (N = 5), had

significant effects on the main foraging-mode measures
(Figure 1). The warmer the substrate temperature (ST)
was, the more time the individual spent pausing (%
pause = 6.55 × ST – 57.3; R2 = 0.997; P < 0.01. Pause
frequency = −0.32 × ST + 7.57; R2 = 0.97; P < 0.01).
Increase in pause duration was achieved by decreasing
move duration (% move = −6.52 × ST + 155; R2 =
0.97; P < 0.01. Move frequency = −0.31 × ST + 7.36;
R2 = 0.97; P < 0.01).

These results invite some conclusions. Sexual foraging
diergism (functional dimorphism; Rhodes & Rubin, 1999)
occurs in some lizards (Ananjeva & Tsellarius 1986, Perry
1996). While it was observed in nocturnal terrestrial
(ground-dwelling) geckos (Werner et al. 2006), it was not
found in diurnal scansorial (climbing) geckos (Persaud

et al. 2003) as in P. laticauda, likewise diurnal
and scansorial. However, the low number of species
investigated for diergism precludes the correlation of
sexual diergism with nocturnality, terrestriality or both.

The similarity of night-time and daytime foraging
behaviour of P. laticauda recalls the thermal behaviour
of Hemidactylus frenatus and Lepidodactylus lugubris in
Hawaii. Both regulate the same body temperature in
buildings at night, basking on lamps etc., as their
conspecifics do in nature in daytime, using solar heat
(Werner 1990). Apparently commensal geckos are
euryoecic and adaptable.

Because at night pause length positively correlated with
temperature, one would expect in daytime still longer
pauses and shorter moves. The data (Table 1) point this
way but are not statistically significant. The reason for this
may be that most observations were within the preferred
temperature range of the species (McKeown 1993) and
geckos are relatively eurythermic (Avery 1982, Mayhew
1968: figure 7, Werner 1976) so that temperature had
little effect during the day.

The strong effects of substrate temperature probably
reflect the frequently observed tight coupling of lizard
body temperature to substrate temperature (Tanaka &
Nishihira 1987, Werner et al. 1996). In contrast, the
accuracy of body temperature measurement depends
on observer-subject interactions. The increase of gecko
activity at lower temperature could relate to insect activity
but we lack data on this. More likely, perhaps at higher
temperatures the geckos move more swiftly and spend less
time in reaching sighted prey.

In conclusion, our expectation that at night the sit-and-
wait strategy would be more extreme was not realized. The
result that locomotor activity was increased at night and
at lower temperatures, invites further research. Indeed,
it has been commented that in general, little is known
about the effects of night lights on diurnal reptiles and
the possible implications for conservation (Perry & Fisher
2006, Perry et al. 2008). Altogether the interaction
of light and temperature effects on gecko behaviour
(Frankenberg 1979, Sievert & Hutchison 1988) requires
further study with larger samples. Furthermore, it is hard
to understand the foraging behaviour of insectivorous
lizards without data on the abundance, distribution and
behaviour of the potential prey. Further progress in this
field would require more extensive projects.
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