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Near-inertial parametric subharmonic instability
of internal wave beams in a background
mean flow
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The effect of a small background constant horizontal mean flow on the parametric
subharmonic instability (PSI) of locally confined internal wave beams is discussed for the
case where the beam frequency is close to twice the inertial frequency due to background
rotation. Under this condition, PSI is particularly potent because of the vanishing of
the group velocity at the inertial frequency, which prolongs contact of near-inertial
subharmonic perturbations with the primary wave. The mean flow generally stabilizes
the very short-scale limit of such perturbations. By contrast, the stability of longer-scale
perturbations hinges on the strength and the direction of the mean flow; particularly, a
negative mean flow (antiparallel to the horizontal projection of the beam group velocity)
can extend the sub-inertial range of PSI. However, a large enough mean flow of either sign
ultimately weakens PSI.

Key words: internal waves

1. Introduction

In its simplest form, the parametric subharmonic instability (PSI) of internal gravity waves
in stratified fluids involves the transfer of energy from a sinusoidal primary wavetrain of
frequency ω0 to two subharmonic sinusoidal perturbations via a weakly nonlinear resonant
triad interaction (Staquet & Sommeria 2002). For nearly inviscid flows, the most unstable
perturbations have frequency ω0/2 and short wavelength relative to the primary wave.
Therefore, PSI has been suggested as a potential pathway by which internal waves transfer
their energy into smaller scales and eventually dissipate in oceans (e.g. Hibiya, Nagasawa
& Niwa 2002; MacKinnon & Winters 2005; Young, Tsang & Balmforth 2008). However,
this proposed mechanism assumes that PSI remains robust under realistic ocean conditions
(Alford et al. 2007; Hazewinkel & Winters 2011; MacKinnon et al. 2013; Sutherland 2013),
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which may not necessarily be the case considering that oceanic internal waves are far from
sinusoidal.

In an effort to address this issue, recent research activity on PSI of internal waves
turned to time-harmonic plane waves with locally confined, rather than sinusoidal, spatial
profile (see Dauxois et al. (2018) for a review). Such wave beams arise in oceans from
the interaction of the barotropic tide with bottom topography (e.g. Lamb 2004; Peacock,
Echeverri & Balmforth 2008; Johnston et al. 2011). Importantly, the finite width of a
beam limits the contact of short-scale subharmonic perturbations with the underlying
primary wave and thus generally weakens the PSI, as the perturbations travel with the
corresponding group velocity and eventually leave the beam region. As a result, PSI is
only possible if either (i) the beam has nearly monochromatic profile and is sufficiently
wide to allow subharmonic perturbations to stay in contact with the beam for a long
enough time (Bourget et al. 2014; Karimi & Akylas 2014), or (ii) the beam has general
locally confined profile but has frequency ω0 ≈ 2f , where f is the Coriolis frequency
(Karimi & Akylas 2017). In the latter case, which is directly relevant to oceans due to
the Earth’s rotation, subharmonic perturbations have near-inertial frequency (ω0/2 ≈ f );
hence, their group velocity is close to zero, which prolongs contact with the primary beam
and enables PSI of beams with general profile. Furthermore, the PSI growth rates predicted
by approximate theoretical models (Karimi & Akylas 2014, 2017) under the conditions (i)
or (ii) above are in excellent quantitative agreement with formal linear stability analysis
based on Floquet theory, provided the model also accounts for the induced perturbation
components at 3ω0/2 (Fan & Akylas 2020).

Another factor that may impact PSI of oceanic internal waves are large-scale currents.
Numerical simulations (Richet, Muller & Chomaz 2017) of internal wave generation by
tidal flow over topography near the critical latitude (≈29◦) where the tide frequency is
equal to twice the local Coriolis parameter (ω0 = 2f ) indicate that a steady background
current diminishes wave dissipation by hindering the transfer of energy to smaller scales
via PSI. This weakening of near-inertial PSI was attributed to the Doppler shift of the
frequency of sinusoidal waves by the background current: owing to this shift, the frequency
ω0 of a sinusoidal wave moving parallel to the current can fall below 2f , so subharmonic
perturbations at ω0/2 would be sub-inertial and hence unable to propagate, preventing
PSI. Later theoretical work (Fan & Akylas 2019) pointed out that a background mean flow
has a more profound effect than a mere Doppler frequency shift on the PSI dynamics of a
finite-width beam. Specifically, Fan & Akylas (2019) considered a nearly monochromatic
beam in the absence of rotation, in which case the inertial frequency plays no role
and sub-inertial perturbations are not possible; yet, the advection due to a small steady
horizontal mean flow modifies the group velocity of subharmonic perturbations, which
stabilizes very short-scale perturbations and can weaken PSI dramatically. This stabilizing
mechanism is unique to finite-width beams, as mean flow has no effect on the PSI of a
purely sinusoidal plane wave once the Doppler shift of the wave frequency has been taken
into account.

As a sequel to Fan & Akylas (2019), here we discuss the effect of a small steady
horizontal mean flow on the near-inertial PSI of finite-width beams with general profile. As
in our earlier study, the analysis focuses on the ‘distinguished limit’ where advection due to
the mean flow is as important as the rest of the effects that play a role in near-inertial PSI
dynamics, namely, departure from inertial conditions and coupling of the perturbations
with the primary wave, as well as dispersion and viscous dissipation of the perturbations.
This asymptotic model leads to an eigenvalue problem that determines the PSI growth rate
for a given primary wave profile under specified flow conditions. For a sinusoidal wave, as
suggested by Richet et al. (2017), the effect of the mean flow on the PSI can be deduced
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Near-inertial PSI in a mean flow

from the Doppler shift of the wave frequency, in contrast to a finite-width beam where
such simplification is not possible. In the latter case, the mean flow generally stabilizes
very short-scale perturbations, as was found in Fan & Akylas (2019). On the other hand,
the ability of longer-scale perturbations to extract energy is controlled by the strength and
the sign of the mean flow (relative to the projection of the group velocity of the beam
onto the horizontal), as well as the beam frequency relative to 2f . In particular, a mean
flow antiparallel to the beam group velocity along the horizontal can extend the range of
PSI to sub-inertial perturbations. However, a large enough background mean flow (e.g.
comparable to the amplitude of the barotropic tide as in the simulations of Richet et al.
(2017)) of either sign ultimately weakens PSI.

Recent related work examined, via numerical simulations (Yang et al. 2018) and field
measurements (Yang, Wei & Zhao 2020), the effect of background geostrophic currents
on PSI of an internal tide. These studies suggest that the background vorticity due to
such currents shifts the Coriolis frequency and thereby affects the efficiency of PSI near
the critical latitude. The present model, by contrast, considers the effect of a constant
horizontal mean flow, which carries no vorticity, on the near-inertial PSI of particular
disturbances, in the form of wave beams that arise as part of the internal tide (e.g. Lamb
2004; Peacock et al. 2008; Johnston et al. 2011). In this setting, our analysis shows that PSI
can be impacted significantly owing to the advection of perturbations by the mean flow.
As a result, the strongest PSI may be found away from the critical latitude.

2. Preliminaries

The analysis assumes an unbounded, incompressible, uniformly stratified Boussinesq fluid
with constant buoyancy frequency N∗ and includes the effect of background rotation,
which is essential to near-inertial PSI. Using non-dimensional variables, with 1/N∗
as the time scale and L∗ as the length scale (to be specified below), the uniform
horizontal background mean flow ˆ̄u = ū êx is along x, and y is the vertical coordinate
pointing antiparallel to gravity. Since PSI is a two-dimensional instability, we introduce
the streamfunction ψ(x, y, t), in terms of which the horizontal and vertical velocity
components are ψy and −ψx, respectively. Thus, in a fixed reference frame, ψ , the
transverse velocity w(x, y, t) and the reduced density ρ(x, y, t) are governed by

(∂t + ū ∂x)∇2ψ − ρx + fwy + J(∇2ψ,ψ)− ν∇4ψ = 0, (2.1a)

(∂t + ū ∂x)w − fψy + J(w, ψ)− ν∇2w = 0, (2.1b)

(∂t + ū ∂x)ρ + ψx + J(ρ, ψ) = 0, (2.1c)

where J(a, b) = axby − aybx stands for the Jacobian. Here, f is the local Coriolis
parameter (scaled by N∗) under the f -plane approximation, and ν = ν∗/(N∗L2∗) is the
inverse Reynolds number where ν∗ is the fluid kinematic viscosity.

In the inviscid limit (ν = 0), the frequency ω0 and wavevector k of infinitesimal (linear)
sinusoidal plane-wave solutions of (2.1) satisfy

(ω0 − ū |k| sin θ)2 = f 2 + (1 − f 2) sin2 θ, (2.2)

where θ is the inclination of k to the vertical. As expected, the sole effect of the background
mean flow is the Doppler shift of the wave frequency on the left-hand side of (2.2). In the
absence of mean flow (ū = 0), (2.2) reduces to the well-known internal wave dispersion
relation, according to which ω0 depends on the inclination but not on the magnitude of k.
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Thus, by superposing sinusoidal plane waves with the same frequency ω0 but varying |k|,
it is possible to construct wave beams

ψ0 = Q(η) e−iω0t + c.c., w0 = i
f cos θ
ω0

Qη e−iω0t + c.c.,

ρ0 = −i
sin θ
ω0

Qη e−iω0t + c.c.

⎫⎪⎪⎬
⎪⎪⎭

(2.3a–c)

that stretch along ξ = x cos θ − y sin θ , where the beam inclination θ to the horizontal is
related to the beam frequency ω0 via (2.2). Here, the complex amplitude Q(η) describes
the beam profile (related to the wave source) in the cross-beam direction η = x sin θ +
y cos θ . Such infinitely long uniform beams happen to be also exact nonlinear states (Tabaei
& Akylas 2003) and form the basis of the analyses of Karimi & Akylas (2017) and Fan &
Akylas (2020) of near-inertial PSI in the absence of mean flow.

On the other hand, for ū /= 0, it is clear from (2.2) that uniform beams are no longer
possible, and the steady-state response to a locally confined time-harmonic wave source
with frequency ω0 will vary not only in η but also in ξ (figure 1a). To prevent this
dispersive effect of the mean flow from altering the beam identity entirely, and also to
permit analytical treatment of PSI, we assume that the mean flow is weak,

ū → μū, (2.4)

where 0 < μ � 1 is a small parameter. In this instance, the length scale of ξ variations
due to the mean flow is much longer than a characteristic beam width, which is chosen as
the length scale L∗. Specifically, taking k = k1êη + k2êξ with k2 � k1 = O(1), it follows
from (2.2) that

ω0 = Ω0 + (1 − f 2) sin θ cos θ
Ω0

k2

k1
+ μū sin θ k1 + O(μk2, k2

2), (2.5)

where Ω2
0 = f 2 + (1 − f 2) sin2 θ , so k2/k1 = O(μ). Therefore, the length scale of ξ

variations is O(μL∗) and, considering that PSI involves fine-scale perturbations (relative
to L∗), these variations may be neglected: at a given ξ = ξ0, the beam locally appears
uniform (see figure 1b) and (2.3a–c) can be used as the basic state in the ensuing stability
analysis provided L∗ and Q are taken at ξ0.

Furthermore, our analysis assumes small-amplitude beams, so we write

Q → εQ, (2.6)

where ε = U∗/(N∗L∗) � 1 is an amplitude parameter and U∗ is a (dimensional)
characteristic along-beam velocity. In addition, as our focus is on near-inertial PSI, the
beam frequency ω0 is taken to be close to 2f :

ω0 = 2f + σδ, (2.7)

where 0 < δ � 1 is a small parameter. Here, the frequency detuning σ = O(1) may be
either positive or negative so that subharmonic perturbations at ω0/2 may be super- or
sub-inertial, respectively. The relative magnitudes of the small parameters μ, ε and δ
introduced in (2.4), (2.6) and (2.7) are specified below.

911 R3-4

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

11
30

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.1130


Near-inertial PSI in a mean flow

(b)(a) y
f /2 f /2

y
↓g↓g L∗

L∗

x

x

ū ū

θ
θη

η

ξ

ξ

Figure 1. Schematic of the PSI geometry. (a) Locally confined primary wave beam of general profile with
frequency ω0 and typical (dimensional) width L∗ in the presence of a small horizontal background mean flow
ū. (b) Close-up view of the beam slice shown in the dotted box in (a). The beam geometry at any given ξ
location can be assumed to be locally uniform along ξ , as ξ variations have a much longer length scale than η
variations. Subharmonic perturbations of frequency ω0/2 ≈ f are fine-scale wavepackets with nearly horizontal
lines of constant phase (dotted lines).

3. Near-inertial PSI model

We now specify the form of the perturbations in the stability analysis of the basic state
(2.3a–c). From prior experience with near-inertial PSI in the absence of mean flow (Karimi
& Akylas 2017; Fan & Akylas 2020), to cause instability, the subharmonic perturbations of
frequency approximately ω0/2 must interact with the O(ε) primary wave for long enough,
namely for O(ε−1) wave periods. Thus, nonlinear coupling with the underlying beam sets
the ‘slow’ time T = εt, and all other effects that have a part in PSI dynamics, including
the background mean flow, are scaled in accordance with this fundamental-to-PSI time
scale. Specifically, the perturbation comprises two fine-scale subharmonic wavepackets
with O(ε−1/2) carrier wavenumber so that dispersion comes in to play when T = O(1).
Furthermore, wave dispersion is made as important as the frequency detuning (2.7), which
controls the small group velocity of the two wavepackets at near-inertial conditions, and
the small viscosity (measured by the inverse Reynolds number ν) via the scalings

δ = ε, ν = αε2, (3.1a,b)

where α is an O(1) viscous parameter. Finally, the advection of the perturbation
wavepackets due to the small mean flow (2.4) is incorporated into this ‘distinguished limit’
by setting

μ = ε. (3.2)

Following these scaling considerations, infinitesimal perturbations (ψ̃, w̃, ρ̃) to the
primary wave beam (ψ0,w0, ρ0) in (2.3a–c) are taken in the form

ψ̃ = ε1/2

κ
{[A exp(iκy/ε1/2)+ B exp(−iκy/ε1/2)] exp(−iω0t/2)+ c.c.}

+ ε

κ
{[A3 exp(iκy/ε1/2)+ B3 exp(−iκy/ε1/2)] exp(−i3ω0t/2)+ c.c.}, (3.3a)
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w̃ = {[M exp(iκy/ε1/2)+ N exp(−iκy/ε1/2)] exp(−iω0t/2)+ c.c.}
+ ε1/2{[M3 exp(iκy/ε1/2)+ N3 exp(−iκy/ε1/2)] exp(−i3ω0t/2)+ c.c.}, (3.3b)

ρ̃ = ε1/2{[F exp(iκy/ε1/2)+ G exp(−iκy/ε1/2)] exp(−iω0t/2)+ c.c.}, (3.3c)

where the complex amplitudes A, B, A3, B3, M, N, M3, N3, F and G are functions of
(ξ, η, T). The leading-order terms in (3.3) are subharmonic perturbations at ω0/2 ≈ f
(cf. (2.7)) that comprise two fine-scale wavepackets with O(ε−1/2) carrier wavenumber,
as discussed above. In keeping with (2.2) for small mean flow, the carrier wavevectors
of these near-inertial wavepackets are along the vertical (figure 1b) and also have equal
magnitude but opposite sign; thus, to leading order, the subharmonic perturbations form a
resonant triad with the primary wave. Furthermore, ψ̃ and w̃ in (3.3a) and (3.3b) include
disturbances with frequency 3ω0/2. These components have the same fine-scale structure
as those at ω0/2, but smaller amplitude, and arise from the interaction of the subharmonic
perturbations with the primary wave (ρ̃ features similar 3ω0/2 components, but these are
not displayed in (3.3c) as they do not affect the perturbation dynamics at leading order).
As pointed out in Fan & Akylas (2020), the perturbations at 3ω0/2 play an important part
in PSI dynamics and were erroneously omitted in earlier analyses (e.g. Karimi & Akylas
2017). Finally, the parameter κ = O(1), taken to be positive without loss of generality,
controls the vertical wavenumber of the perturbation wavepackets and will be used to
determine the maximum PSI growth rate.

Inserting (3.3) into (2.1) after linearizing with respect to the perturbations, and
collecting the various harmonics, we first solve for the amplitudes of the 3ω0/2 waves:

A3 = −M3 = −κ sin θ
2f

AQη, B3 = N3 = κ sin θ
2f

BQη. (3.4a,b)

Next, upon eliminating F, G, M and N, and making use of (3.4a,b), we obtain the following
coupled evolution equations for the subharmonic wave envelopes A and B:

AT − i
σ

2
A + ū sin θ Aη − i

c′

2κ2 Aηη + ακ2A + γQηηB∗ = 0, (3.5a)

BT − i
σ

2
B + ū sin θ Bη − i

c′

2κ2 Bηη + ακ2B + γQηηA∗ = 0, (3.5b)

where
c′ = 3f , γ = 3

4 sin θ cos θ. (3.6a,b)

The second term of (3.5) corresponds to the effect of inertial frequency detuning, the third
to the effect of the mean flow, the fourth to dispersion, the fifth to viscous dissipation
and the sixth to the coupling of the subharmonic perturbations with the underlying wave.
Based on (3.5), the leading-order effect of the mean flow is to advect the subharmonic
wavepackets, similar to the PSI of nearly monochromatic beams in a weak background
mean flow (Fan & Akylas 2019). Finally, it should be noted that, even though we have
allowed for general O(1) variations in the perturbation envelopes in (3.3), the final stability
equations (3.5) involve derivatives with η only, indicating that ξ variations have no effect
on the stability to leading order.

4. Stability eigenvalue problem

The evolution equations (3.5) of infinitesimal near-inertial perturbations depend on the
beam profile Q(η), as well as the independent parameters ( f , σ, ū, α, κ). Although (3.5)
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can be readily solved numerically, a comprehensive study across all values of these five
parameters is formidable. Therefore, in the following we focus on the case

f � 1, (4.1)

an approximation that is well justified for oceanic internal waves where typically f � 0.1.
In this limit, we may eliminate f from (3.5) by the rescaling

T → T/f , σ → fσ, α → fα (4.2a–c)

and using the leading-order expressions for sin θ = √
3f and γ = 3

√
3f /4, obtained via

(2.2), (2.4), (2.7) and (4.2a–c). In addition, to examine the stability of the primary wave,
we look for solutions in the form of normal modes,

(A,B∗) = (a, b∗) eλT , (4.3)

where λ = λr + iλi and λr > 0 implies instability. Thus, making use of (4.1)–(4.3),
equations (3.5) reduce to

(
λ̂− i

σ

2

)
a + ū

√
3 aη − i

3
2κ2 aηη + 3

√
3

4
Qηηb∗ = 0, (4.4a)

(
λ̂+ i

σ

2

)
b∗ + ū

√
3 b∗

η + i
3

2κ2 b∗
ηη + 3

√
3

4
Q∗
ηηa = 0, (4.4b)

where

λ̂ = λ+ ακ2. (4.5)

For a given primary wave profile Q(η), frequency detuning σ and mean flow ū, the
equation system (4.4) along with suitable boundary conditions, as discussed below, define
an eigenvalue problem for λ̂ = λ̂r + iλ̂i. In view of (4.5), instability arises if λ̂r(κ) > ακ2.
Thus, λ̂r corresponds to the inviscid growth rate, whereas the actual growth rate λr takes
into account the effect of viscous dissipation (α > 0).

Finally, as expected on intuitive grounds, upon the substitution Q(η) → Q(−η) (which
reverses the direction in which a wave beam transports energy), it follows from (4.4) that
the same stability results hold if the mean flow also is reversed, ū → −ū.

5. Sinusoidal plane wave

First, we examine the PSI of

Q = 1
2 eiη, (5.1)

which corresponds to a uniform sinusoidal plane wave with non-dimensional peak
amplitude ε and dimensional wavelength 2πL∗. For this primary wave profile, eigenmode
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0.6
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0.2

0.6

0.4

0.2

0
0

1 2

κmin κc

κ

λ̂r λr

3 4 5

σ ′ = 1

σ ′ = –1

σ ′ = 0

–2 –1 0 1 2 3 4 5

σ ′

(b)(a)

Figure 2. Predictions of the characteristic equation (5.3) for the PSI of a sinusoidal plane wave. (a) Inviscid
growth rate λ̂r as a function of the perturbation wavenumber parameter κ for various values of the inertial
detuning σ ′ (labelled). Vertical dotted lines correspond to κmin and κc (labelled) for σ ′ = 1. The dashed line
plots the quadratic ακ2 for α = 0.1 that controls viscous dissipation. (b) Maximum PSI growth rate λr , taken
over all κ , as a function of σ ′ for α = 0 (solid line) and α = 0.1 (dashed line), corresponding to inviscid and
viscous flow conditions, respectively.

solutions of (4.4) satisfy periodic boundary conditions in η and take the form

(a, b∗) = (a0 eiη/2, b∗
0 e−iη/2)eiρη, (5.2)

where ρ is a real wavenumber parameter. Upon substituting (5.1) and (5.2) into (4.4), we
obtain a characteristic equation that can be readily solved for λ:

λ = 3
8

√
3 − C2 − ακ2 − i

(
3

2κ2 + ū
√

3
)
ρ (5.3)

with

C =
(

4
3
σ ′ − 1

κ2

)
− 4ρ2

κ2 , σ ′ = σ − ū
√

3. (5.4a,b)

Here, the effect of the mean flow ū appears together with the frequency detuning σ in
the form of the parameter σ ′, which can be interpreted as the frequency detuning in the
reference frame of the fluid moving with the background mean flow. Indeed, according to
(2.2), (2.7), (3.1a,b) and (4.2a–c), the primary wave in the reference frame of the fluid
has frequency ω0 − εū sin θ = 2f (1 + εσ ′/2). This confirms that a constant, uniform,
background mean flow has no effect on the PSI of a sinusoidal plane wave once the
Doppler shift of the primary wave frequency is taken into account.

Based on (5.3), and noting that C in (5.4a,b) is a monotonically increasing function
of κ > 0, a necessary condition for PSI is that C > −√

3, or equivalently κ > κmin =√
3/(4σ ′ + 3

√
3) (see figure 2a). This implies that PSI is only possible for σ ′ > −3

√
3/4,

which indicates that slightly sub-inertial perturbations (in the reference frame of the fluid)
can be unstable (see figure 2b).

In the inviscid limit (α = 0), examined earlier in Young et al. (2008), the maximum
growth rate λr = 3

√
3/8 is obtained when C = 0, which is always possible for a suitable

choice of ρ if the quantity in the parentheses in (5.4a,b) is positive, or equivalently
κ � κc = √

3/(4σ ′) (see figure 2a). Therefore, super-inertial PSI (σ ′ > 0) is universal for
any κ � κc with no scale selection. On the other hand, for σ ′ � 0, the maximum growth
rate requires κ → ∞. These results are in agreement with Young et al. (2008).

Under viscous flow conditions (α > 0), high-wavenumber (κ � 1) modes are stabilized
because the quadratic ακ2 in (5.3) will always exceed the inviscid growth rate. As a result,
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no instability is possible for κ >
√

3
√

3/(8α). Furthermore, in the super-inertial range
σ ′ > 0, the PSI growth rate monotonically decreases for κ � κc owing to the increased
effect of viscous dissipation, so the maximum PSI growth rate can always be found in the
range κmin < κ � κc.

6. Locally confined beam

We now examine the effect of mean flow on PSI of a locally confined beam (Q → 0 as
η → ±∞). Here, eigenmode solutions of (4.4) decay far from the beam:

(a, b∗) → 0 (η → ±∞). (6.1)

Specifically, we consider the Gaussian beam profile

Q = 1√
8π

∫ ∞

0
e−l2/8 eilη dl, (6.2)

which comprises sinusoidal plane waves with positive wavenumber (l > 0) and therefore
represents a unidirectional, progressive wave beam (Tabaei & Akylas 2003) that transports
energy in the positive ξ direction (see figure 1). The equation system (4.4) subject
to (6.1) is discretized using eighth-order centred finite differences and the resulting
matrix eigenvalue problem for λ̂(κ; σ, ū) is solved using standard eigenvalue packages in
MATLAB. Typically, we used the grid spacing�η = 0.05 and the domain η ∈ [−50, 50],
although these values were varied somewhat depending on the parameters σ and ū.

Figure 3(a) plots the real part of λ̂ = λ̂r + iλ̂i (i.e. the inviscid growth rate) as a
function of the wavenumber parameter κ , exactly at inertial conditions (σ = 0), for the
representative values of mean flow ū = 0, 0.5 and −1. Furthermore, the quadratic ακ2

that controls the effect of viscosity in view of (4.5) is shown for α = 0.1. Overall, we find
that ū /= 0 has a strong stabilizing effect on perturbations with large κ , even in the absence
of viscosity: while the maximum inviscid growth rate for ū = 0 is found as κ → ∞ (i.e.
extremely fine-scale perturbations), in the case of ū = 0.5 and −1 instability is confined to
κ � 5. This stabilizing effect of mean flow irrespective of the sign of ū on very fine-scale
perturbations is analogous to the results of Fan & Akylas (2019) for beams in the absence
of background rotation, and suggests that PSI is less effective as a pathway to small-scale
mixing in the presence of mean flow. It should be noted that stabilization of large-κ
disturbances due to mean flow does not occur for a plane sinusoidal wave, as the range
of maximum inviscid PSI extends to κ → ∞ (figure 2a).

Figure 3(a) also indicates that, unlike very short-scale (κ � 1) perturbations, which are
stabilized by mean flow of either sign, the stability of (longer-scale) disturbances with
κ = O(1) depends crucially on the sign of ū. Specifically, as illustrated by ū = 0.5, ū > 0,
in which case the mean flow is parallel to the projection of the group velocity of the
beam onto the horizontal, has a strong stabilizing effect on PSI for all κ . By contrast, for
ū = −1, there is a small range of κ (0.5 � κ � 2.5) where the presence of negative mean
flow enhances instability relative to no mean flow. Furthermore, this range includes the
disturbance with the maximum inviscid growth rate, found at κ ≈ 1.6.

These perhaps unexpected results can be understood by examining the dominant
instability eigenvalues λ̂ = λ̂r + iλ̂i and corresponding eigenmodes a(η) and b(η) as
ū is varied. Starting with ū = 0, near-inertial PSI is controlled by two distinct types
of instability modes, one having complex (λ̂i /= 0) and the other purely real (λ̂i = 0)
eigenvalues. The associated eigenmodes are locally confined in the vicinity of the
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Figure 3. (a) Inviscid PSI growth rate λ̂r, for the beam profile (6.2) as a function of the perturbation
wavenumber parameter κ at inertial conditions (σ = 0) and for mean flow ū = 0 (◦), 0.5 (�) and −1 (∗). The
dashed line plots the quadratic ακ2 for α = 0.1 that controls viscous dissipation. (b) Perturbation wavepacket
envelope magnitudes |a| (dashed line) and |b| (dotted line) corresponding to the highest inviscid growth rate for
ū = 0.5, found at κ ≈ 2.9, in panel (a). Here

√
|a|2 + |b|2 is normalized to have the same maximum value as

the primary wave along-beam velocity |Qη| (solid line). (c) Same as (b) but for the maximum inviscid growth
rate for ū = −1, found at κ ≈ 1.6, in panel (a). In this case, |a| = |b|.

underlying wave beam. The first of these two eigensolution branches provides the
dominant instability (highest growth rate λ̂r) when σ � 0 (super-inertial PSI range), while
the second prevails when σ < 0 (sub-inertial PSI range), for all κ . Turning on ū, these
two types of modes continue to coexist. However, which one is dominant is now decided
not only by σ but also by the strength and sign of ū, as well as κ . Key to this mode
competition is the fact that the mean flow advects the eigenmodes of the first eigensolution
branch outside the beam region, limiting their ability to extract energy from the beam. This
advection effect is illustrated in figure 3(b), which plots the eigenmode corresponding to
the highest inviscid growth rate for ū = 0.5 at κ ≈ 2.9 in figure 3(a). It should be noted
that |b| extends far outside the region of the primary beam. Moreover, all instability growth
rates for ū = 0.5 in figure 3(a) correspond to such advected modes, which explains the
overall stabilizing effect of mean flow for ū > 0. On the other hand, under the condition
λ̂i = 0, it follows from (4.4) that a(η) = b(η) so the modes of the second eigenvalue
branch correspond to standing waves in the vertical (cf. (3.3) and (4.3)).

Furthermore, these modes can remain fully confined to the vicinity of the primary beam
in the presence of mean flow, as illustrated in figure 3(c) for the eigenmode corresponding
to the highest inviscid growth rate for ū = −1 at κ ≈ 1.6 in figure 3(a). In this instance, the
dominant eigenvalues for 1 � κ � 1.9 correspond to fully confined standing wave modes
with λ̂i = 0 similar to that shown in figure 3(c), whereas those for κ � 1.9 (and κ � 1)
correspond to advected modes similar to that in figure 3(b), but extending far from the
beam in η � −1 as expected for ū < 0 (the kink in the plot of λ̂r for ū = −1 at κ ≈ 1.9
in figure 3(a) is due to the transition between these two different eigenvalue branches).
Therefore, the enhancement of instability for ū = −1 in figure 3(a) is attributed to the
emergence of strongly ‘trapped’ standing wave modes in 1 � κ � 1.9, which allow for
efficient energy extraction from the primary beam. This mode trapping becomes possible
owing to the counterbalancing of the mean-flow advection terms by the dispersion terms
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ū ū σ
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Figure 4. (a) Maximum PSI growth rate λr for the locally confined beam profile (6.2) under inviscid flow
conditions (α = 0) as a function of mean flow ū for frequency detuning σ = −4 (∗), 0 (◦) and 10 (�).
(b) Same as (a) but for α = 0.2. (c) Maximum inviscid (α = 0) PSI growth rate as a function of σ � 0 for
ū = 0 (◦), −1 (), −2 (�), −3 (♦) and −4 (×).

in the evolution equations (3.5). Such modes play an important role in PSI for ū < 0 and
σ � 0 in general, as discussed below.

Figure 4(a) plots the maximum inviscid PSI growth rates, taken over κ , as a function of
the mean flow −4 � ū � 2 for inertial detuning parameter σ = −4, 0 and 10. Overall, the
PSI is almost entirely stabilized for ū � 1 and for ū � −4, indicating that a large enough
mean flow of either sign eventually weakens the PSI. Importantly, however, for σ = −4,
corresponding to sub-inertial subharmonic perturbations (ω0/2 < f ), PSI growth rates
actually are increased by the presence of small negative mean flow (reaching a maximum
at ū ≈ −1). This enhancement of instability is due to the confinement of the perturbation
close to the beam for σ � 0 and ū < 0 noted earlier (figure 3c), which allows energy to be
extracted from the beam more efficiently than for σ > 0 or ū > 0.

Furthermore, such ‘trapped’ modes typically occur for relatively small perturbation
wavenumber κ (e.g. figure 3a), so they are less susceptible to the stabilizing effects of
viscous dissipation. As a result, for large enough viscosity (e.g. α = 0.2 as shown in
figure 4b), PSI growth rates for sub-inertial perturbations (σ = −4) and ū < 0 can even
exceed those at inertial conditions (σ = 0). It should be noted that the kink in figure 4(a) at
ū = −2 for σ = 0 corresponds to a transition between different eigenvalue branches, in a
similar fashion to the kink at κ ≈ 1.9 in figure 3(a). Finally, figure 4(c) plots the maximum
inviscid PSI growth rate, taken over κ , as a function of −30 � σ � 0 for −4 � ū � 0.
These results indicate that negative mean flow also extends the range of PSI to primary
wave frequencies well below ω0 = 2f . This effect is reminiscent of the near-inertial PSI
of a plane wave in the presence of mean flow (see § 5), where instability only depends
on the combined parameter σ ′ = σ − ū

√
3 (cf. (5.4a,b)) and may therefore occur for

any arbitrary σ , provided a suitable ū. However, the present asymptotic theory assumes
|σ | = O(1) and thus may not be strictly valid for |σ | � 1.

7. Concluding remarks

We developed a theoretical model for near-inertial PSI of general finite-width beams in
the presence of a small background constant horizontal mean flow. As in the case of
nearly monochromatic beams and no background rotation (Fan & Akylas 2019), the mean
flow advects subharmonic perturbations and generally has a stabilizing effect on the very
short-scale disturbance limit of PSI. Here, however, an additional factor that plays an
important part in the stability of longer-scale perturbations is the mean flow direction:
a mean flow parallel to the horizontal projection of the beam group velocity is always
stabilizing, whereas a suitable small amount of mean flow in the opposite direction can
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strengthen PSI and extend the range of instability to sub-inertial perturbations. Thus, as
also noted by Richet et al. (2017) and Yang et al. (2018), the strongest PSI may be found
away from the critical frequency ω0 = 2f , depending on the mean flow. Based on our
results, ū = O(1) is sufficient to impact PSI significantly. Using N∗ = 10−3 s−1 as in
Richet et al. (2017) and for beam width L∗ = 500 m and amplitude parameter ε = 0.1,
ū = O(1) translates to a dimensional mean flow of O(5 cm s−1), in the same ballpark as
2.5 cm s−1 used in these simulations.
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