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Rotating-disk boundary-layer flow is known to be locally absolutely unstable at
R> 507 as shown by Lingwood (J. Fluid Mech., vol. 299, 1995, pp. 17–33) and, for
the clean-disk condition, experimental observations show that the onset of transition
is highly reproducible at that Reynolds number. However, experiments also show
convectively unstable stationary vortices due to cross-flow instability triggered by
unavoidable surface roughness of the disk. We show that if the surface is sufficiently
rough, laminar–turbulent transition can occur via a convectively unstable route ahead
of the onset of absolute instability. In the present work we compare the laminar–
turbulent transition processes with and without artificial surface roughnesses. The
differences are clearly captured in the spectra of velocity time series. With the
artificial surface roughness elements, the stationary-disturbance component is dominant
in the spectra, whereas both stationary and travelling components are represented in
spectra for the clean-disk condition. The wall-normal profile of the disturbance
velocity for the travelling mode observed for a clean disk is in excellent agreement
with the critical absolute instability eigenfunction from local theory; the wall-normal
stationary-disturbance profile, by contrast, is distinct and the experimentally measured
profile matches the stationary convective instability eigenfunction. The results from
the clean-disk condition are compared with theoretical studies of global behaviours in
spatially developing flow and found to be in good qualitative agreement. The details
of stationary disturbances are also discussed and it is shown that the radial growth
rate is in excellent agreement with linear stability theory. Finally, large stationary
structures in the breakdown region are described.

Key words: absolute/convective instability, nonlinear instability, transition to turbulence

1. Introduction
The exact similarity solution of the governing equations for the laminar flow

induced by the rotation of a disk of infinite radius was derived by von Kármán
(1921). Figure 1 in Imayama, Alfredsson & Lingwood (2014) shows typical examples
of laminar velocity profiles from rotating-disk boundary-layer flow. Here, quantities
U∗, V∗, W∗, r∗, z∗, θ and the non-dimensional quantities, U, V , W, R, z are defined as
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6 S. Imayama, P. H. Alfredsson and R. J. Lingwood

in Imayama et al. (2014), where ∗ denotes a dimensional value. The inflection point
of the radial velocity profile makes the flow inviscidly unstable, so-called cross-flow
(or Type-I) instability. Since the three-dimensional laminar boundary-layer flow is
similar to the swept-wing boundary layer flow, rotating-disk flow is often used as a
model for investigation of the laminar transition of swept-wing boundary-layer flows,
e.g. Gregory, Stuart & Walker (1955) and Saric, Reed & White (2003).

Linear stability analysis (e.g. Malik, Wilkinson & Orszag 1981) shows inviscidly
unstable (Type-I) stationary and travelling disturbances, and the critical Reynolds
number of the stationary mode is R=287. Here, as is usual, the definition of Reynolds
number in this study is given as the non-dimensional radius, R = r∗

√
Ω∗/ν∗, where

r∗ is local radius, Ω∗ is rotational speed and ν∗ is kinematic viscosity. Although the
viscous unstable mode (Type-II) has significantly lower critical Reynolds number at
R = 69.4 for travelling disturbances with a wave angle of −19.0◦ (Faller 1991), the
spatial growth rate is lower than for the Type-I unstable mode. The highest spatial
growth is a Type-I mode that travels significantly more slowly than the rotating disk
(Hussain, Garrett & Stephen 2011). However, the Type-I stationary unstable mode is
typically observed in experiments as the dominant structure since surface roughnesses
excite stationary disturbances continuously in the flow field, whereas the travelling
disturbances are not excited continuously without introducing an artificial source of
disturbance. Faller (1991) showed theoretically and experimentally that transition to
turbulence at lower Reynolds number via a Type-II instability mechanism is possible
if the amplitude of the external turbulence disturbance is high enough to excite the
Type-II unstable mode.

Although early studies were mainly focused on Type-I stationary instability and the
associated laminar–turbulent transition mechanism, Lingwood (1995, 1997) found that
some convectively unstable travelling disturbances become locally absolutely unstable
above the critical Reynolds number, RCA = 507.3, and she suggested that the local
absolute instability triggers the onset of transition. Past studies have shown that despite
the local absolute instability the rotating-disk flow is linearly globally stable (Davies &
Carpenter 2003), results that were supported by the experiments of Othman & Corke
(2006). However, more recent work using the linearized complex Ginzburg–Landau
equation has shown that the flow could be linearly globally unstable (Healey 2010)
if a finite disk radius is taken into account. These findings are supported by linear
and nonlinear DNS of rotating-disk flows with a finite linear region, which also show
linear and nonlinear global instability provided that the end of the linear region is
sufficiently far from RCA (Appelquist et al. 2015). Pier (2003) has theoretically shown
that above RCA rotating-disk flow is nonlinearly globally unstable, presenting a so-
called ‘elephant global mode’.

Many experimental studies of rotating-disk flow have been performed, and while
some link the onset of nonlinearity in the transition process to the onset of absolute
instability, no direct evidence of the absolute instability has been shown except by the
propagation of a wavepacket in an impulsively excited rotating-disk boundary-layer
flow (Lingwood 1996). However, a recent experimental study by Imayama et al.
(2014) of ‘unexcited’ rotating-disk flow (i.e. without artificial excitation) captured
two peaks in the spectra in the transitional regime: one identified as due to
stationary disturbances and one due to travelling disturbances. Furthermore, using
a well-polished glass disk, i.e. a clean-disk condition, Imayama et al. (2014) showed
that the breakdown of individual stationary vortices is independent of their amplitude
and seems to be fixed by the Reynolds number. Experimentally, it is very hard
to eliminate Type-I stationary disturbances completely because even if the disk
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Rotating-disk boundary-layer flow with surface roughness 7

surface is well polished, unavoidable surface roughnesses continuously excite the
stationary disturbances (see Saric et al. (2003) for a general discussion on roughness
effects in three-dimensional laminar boundary layers). Thus, it is hypothesized that
the convectively unstable transition route due to stationary disturbances, i.e. the
rough-disk condition, and the absolutely unstable transition route, i.e. the clean-disk
condition, compete with each other and depend on the level of surface roughness.
Some attempts to clarify the situation have been made by Corke and co-workers at
University of Notre Dame, USA. By introducing stationary disturbances via regularly
spaced roughness elements on the disk surface (Corke & Knasiak 1998; Corke &
Matlis 2006; Corke, Matlis & Othman 2007), they investigated the interaction between
stationary and travelling disturbances. They proposed that a triad resonance involving
stationary and travelling disturbances is an important mechanism involved in the
transition to turbulence and the creation of large-scale structures (low wavenumber
modes) in the transitional region.

The present work investigates instability of the boundary-layer flow, also using
roughness elements on the disk surface. By changing the number of roughness
elements, i.e. leaving parts of the disk free from roughnesses, the laminar–turbulent
transition with roughness elements can be directly compared with that occurring
for the clean-disk condition. The aim is to add to the understanding of competing
laminar–turbulent transition mechanisms for rotating-disk boundary-layer flow. The
characteristics of the travelling disturbances captured for the clean-disk condition are
further elaborated by comparing with eigenfunctions from linear stability theory, and
the front dynamics at the boundary of local convective and absolute instabilities are
discussed and compared with early studies. Finally, the large stationary structures
appearing in the breakdown regime are discussed and compared with early studies.

2. Experimental set-up

The detailed experimental set-up is described in Imayama, Alfredsson & Lingwood
(2012, 2013, 2014), see figure 1 in Imayama et al. (2012), and only a short description
of the set-up is given here. The disk is made from float glass and has a diameter
and thickness of 474 mm and 24 mm, respectively. However, the actual radius of
the disk was 235.5 mm since the edge of the disk was ground down with a 45◦
chamfer. The surface of the disk was polished, resulting in a surface roughness of
less than 1 µm, and the maximum imbalance was less than 10 µm. The glass disk
was mounted horizontally on top of an aluminium-alloy disk and these were connected
to a vertical shaft of a d.c. servo motor. The measurements were performed using a
single hot-wire probe positioned with a computer-controlled traversing system having
two degrees of freedom (radial and vertical directions) that was mounted above the
disk and outside the disk edge. The hot-wire sensor had a diameter of 5 µm and a
length of 1 mm and the probe was connected to a constant-temperature anemometer
(CTA).

The surface roughness elements are intended to excite Type-I stationary cross-flow
instability in the flow field. Some earlier studies, e.g. Wilkinson & Malik (1983,
1985) and Corke & Knasiak (1998), performed experiments using roughness elements.
Wilkinson & Malik (1983, 1985) used one 0.64 mm square element with a height of
0.13 mm, whereas Corke & Knasiak (1998) used ink-dot patterns as the roughnesses
with each dot having a diameter of 1.6 mm and height of 0.06 mm. In this study,
dry transfer lettering provided by Letrasetr (Letraset Ref. 13045) was used to create
each roughness element. Each element is circular and the diameter is approximately
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(a)

(A) (B) (C)

(D) (E) (F)

(b)

FIGURE 1. (a) Top view of the glass-disk surface showing the 32 roughness elements
[1–32]. The roughnesses were put at r∗ = 110± 0.5 mm, corresponding to approximately
R = 287 in the present study. (b) Illustrations of roughness configurations: (A) 32
roughnesses [1–32], (B) 24 roughnesses [1–8, 17–32], (C) 16 roughnesses [1–8, 25–32],
(D) 8 roughnesses [1–8], (E) 1 roughness [8], (F) 0 roughnesses (clean-disk condition).
The black dots indicate roughness locations (the size is not actual scale). The dashed lines
indicate R= 100, 200, 300, 400, 500, 600, respectively moving outward. The edge of the
disk is shown as an outer solid circle.

2 mm. 32 roughness elements were put at r∗ = 110 ± 0.5 mm, corresponding to
about R = 287 in this study, at angular intervals of 11.25 ± 0.4◦; see figure 1(a).
The roughness height was measured by a laser distance meter (opto NCDT 1700-10),
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FIGURE 2. (Colour online) (a) Roughness-height measurement using a laser distance
meter. (b) Measured heights, h∗, of roughnesses. The numbers in the figure indicate the
numbering of the roughness elements.

which has a resolution of 0.5 µm. The set-up is shown in figure 2(a). Since the
laser meter was fixed in the laboratory frame, the glass disk was rotated manually
and the height was sampled with a sampling frequency of 625 Hz. The height of the
roughness elements was evaluated as a relative difference between the height average
of each roughness element and the neighbouring glass-disk level, and figure 2(b)
shows the results. The averaged height of the 32 roughness elements, 〈h∗〉, is 5.4 µm
and the non-dimensional height, h= 〈h∗〉√Ω∗/ν∗, is 0.014. After measurements were
taken with 32 roughnesses, some of the elements were carefully removed using
acetone. Then measurements were successively taken with 24, 16, 8 and 1 roughness
elements; see figure 1(b). The clean-disk experiments were performed prior to the
roughness experiments.

Table 1 describes the experimental conditions in this study. Velocity profile
measurements (PP01R32–PP12R32) were performed with 32 roughness elements from
R = 335 to R = 555 with intervals of 1R = 20 where 1R is unit Reynolds number.
To keep the Reynolds number at the location of the roughness elements constant,
the rotational speed of the disk was fixed during the velocity profile measurements
and the Reynolds number at the measurement positions was changed by varying
the local radial location of a hot-wire probe. The other velocity measurements
(IP01R32–IP01R01) were performed at constant height (z = 1.3) from R = 260 to
R= 605 with intervals of 1R= 5. These measurements were also performed at a fixed
rotational speed and the Reynolds number at the measurement position was changed
by varying the local radial location of the probe. To compensate for slight variations
in kinematic viscosity due to changes in room temperature and atmospheric pressure,
the rotational speed was adjusted to keep the Reynolds number at the roughness
elements constant. The data (IP01) for the clean disk are taken from measurements
presented in Imayama et al. (2014).
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10 S. Imayama, P. H. Alfredsson and R. J. Lingwood

Case R Redge r∗ Ω∗ NR z δ95 δ∗95 δ∗1,95 δ∗2,95 H95

(mm) (r.p.m.) (mm) (mm) (mm)

PP01R32 335 615 128 1015 32 0.4–10 3.65 1.40 0.466 0.211 2.20
PP02R32 355 615 136 1015 32 0.4–10 3.66 1.40 0.457 0.212 2.16
PP03R32 375 615 144 1015 32 0.4–10 3.64 1.39 0.467 0.211 2.21
PP04R32 395 615 151 1015 32 0.4–10 3.63 1.39 0.464 0.211 2.20
PP05R32 415 615 159 1015 32 0.4–10 3.65 1.40 0.468 0.211 2.22
PP06R32 435 615 167 1015 32 0.4–10 3.63 1.40 0.471 0.211 2.24
PP07R32 455 615 174 1015 32 0.4–10 3.62 1.39 0.465 0.213 2.18
PP08R32 475 615 182 1015 32 0.4–16 3.71 1.42 0.474 0.224 2.12
PP09R32 495 615 190 1015 32 0.4–16 4.32 1.66 0.524 0.263 1.99
PP10R32 515 615 197 1015 32 0.4–20 8.80 3.37 0.740 0.471 1.57
PP11R32 535 615 205 1015 32 0.4–20 12.1 4.62 0.893 0.620 1.44
PP12R32 555 615 213 1015 32 0.4–20 14.2 5.45 1.004 0.708 1.42
IP01R32 260–605 615 100–232 1013 32 1.3 — — — — —
IP01R24 260–605 615 100–232 1005 24 1.3 — — — — —
IP01R16 260–605 615 100–232 1005 16 1.3 — — — — —
IP01R08 260–605 614 100–232 1005 8 1.3 — — — — —
IP01R01 260–605 614 100–232 1013 1 1.3 — — — — —
IP01 360–605 618 137–231 1000 — 1.3 — — — — —

TABLE 1. Experimental conditions. Here, r∗ is the local radius of the hot-wire probe, Ω∗
the rotational speed, z the normalized wall-normal position, NR the number of roughnesses,
δ95 the normalized boundary-layer thickness (δ95 = δ∗95(Ω

∗/ν∗)1/2), where δ∗95 is defined as
the wall-normal height where the azimuthal velocity is 5 % of the disk velocity, δ∗1,95 the
displacement thickness, δ∗2,95 the momentum thickness and H95= δ∗1,95/δ

∗
2,95 the shape factor.

The definitions of the boundary-layer parameters, such as non-dimensional
boundary-layer thickness, δ95, dimensional boundary-layer thickness, δ∗95, displacement
thickness, δ∗1,95, momentum thickness, δ∗2,95, and shape factor, H95, are the same as in
Imayama et al. (2014). The values of these boundary-layer parameters are discussed
in the next section, where they are compared with the values from the theoretical
similarity profiles.

3. Results

This section describes the experimental results in detail, where the different
roughness cases as well as the clean-disk case are compared. In addition, various
aspects of the results are compared with linear stability theory. The purpose is to be
able to characterize and distinguish between the convective and absolute routes to
transition. Section 3.1 describes the disturbance spectra at a Reynolds number just
downstream of the roughness elements for all cases including the clean-disk case. The
development of the mean velocity profile for the 32-roughness case is shown in § 3.2
and compared with previous clean-disk measurements. In § 3.3 the velocity-disturbance
fields, from the initiation of the disturbances to turbulent breakdown, are compared
between the different roughness cases. For the 32-roughness case each individual
vortex is traced and their growth rates and inclinations are compared with theory.
Finally, § 3.4 describes the spectral development of the disturbances, in the linear,
nonlinear and transitional regions.
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FIGURE 3. (Colour online) Spectra of single-realization (solid line) and ensemble-
averaged (dashed line) time series at R = 290 and z = 1.3, showing the initial
excitation by roughnesses: (a) 32 roughnesses [1–32], (b) 24 roughnesses [1–8, 17–32],
(c) 16 roughnesses [1–8, 25–32], (d) 8 roughnesses [1–8], (e) 1 roughness [8],
(f ) 0 roughnesses (clean-disk condition).

3.1. Spectra with and without surface roughness
Figure 3 shows the spectra of the initial disturbances excited by each roughness
configuration measured at R= 290 and z= 1.3. The solid (black) lines show spectra
of the instantaneous (or single-realization) velocity time series from a hot-wire probe,
which contain both stationary and unsteady components, and the dashed (red) lines
show spectra of the ensemble-averaged velocity time series with the unsteady and
travelling components averaged away. Note that the instantaneous velocity time series
are the time series of a hot-wire probe in the laboratory frame at a certain radius
and wall-normal height, and since the disk is moving relative to the hot-wire probe,
the instantaneous velocity time series contain components that are stationary with
respect to the disk and unsteady (including travelling-wave) components. The long
instantaneous time series were divided into segments of 2048 samples, the spectrum
for each sample length was calculated and then finally the (ensemble) average of these
spectra is presented (solid line) in each subplot of figure 3. The ensemble-averaged
time series were calculated by ensemble-averaging individual instantaneous time
series for single revolutions of the disk, and then the dashed lines in figure 3 were
calculated by taking the spectra of these ensemble-averaged time series. The ensemble
averaging of time series for individual revolutions of the disk, if done over a sufficient
number of time series, averages away the unsteady components that are not repeatable
from one revolution to the next, leaving only those components that are repeatable,
i.e. those that are fixed relative to the disk, namely the stationary components.

The peak at around ω∗/Ω∗= 1 is due to the small rotational imbalance of the disk,
where ω∗ is the disturbance frequency in the laboratory frame. Figure 3(a) shows a
clear peak in both spectra at ω∗/Ω∗ = 32 attributed to the 32 roughnesses, which
produce disturbances that are stationary in the rotating-disk frame and, therefore,
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12 S. Imayama, P. H. Alfredsson and R. J. Lingwood

give rise to oscillations 32 times per revolution of the disk in the laboratory frame.
(Note that in the rotating frame, the 32 oscillations that are fixed relative to the
disk correspond to azimuthal wavenumbers of 32 and zero disturbance frequencies.)
Furthermore, it is also shown that the roughnesses excite not only ω∗/Ω∗ = 32 but
also other stationary modes. These spiky peaks are attributed to a superposition of
unstable stationary disturbances across a range of azimuthal integer wavenumbers (in
the rotating frame), as explained in the appendix of Imayama et al. (2014). As the
number of roughnesses is decreased from 24 to 8, the mode with ω∗/Ω∗= 32 is still
excited but with decreasing relative amplitude compared with other frequencies. With
a single roughness element, no peak at ω∗/Ω∗ = 32 is observed. This is because a
single roughness element excites all wavenumbers (some growing and some decaying)
and not any particular mode. With a clean disk, the stationary-disturbance amplitude
indicated by the dashed line is very small compared with other cases. The peaks
around ω∗/Ω∗ = 67 in the spectra of instantaneous time series for the clean-disk
condition and other cases are due to electrical noise from the inverter. Unlike most
of the clean-disk data presented in this paper, the data for R = 290 in figure 3(f )
were measured after the roughness experiments were completed.

3.2. Azimuthal mean velocity profiles
The measured azimuthal mean velocity profiles with 32 roughness elements are shown
in figure 4(a) and the deviations of the mean velocity profiles from the theoretical
laminar azimuthal profile are shown in figure 4(b). At low Reynolds number, there
is close agreement between the measured azimuthal mean velocity profiles and the
theoretical profile. The experimental non-dimensional boundary-layer thickness, δ95,
and that for the theoretical laminar profile are shown as a dashed line with squares and
a solid line, respectively. At R= 475 the boundary-layer thickness starts to increase in
the vertical (wall-normal) direction. At higher Reynolds number, the boundary layer
grows rapidly and the azimuthal velocity profile deviates from the theoretical one as
shown in figure 4(b), and at R=555 the velocity profile indicates a turbulent boundary
layer. Although not presented in this paper, the azimuthal mean velocity profiles have
been measured for 16 and 8 roughness elements ([1–8, 25–32], [1–8]) at R= 395, and
those measurements confirm that the profiles match the theoretical laminar profile.

Imayama et al. (2014) show azimuthal mean velocity profiles for the clean-disk
condition at various Reynolds number in their figure 2. In comparison, it is recognized
that the transition to turbulence with 32 roughness elements occurs at lower Reynolds
number. In particular, the growth of the boundary-layer thickness starts at about
R = 475, which is lower than the onset of local absolute instability, i.e. RCA = 507.
Lingwood (1995) suggested that the local absolute instability triggers the onset
of nonlinearity and transition. However, in this case, the 32 roughness elements
produce relatively large-amplitude stationary disturbances in the flow field, as shown
in figure 3(a), and Type-I stationary cross-flow instabilities grow sufficiently to
trigger the onset of nonlinearity at R<RCA. This route to laminar–turbulent transition
therefore looks to be via a convectively unstable process, and occurs at lower
Reynolds number than for a clean disk.

Rapid growth of the boundary-layer thickness is observed at around R = 495–515.
Since the mean azimuthal velocity is calculated by azimuthally averaging instantaneous
velocity measurements, the rapid growth indicates that the azimuthal variations
of the transition process are small, which may be expected given that this case
(PP01R32–PP12R32) is controlled by an axi-symmetric array of the 32 roughness
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FIGURE 4. (Colour online) (a) Profiles of azimuthal mean velocity, V , (in the laboratory
frame) and (b) deviation of azimuthal mean velocity from the theoretical laminar profile,
1V . Profiles measured for cases PP01R32–12R32 at (A) R= 335, (B) R= 355, (C) R=
375, (D) R = 395, (E) R = 415, (F) R = 435, (G) R = 455, (H) R = 475, (I) R = 495,
(J) R = 515, (K) R = 535, (L) R = 555. The solid lines at each Reynolds number show
the theoretical azimuthal laminar velocity profiles. The solid line at z= 3.60 indicates the
normalized theoretical boundary-layer thickness for the laminar profile where V becomes
0.05. The squares with the dashed lines show the measured boundary-layer thickness (δ95)
given in table 1.

elements, see figure 2(a). As discussed later, breaking the symmetry of the surface
roughnesses by removing some of them causes azimuthal variation in the transition
process. However, this rapid growth in δ95 is also observed in the clean-disk
condition, see figure 2(a)(I, J) in Imayama et al. (2014). Furthermore, Imayama et al.
(2014) reported, for a clean disk, on the growth of both stationary and travelling
instabilities in the transition regime, and showed that the stationary vortices break
down independently of their individual amplitudes at around R = 585. So, while
the boundary layers for the axi-symmetric rough disk and for the clean disk both
show rapid growth, we hypothesize that this behaviour may be attributed to different
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FIGURE 5. The rotating-disk boundary-layer characteristics as functions of Reynolds
number on a log–log scale: @, the boundary-layer thickness, δ∗95; A, the displacement
thickness, δ∗1,95; ♦, the momentum thickness, δ∗2,95; E, the shape factor, H95. The solid
line shows the theoretical shape factor, H95= 2.23, based on the boundary-layer thickness
δ∗95. Obtained from the same data as in figure 4.

transition mechanisms. Further analysis of the stationary vortices for the rough-disk
condition is discussed in § 3.3.

Figure 5 shows the boundary-layer parameters using a log–log scale; these are
also shown in table 1. One of the characteristics of the similarity solution of the
infinite-radius rotating-disk boundary-layer flow is that the boundary-layer thickness
is constant independent of radius at fixed rotational speed and kinematic viscosity, and
equivalently independent of R. In Imayama et al. (2014) velocity profile measurements
were made at a fixed radial position and the Reynolds number was changed by
varying the rotational speed. In the present study, a constant boundary-layer thickness
was observed at low Reynolds numbers since the rotational speed was fixed and
different Reynolds numbers were obtained by varying the local radial location of
the hot-wire probe. The obtained shape factor, H95, between R = 335 and R = 455
is in good agreement with the theoretical value, H95 = 2.23, shown as a solid line.
Above R= 475, the boundary-layer thickness, displacement thickness and momentum
thickness start increasing whereas the shape factor decreases. The shape factor at
R = 555 reaches 1.42 and it is similar to the value at R = 630 for the clean-disk
condition and in good agreement with Cham & Head’s (1969) measurement results
for a turbulent rotating-disk boundary-layer flow, as discussed in Imayama et al.
(2014).

3.3. Velocity-disturbance characteristics
Measurements of the disturbance amplitude were performed for various roughness
configurations and at z = 1.3 with intervals of 1R = 5 to investigate the laminar–
turbulent transition process. To maximize the signal-to-noise ratio as in Imayama et al.
(2014), the signals were filtered with a bandpass filter 17<ω∗/Ω∗<70 below R6415
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FIGURE 6. (Colour online) The vrms distributions measured at z= 1.3 with roughnesses:
red solid line, 32 roughnesses [1–32]; black solid line, 24 roughnesses [1–8, 17–32]; blue
solid line, 16 roughnesses [1–8, 25–32]; green solid line, 8 roughnesses [1–8]; magenta
solid line, 1 roughness [8]; black dashed line, 0 roughnesses (clean-disk condition).

and with a high-pass filter 17<ω∗/Ω∗ for 4206 R 6 450 for IP01R01–IP01R32 and
PP01R32–PP06R32, where ω∗ is the signal frequency. The disturbance amplitude
was calculated as the root-mean-square (r.m.s.) of the instantaneous velocity time
series of the azimuthal fluctuation, v∗rms, normalized by the local disk velocity,
vrms = v∗rms/(r

∗Ω∗), and is plotted in figure 6.
Figure 6 shows the roughness elements located at R = 287 producing stationary

disturbances and vrms increasing from R = 285 to a peak at R = 295. The measured
amplitude of the initial excitation around R = 295 depends on the number of
roughnesses. Once the initial excitation of vrms has decreased beyond the roughness
elements, the disturbances start increasing exponentially at around R = 330. Linear
stability analysis (conducted in the rotating frame) shows that stationary disturbances
(ω= 0) with azimuthal wavenumber β = 32 become unstable at around R= 322. For
32 roughnesses (IP01R32) the slope of vrms in figure 6 changes at around R= 455 and
a maximum in vrms is found at R= 510. As the number of roughnesses is decreased
the Reynolds number of the maximum vrms increases, approaching the clean-disk
value, and also the maximum amplitudes change.

To compare the growth of stationary disturbances generated by 32 roughness
elements with local linear stability analysis, figure 7(a) shows a contour plot of
the spectra from instantaneous velocity time series of the azimuthal fluctuation for
the case IP01R32. The spectrum at each measurement Reynolds number has spiky
peaks at each integer value of ω∗/Ω∗, so the maximum amplitude at each integer
ω∗/Ω∗ was selected and plotted in figure 7(a). It is assumed that the spectra of
the instantaneous time series in this figure are mainly attributable to stationary
disturbances excited by roughness elements shown as spiky peaks in figure 3(a).

The chain line in figure 7 shows the location of the roughness elements, R= 287.
The thick solid line denotes the neutral stability curve for stationary disturbances
from local linear stability analysis using Lingwood’s (1995) code. For stationary
disturbances, ω∗/Ω∗ from the experiments corresponds to β in the linear theory. The
strong peak at ω∗/Ω∗ = 32 is due to the 32 surface roughnesses. Growth of other
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FIGURE 7. (Colour online) (a) Spectra P(ω∗) of instantaneous time series for case
IP01R32; (b) radial growth rate, −αi, derived from (a). The y-axis shows normalized
frequency (in the laboratory frame) and equivalently (provided the disturbances are fixed
relative to the rotating disk) azimuthal wavenumber, β, from local stability theory (in the
rotating frame). Thick black solid lines show the theoretical neutral curve inside of which
the flow is convectively unstable, −αi > 0, i.e. there is radial spatial growth of stationary
disturbances. Solid lines show radial spatial growth rates of −αi = 0.01, 0.02, 0.03, 0.04,
0.05 from left to right. The chain line at R= 287 shows the Reynolds number location of
the roughnesses. The dashed line at R = 415 indicates the onset of nonlinearity for this
case.

azimuthal modes ω∗/Ω∗ = 20–30 is also observed, since the surface roughnesses at
R= 287 excite not only ω∗/Ω∗= 32 but also other azimuthal wavenumbers as shown
in figure 3(a). The growth of stationary disturbances is observed in the unstable region,
i.e. inside the neutral curve. Figure 7(b) shows the radial growth rate, −αi, calculated
as 1ln vrms/1R, using 1R = 20 for each ω∗/Ω∗, from the spectra in figure 7(a).
At around R = 287 the growth of disturbances is high due to the initial excitation
but the modes outside the neutral curve are damped after the initial excitation. For
R = 300–415 the observed growth rates are in excellent agreement with local linear
stability theory both in terms of the distribution of unstable modes and quantitatively,
as shown by comparison of the black curves of radial growth rate with the contour
levels. In particular, with increasing Reynolds number the highest growth rate shifts
to higher ω∗/Ω∗ as predicted by the local theory. However, at around R = 415, a
broad range of frequencies starts growing and the experimental data do not follow
local linear stability theory, indicating the onset of nonlinearity. Figure 7(a) also
shows harmonics of the primary stationary vortices appearing around ω∗/Ω∗ = 64.
Using the criterion for the onset of nonlinearity given by Imayama et al. (2013), the
onset of nonlinearity for the 32-roughness case is at R = 415, which is significantly
lower than RCA, and is here caused by the convective growth of stationary vortices
rather than the onset of local absolute instability of travelling disturbances.

To compare disturbance profiles for stationary vortices with eigenfunctions from
local stability theory, vrms,st profiles at R=335,355,375 and 395 (PP01R32–PP04R32),
i.e. in the linear flow region as shown by figure 7, are plotted in figure 8, where the
azimuthal disturbance amplitude is obtained from the spectra of the ensemble-averaged
velocity time series in the frequency range 31.5 < ω∗/Ω∗ < 32.5. The profiles are
normalized by the maximum (peak) value. The eigenfunction of the local stationary
convective instability (R = 365, ω = 0 + 0.0022i, α = 0.4388 + 0i and β = 32) is
also plotted as a dashed line. This eigenfunction was calculated using a local linear

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

63
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.634


Rotating-disk boundary-layer flow with surface roughness 17

5

1

2

3

4

0 0.2 0.4 0.6 0.8 1.0

z

FIGURE 8. (Colour online) Profiles of azimuthal disturbance amplitude in the frequency
range 31.5 < ω∗/Ω∗ < 32.5 measured for cases PP01R32–04R32 at R = 335 (@), R =
355 (A), R = 375 (E) and R = 395 (∗), i.e. in the linear region. The dashed line is the
eigenfunction of the local stationary convective instability (R= 365, ω= 0+ 0.0022i, α=
0.4388 + 0i and β = 32). The amplitudes are normalized by the maximum disturbance
amplitude.

temporal stability code using Chebyshev polynomial discretization, and was checked
against a shooting-method code, which was previously developed by Lingwood (1995).
The results obtained with the two different methods were found to agree. As can
be seen from figure 8, the stationary-disturbance profiles excited by 32 roughness
elements are in good agreement with the eigenfunction for Type-I cross-flow stationary
vortices predicted by local linear stability theory.

Figure 9 shows contour plots of the stationary-disturbance amplitude derived from
ensemble-averaged velocity time series (approximately 1000 revolutions/ensemble).
The black dots indicate the roughness locations at R = 287. With 32 roughnesses
(IP01R32), breakdown of the stationary vortices is indicated by the amplitude
reduction located at around R= 520 with no discernible azimuthal variation, which is
to be expected given that the amplitudes of the stationary vortices are controlled by
the axi-symmetric array of artificial surface roughnesses. For the 32-roughness case the
number of stationary vortices is constant (32) from the initial excitation to breakdown.
This observation contrasts with earlier experimental observations (e.g. Wilkinson &
Malik 1985, Imayama et al. 2014), which show an increasing number of stationary
vortices (usually ranging from about 22 to 32 in the linearly unstable region) as
the Reynolds number increases. This is because in the present experiments the 32
mode was preferentially excited (as shown in figure 3) and, despite there being other
modes with higher growth rates, the 32 mode maintains the highest amplitude up to
breakdown.

Some experimental studies of the rotating-disk boundary-layer flow have captured
a low-wavenumber oscillation in the breakdown region, e.g. Kobayashi, Kohama
& Takamadate (1980), Corke & Knasiak (1998), Imayama et al. (2014). However,
figure 9(a) does not show this kind of feature in the breakdown region. A discussion
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FIGURE 9. (Colour online) Stationary-vortex distributions measured at z = 1.3 at
radial steps of 1R = 5: (a) 32 roughnesses [1–32], (b) 24 roughnesses [1–8, 17–32],
(c) 16 roughnesses [1–8, 25–32], (d) 8 roughnesses [1–8]; (e) 1 roughness [8],
(f ) 0 roughnesses (clean-disk condition). The filled contours from blue to red (colour
online) indicate −0.12, −0.1, −0.08, −0.06, −0.04, −0.02, 0, 0.02, 0.04, 0.06, 0.08, 0.1,
0.12 of the ensemble-averaged fluctuation velocity normalized by the local wall speed. The
dots indicate locations of roughnesses (the size is not to scale).

of this large-scale stationary structure is given in § 3.4 together with spectra of
azimuthal velocity time series.

Removing some of the surface roughness elements results, as shown in
figure 9(b–e), in the breakdown locations of the stationary vortices moving downstream
and approaching the clean-disk condition in figure 9(f ). The convective behaviour
of the stationary vortices generated by the roughness elements is clearly shown by
figure 9. The angular variations in the azimuthal wavenumber in regions excited
by the artificial roughnesses compared with regions not artificially excited are also
evident in figure 9(b–d) at around R = 287. The naturally most unstable stationary
azimuthal wavenumber at the onset of convective instability is around β = 22, which
is close to the wavenumber observed in figure 9(b–d) at low R in the gap between
roughnesses.

In the breakdown and turbulent regions in figure 9(b–e) a large-scale stationary
structure is captured. The azimuthal location of the structure seems to be dependent
on the positioning of the roughness elements, and particularly linked to the leading
roughness element. Figure 9(b–e) shows that the azimuthal position of the large
structure shifts to the right (positive θ direction) as the leading roughness position
moves in the same direction (namely, linked to roughness numbers 17 in (b), 23 in (c),
1 in (d) and 8 in (e)).

Figure 10(a) shows the same data as in figure 9(a) but in the circular geometry,
namely stationary disturbances from ensemble-averaged velocity time series of the
azimuthal fluctuation at z = 1.3 with 32 roughness elements (IP01R32). Black dots
indicate the locations of the roughness elements. The amplitude of the stationary
disturbances reaches a maximum at around R = 500 and then decreases as the
stationary vortices break down. Figure 10(a) is comparable with figure 12(a) in
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FIGURE 10. (Colour online) Stationary-vortex characteristics with 32 roughnesses [1–32]
measured at z = 1.3 with a radial step of 1R = 5. (a) Stationary-vortex distributions.
The filled contours from blue to red indicate the ensemble-averaged fluctuation velocity
normalized by the local wall speed at −0.12, −0.1, −0.08, −0.06, −0.04, −0.02, 0,
0.02, 0.04, 0.06, 0.08, 0.1, 0.12. Dotted lines in (a) indicate R = 300, 400, 500, 600,
respectively, moving outward. The edge of the disk, i.e. R= 615, is shown as the outer
solid circle in (a). The positions of the roughness elements are shown as the black dots
(the scale is not actual scale). (b) Each stationary-vortex amplitude, 1v0.5, where the
colour indicates the amplitude of 1v0.5 at R= 350. The solid line shows the disturbance
amplitude calculated from the radial growth rate of linear stability analysis for β = 32;
note that the vertical position is arbitrary. (c) The angle distributions of each stationary
vortex, where the colour indicates the reference amplitude shown in (b). The solid line
shows the angle predicted by local linear stability analysis for β = 32.
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Imayama et al. (2014), which also shows stationary disturbances but for the clean
disk. In both cases, very little azimuthal variation is observed, but here that is due
to the controlling effect of the 32 roughness elements located in an equi-angular
arrangement. While also largely independent of angular position, this is in contrast
to the mechanism depicted in figure 12(a) in Imayama et al. (2014) for the clean
disk where the stationary vortices break down independently of their amplitude
but at a fixed R. Figure 10(b) shows peak-to-peak amplitudes of each stationary
vortex, 1v0.5, measured at z= 1.3; the same quantity is presented in figure 13(a) in
Imayama et al. (2014) for the clean-disk condition. These results are compared with
the disturbance amplitude calculated from the radial growth rate of linear stability
analysis for β = 32 shown as the thick solid line (note that the vertical position is
arbitrary). At around R= 500, the nonlinear-saturation region of the stationary vortices
shows qualitatively and quantitatively similar behaviour for all stationary vortices, as
is expected given the axi-symmetric roughness array. Comparing figure 10(b) with
figure 13 in Imayama et al. (2014) for the clean disk shows that the amplitude
behaviour in the nonlinear-saturation region here has slightly greater amplitude
variation (for clearer figures, see figures 10 and 11 in paper 3 in Imayama (2012)).
The angle distributions are also presented in figure 10(c) and, for the linearly unstable
region, they are in good agreement with the angle predicted by local linear stability
analysis shown as a solid line.

3.4. Comparisons of velocity-disturbance spectra
In the previous section, the properties of artificially excited stationary disturbances
were described and found to be in good agreement with results of local linear stability
theory. Here, in this section, comparisons of the spectra for the different roughness
configurations are given to explain the potential competition between laminar–turbulent
transition routes for the rotating-disk boundary-layer flow, in particular comparing the
convectively and absolutely unstable transition routes.

The cases of 32, 8 and 0 roughnesses are chosen for comparison. Figure 11(a)
shows the development of vrms at z = 1.3 for these three conditions. Spectral
comparisons are made at three selected vrms amplitudes shown as dashed lines. For
example, in figure 11(a), (A, B, C), which are for R= 360, 370, 450, respectively, are
selected to compare the spectra from the three different roughness cases. (D, E, F)
and (G, H, I) are selected in a similar way. Figure 11(b) shows the spectra obtained
both from ensemble-averaged time signals and from the original time signals. In all
cases, the peak at around ω∗/Ω∗ ≈ 1 is due to the small rotational imbalance of the
disk (note different vertical scales for the three rows). In figure 11(b)(A, B, C), the
spiky peaked region centred around ω∗/Ω∗≈ 30 is observed for both single-realization
and ensemble-averaged time series. This indicates that the peaks are due to stationary
disturbances rather than travelling ones, since travelling disturbances are averaged
away in the ensemble-averaging process. For all three cases, (A, B, C), the peaks in
the high-resolution spectra are spiky because the stationary-vortex field is composed of
a superposition of multiple unstable integer azimuthal wavenumbers excited by surface
roughnesses, which a hot-wire probe records as a frequency-modulated time series;
see Imayama et al.’s (2014) appendix. At this amplitude the qualitative characteristics
of these spectra are similar across the roughness configurations.

The spectra for cases (D, E, F) are at higher amplitude than (A, B, C). The
Reynolds numbers corresponding to (D, E, F) are R = 435, 450, 510, respectively.
At this amplitude, harmonics of the primary spectral contribution from the stationary
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FIGURE 11. (Colour online) The disturbance growth and spectra corresponding to the
marked Reynolds numbers and roughness cases. (a) vrms measured at z = 1.3: red solid
line, 32 roughnesses [1–32]; green solid line, 8 roughnesses [1–8]; black solid line, 0
roughnesses (clean-disk condition). The conditions labelled A–I are selected to allow
comparison of the spectral characteristics of each roughness configuration. (b) Spectra of
single-realization (solid line) and ensemble-averaged (dashed line) time series for different
roughness configurations: (A, D, G) 32 roughnesses [1–32]; (B, E, H) 8 roughnesses [1–8];
(C, F, I) 0 roughnesses (clean-disk condition). Labels (A–I) correspond to those in (a).

vortices are observed at around ω∗/Ω∗ = 60. This indicates the appearance of
nonlinearity. In cases (D, E), the onset of nonlinearity occurs at lower R than the
onset of local absolute instability, RCA = 507.3, which allows us to attribute the
onset of nonlinearity to the growth of Type-I cross-flow instability excited by the
surface roughnesses. However, in (F), for the clean disk, a new feature is captured
in the spectrum at R = 510 indicated by the arrow, i.e. a smooth elevated region in
the spectrum of the instantaneous time series. This smooth peak was first found in

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

63
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.634


22 S. Imayama, P. H. Alfredsson and R. J. Lingwood

10–2

10–4

10–6

10–8

10–10

10–2

10–4

10–6

10–8

10–10

0 20 40 60 80 0 20 40 60 800 20 40 60 80

(a) (b) (c)

(d ) (e) ( f )

FIGURE 12. (Colour online) Spectra of single-realization (solid line) and ensemble-
averaged (dashed line) time series for the clean-disk condition at R= 510 and (a) z= 0.6,
(b) z= 0.8, (c) z= 1.3, (d) z= 1.6, (e) z= 2.0, (f ) z= 4.0.

Imayama et al. (2014), where it was shown that it is due to a travelling mode rather
than a stationary one since it is not captured in the spectra of ensemble-averaged
time series. At higher amplitudes, at R = 475, 505, 550, the development of vrms

shows a change of slope in figure 11(a), and for cases (G, H, I) the corresponding
spectra are shown. The growth of stationary disturbances with R is evidenced by the
spiky spectra in (G, H), whereas for the clean disk the growth of both stationary and
travelling disturbances is shown in figure 11(b)(I). For case (H), the spectra are very
spiky, in particular for the instantaneous time series. This may be caused by the
strong asymmetry in roughness (figure 1b (D)), resulting in asymmetry of the
stationary-vortex distribution. Similar results were captured in Siddiqui et al. (2013).
Spectra in their figure 5 showed the onset of nonlinearity before RCA and also spiky
peaks at various ω∗/Ω∗ similar to case (H).

To investigate the characteristics of the smooth peak captured in figure 11(b)(F)
further, figure 12 shows spectra of single-realization and ensemble-averaged time
series measured at R = 510 at various wall-normal heights. In addition to the spiky
peaks, smooth peaks centred on ω∗/Ω∗ ≈ 40 are also observed only in the spectra
of single-realization time series. These smooth peaks are more obvious at higher
wall-normal positions and are due to travelling disturbances (as they are not shown
in spectra of ensemble-averaged time series). Although the observed frequency of
about ω∗/Ω∗ ≈ 40 does not fully agree with theoretical prediction of the local
absolute instability (ω∗/Ω∗ = 50.3 at RCA) by Lingwood (1997), Imayama et al.
(2014) discussed that ‘this perhaps corresponds to the global mode realized in the
physical flow, which has a more complex base flow than accounted for in theoretical
analyses due, for example, to unavoidable convectively unstable stationary vortices’.
The harmonics of these primary peaks are also shown in figure 12, indicating the
appearance of nonlinearity, which is highly repeatable for the clean rotating-disk
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FIGURE 13. (Colour online) Profiles of azimuthal disturbance amplitude from the
clean-disk condition. The stationary-disturbance amplitude is obtained by bandpass filtering
in the frequency range 31.5<ω∗/Ω∗< 32.5, whereas the travelling disturbance amplitude
is obtained from the frequency range 40< ω∗/Ω∗ < 50. The solid line is the theoretical
eigenfunction of the local absolute instability at RCA obtained with parameters from
Lingwood (1997). The dashed line is the eigenfunction of the local convective instability
for stationary disturbances (R = 507.3, ω = 0.00447i, α = 0.268 and β = 31). The
amplitudes are normalized by the maximum disturbance amplitude. (a) @, stationary
disturbance;E, travelling disturbance profiles at R=510. (b) Stationary-disturbance profiles
at R= 490 (A), R= 510 (♦), R= 530 (∗). (c) Travelling disturbance profiles. The symbols
are the same as in (b).

flow. As shown in figures 5 and 6 of Imayama et al. (2014), for a clean disk
and Reynolds numbers above R ≈ 510 the nonlinear effects for both stationary
and travelling instabilities become dominant and the flow undergoes transition to
turbulence.

Imayama et al. (2014) showed wall-normal profiles of the unsteady disturbance at
several Reynolds numbers in their figure 7. Since the unsteady components contain not
only travelling disturbances but also unsteadiness of stationary ones, here, in order to
extract purely travelling disturbances from the single-realization time series, bandpass
filtering over the range of 40 6 ω∗/Ω∗ 6 50 was applied. Figure 12 shows that over
this range of frequencies the signal is mainly composed of travelling disturbances.

Figure 13(a) shows profiles of stationary and travelling disturbances at R = 510
from our experiments and eigenfunctions from linear stability theory of the stationary
convective instability mode and the critical absolute instability mode. The profiles
for the stationary disturbance were filtered in the same way as in figure 8. The
profiles in figure 13 are normalized by the maximum amplitude of each profile. The
eigenfunction for the stationary mode is calculated with the following parameters:
with R and β fixed at 507.3 and 31, respectively, with the real part of ωc, which
is the angular frequency of the disturbance in the rotating frame, set to zero, and
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solving temporally for real α (radial wavenumber) and imaginary ωc, giving α= 0.268
and ωc = 0.00447i. The parameters for the critical absolute instability are given by
Lingwood’s (1997) table 3. The experimental profile for the stationary disturbances
corresponds to the eigenfunction of the stationary mode very closely. Furthermore,
the experimental profile for the travelling disturbances is in excellent agreement with
the distinct eigenfunction of the critical absolute instability mode. The excellent
correspondence between experimental and theoretical results shown in figure 13
indicates that the observed travelling disturbances shown by the smooth peaks in
figure 12 are attributable to the absolute instability. This is the first such experimental
observation of a global mode directly attributable to the absolute instability of the
‘unexcited’ rotating-disk boundary-layer flow. Figure 13(b,c) shows similar profiles to
figure 13(a) but at R = 490, 510, 530 together with their respective eigenfunctions.
The profiles are normalized by each identified maximum amplitude as in figure 13(a).
At each Reynolds number the experimental data adhere nicely to the theoretical
eigenfunctions. Although the local absolute instability only exists above RCA, as
observed in the numerical study between two rotating disks (i.e. in an open rotating
cavity) by Viaud, Serre & Chomaz (2008), the global mode is expected to connect
smoothly to the upstream convectively unstable region, giving a nonlinear front
straddling RCA. Therefore, as expected, the profile of the travelling disturbance
at R = 490 indicates the upstream matching between travelling convectively and
absolutely unstable regions.

Figures 12 and 13(a) here, and figure 6 in Imayama et al. (2014), show that, for the
clean-disk condition, travelling disturbances due to the absolute instability emerge at
R≈ 510 and the latter paper (Imayama et al. 2014) shows that the total disturbance
field saturates nonlinearly at a well-defined Reynolds number independent of the
amplitude of stationary disturbances. This evidence of the influence of a travelling
global mode supports Lingwood’s (1995) hypothesis that (for a clean disk) the local
absolute instability above RCA triggers the onset of nonlinearity and transition to
turbulent flow. There is some debate about the route to nonlinearity, i.e. whether
that could be via a linear global instability (Healey 2010; Appelquist et al. 2015) or
whether it is via a nonlinear global mode (Pier 2003). In either case the global mode
would be located by RCA. For example, Huerre & Monkewitz (1990) suggested that
the global behaviour in spatially developing flows acts as ‘self-excited, low-amplitude
wavemaker in the region of local absolute instability’. Pier & Huerre (2001) proposed
that ‘nonlinear global instability takes place as soon as local absolute instability
arises at some point in the flow’ and Pier, Huerre & Chomaz (2001) also suggested
that ‘the front acts as a wavemaker which sends out nonlinear travelling waves in
the downstream direction’, the so-called primary nonlinear steep-fronted global mode
(Pier et al. 1998; Pier 2003). The present experimental results, the emergence of a
travelling global mode and the onset of nonlinearity, align with these theories on
front dynamics at the boundary between local convective and absolute instability.

For comparisons of the later stage of the transition process for the three different
roughness configurations, figure 14(a) shows the vrms distributions for the cases of 32,
8 and 0 roughnesses at higher Reynolds number than figure 11(a). At this stage of
the transition process, data for the comparisons are selected to give similar points in
the transition process rather than for their amplitudes.

Figure 14(b)(J, K, L) corresponds to R= 495, 545, 570, respectively. (J) presents a
relatively narrow peak at ω∗/Ω∗ = 32 and the harmonics indicate strong nonlinearity.
The spectrum of the instantaneous time series for case (K) shows that energy is
distributed across a broad frequency range because breakdown of the stationary
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FIGURE 14. (Colour online) The disturbance growth and spectral comparisons at a later
stage of the transition process. (a) vrms measured at z= 1.3: red solid line, 32 roughnesses
[1–32]; green dashed line, 8 roughnesses [1–8]; black chained line, 0 roughnesses (clean-
disk condition). vrms labelled by J–R are selected to compare the spectral characteristics of
each roughness configuration. (b) Spectra of single-realization (solid line) and ensemble-
averaged (dashed line) time series for different roughness configurations: (J, M, P) 32
roughnesses [1–32]; (K, N, Q) 8 roughnesses [1–8]; (L, O, R) 0 roughnesses (clean-disk
condition). Labels (J–R) correspond to those in (a).

vortices excited by eight roughness elements has already occurred, as shown in
figure 9(d). However, figure 9(d) also shows that the region that is not influenced
by the roughnesses has yet to break down at this Reynolds number (R= 545). This
azimuthal variation in amplitude of stationary disturbances could cause these spiky
peaks across the broad frequency range. The spectrum of the instantaneous time
series in figure 14(b)(L) for the clean disk perhaps also captures the growth of a
smooth part of the spectrum attributed to the global mode, as indicated by the arrow.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

63
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.634


26 S. Imayama, P. H. Alfredsson and R. J. Lingwood

The cases (M, N, O) correspond to R = 510, 570, 585, respectively, where the
maximum vrms are observed for the three roughness cases. Spectra of instantaneous
time series in these figures capture the growth of energy across a broad frequency
range, indicating breakdown to turbulence. Finally, (P, Q, R) show the final stage
of the laminar–turbulent transition, corresponding to R = 520, 590, 600, respectively.
It is recognized that the maximum value (excluding peaks at 32 etc.) of P(ω∗)
from the ensemble-averaged time series in (P) is lower than for the two other cases
(Q, R), as indicated by the arrow in (P). These low-frequency contributions correspond
to the large-scale stationary structures that can appear at breakdown and in the
turbulent region of the rotating-disk flow, as discussed in earlier sections of this
paper and other papers (Kobayashi et al. 1980; Corke & Knasiak 1998; Imayama
et al. 2014). The main difference between (P) and (Q, R) is the azimuthal variation of
the stationary-disturbance amplitude, as shown in figure 9, which, therefore, appears
to be important for the growth of these large-scale stationary structures. This finding
is not inconsistent with Corke & Knasiak’s (1998) suggestion that resonance between
stationary and travelling modes is the trigger.

4. Conclusions

In the present paper, an extensive experimental study has been performed of rotating-
disk boundary-layer flow with surface roughnesses. The motivation for the rough-disk
study was to excite Type-I stationary disturbances and to investigate the transition to
turbulence via a convectively unstable route. Several roughness cases were studied,
starting with 32 equally spaced roughnesses with an average height of 5.4 µm at
R= 287. Then the number of roughnesses was reduced by removing some of the 32
roughnesses. In the linear regime, the excited stationary disturbances are in excellent
agreement with local linear stability theory in terms of growth rate and eigenfunctions.
With artificial roughness elements on the disk surface, the transition to turbulence
occurs earlier than for a clean disk and proceeds via a convective route before the
flow can become locally absolutely unstable. The contour map of ensemble-averaged
time series in figure 9 clearly shows the convective behaviour of the stationary vortices
as the number of roughness elements is reduced. The leading edge of the array of
roughness elements is shown to create a wedge-like large stationary structure in both
the breakdown and turbulent regions of the flow.

Spectral comparisons for different roughness configurations, in particular with
and without artificial roughnesses, were performed to investigate the two competing
transition mechanisms, i.e. convectively unstable transition and absolutely unstable
transition. Without roughness elements, given the smoothness of the disk and the
nature of our experimental findings, our results are considered to fall into the
clean-disk category. The differences are clearly captured at the onset of nonlinearity.
With the surface roughness elements, the onset of nonlinearity is observed at lower
Reynolds number than the onset of local absolute instability. The spectra show only
spiky peaks attributed to the superposition of multiple unstable stationary disturbances
with integer azimuthal wavenumber, which indicates that the nonlinearity is caused
by the growth of Type-I cross-flow stationary vortices. However, for the clean disk,
the spectra of the instantaneous time series show the emergence of a smooth peak
at around ω∗/Ω∗ = 40, which was shown to be due to travelling disturbances in
Imayama et al. (2014). The emergence of the travelling instability and corresponding
onset of nonlinearity is evidence of the absolute instability and is in contrast to the
rough-disk case.
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To elaborate further on the travelling disturbances, the spectra of azimuthal
instantaneous fluctuation velocity at R= 510 (at various z) are shown. These spectra
have spiky and smooth peaks representing stationary and travelling instabilities,
respectively, with the travelling instabilities showing more clearly at higher z. Profiles
of the azimuthal fluctuation velocity of the travelling disturbances are produced
by applying a bandpass filter. Profiles of the azimuthal fluctuation velocity of the
stationary disturbances are also shown. These experimental profiles are compared
with eigenfunctions calculated from local linear stability theory. It is found that the
experimental profile of the travelling disturbances is in excellent agreement with
the theoretical eigenfunction of the critical local absolute instability. The profiles of
the stationary disturbances agree very well with the distinct stationary convective
eigenfunction.

At the later stage of transition, it was found that the large-scale stationary structure
observed in the breakdown region is significantly damped in the 32-roughness case.
This observation is in contrast to other roughness configurations including the clean-
disk condition (Imayama et al. 2014) and other experimental studies (Kobayashi et al.
1980; Corke & Knasiak 1998; Corke & Matlis 2006; Corke et al. 2007). Corke and
co-workers suggested that the large stationary structure in the breakdown region is due
to interactions (resonances) between stationary and travelling instabilities. Here, our
experimental results show that the variation in azimuthal amplitude of the stationary
disturbances is an important factor in the emergence of the large-scale structure, but
this is not necessarily inconsistent with resonance being a causal factor.

The presented results show that the flow is sensitive to surface roughness, i.e. very
little roughness height is required to trigger strong Type-I cross-flow stationary
vortices. Less attention to treatment of surface roughness may easily cause transition
to turbulence via a convectively unstable route. However, if the surface of the disk is
smooth and clean enough, the flow remains linear up to high R, which allows for the
emergence of travelling disturbances. The present results for a clean disk are briefly
compared with theoretical studies of global behaviours in spatially developing flow
and found to be in good qualitative agreement. They show the onset of nonlinearity at
R≈ 510 and a clear link from the onset of local absolute instability to the nonlinear
(travelling) global mode. This may explain the high repeatability in Reynolds number
for the onset of transition of rotating-disk boundary layers reported by Imayama et al.
(2013) in different facilities with smooth clean disks.
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