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Abstract

For a multivariate random walk with independent and identically distributed jumps
satisfying the Cramér moment condition and having mean vector with at least one
negative component, we derive the exact asymptotics of the probability of ever hitting
the positive orthant that is being translated to infinity along a fixed vector with positive
components. This problem is motivated by and extends results of Avram et al. (2008) on
a two-dimensional risk process. Our approach combines the large deviation techniques
from a series of papers by Borovkov and Mogulskii from around 2000 with new auxiliary
constructions, enabling us to extend their results on hitting remote sets with smooth
boundaries to the case of boundaries with a ‘corner’ at the ‘most probable hitting point’.
We also discuss how our results can be extended to the case of more general target sets.
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1. Introduction

The present work was motivated by the following two-dimensional risk model from [2].
Consider two insurance companies that divide between them both claims and premia in
specified fixed proportions, so that their risk processes U1 and U2 are respectively

Ui(t) := ui + cit− Si(t), i= 1, 2,

where the ui > 0 are the initial reserves, the ci > 0 are the premium rates, and their respective
claim processes Si(t)= δiS(t) are fixed proportions (the δi > 0 are constants, δ1 + δ2 = 1) of
a common process S(t) of claims made against them. It is assumed [2] for definiteness that
c1/δ1 > c2/δ2, i.e. the second company receives less premium per amount paid out and so can
be considered as a reinsurer. Avram et al. [2] mostly dealt with the two ruin times

τor := inf{t≥ 0: U1(t)∧U2(t)< 0}, τsim := inf{t≥ 0: U1(t)∨U2(t)< 0},
at which at least one of the two or both of the companies are ruined, respectively. The
key observation made in [2] was that both times are actually the first crossing times of
some piecewise linear boundaries by the univariate claim process S(t). Thus, the problem of
computing the respective ‘bivariate ultimate ruin probabilities’

�or(u1, u2) := P(τor <∞), �sim(u1, u2) := P(τsim <∞)
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is reduced to finding univariate boundary crossing probabilities. When u1/δ1 ≥ u2/δ2, the latter
problem further reduces to simply computing usual univariate ruin probabilities. However, in
the alternative case the situation is more interesting. For that latter case, assuming that S(t)
is a compound Poisson process with positive jumps satisfying the Cramér moment condition,
Theorem 5 of [2] gives the exact asymptotics of �sim(as, s) as s→∞, of which the nature
depends on the (fixed) value of a> 0. Namely, there exist a function κ(a)> 0 and values 0≤
a1 < a2 ≤∞ such that

�sim(as, s)= (1+ o(1))

{
C(a)e−κ(a)s, a 	∈ (a1, a2),

C(a)s−1/2e−κ(a)s, a ∈ (a1, a2),
as s→∞. (1)

However, the approach from [2] does not work in the case of a nondegenerate structure of the
claim process (S1(t), S2(t)), and so the general problem of finding the exact ruin probability
asymptotics remained open.

We extend the asymptotics of the simultaneous ruin probability derived in Theorem 5 of [2]
to a much more general class of d-variate, d≥ 2, Sparre Andersen-type ruin models, in which
there are d companies receiving premiums at the respective constant rates ci, i= 1, . . . , d,
and the claim events occur at the ‘event times’ τ (j), j≥ 1, in a renewal process N(t) (with
independent and identically distributed (i.i.d.) interclaim times τ (j)− τ (j− 1)> 0, τ (0) := 0).
For the jth claim event, the amount company i has to pay is the ith component of a d-
variate random vector J(j) := (J1(j), . . . , Jd(j)) with a general (light tail) distribution, the
vectors (τ (j)− τ (j− 1), J(j)), j≥ 1, forming an i.i.d. sequence. Recall that in Theorem 5
of [2], J(j)= (δ1, δ2)J(j) for an i.i.d. sequence of claims J(j), N(t) being a Poisson process
independent of the J(j). We achieve this by reducing the problem to finding the asymptotic
behavior of the hitting probability of a remote set by an embedded random walk (RW). The
latter problem was solved in [10], but only in the case when the boundary of that set is smooth
at the ‘most probable (hitting) point’ of that set by the RW. In that case, the asymptotics of the
hitting probability are of the form represented by the first line on the right-hand side of (1).

The main contribution of the present work is an extension of the multivariate large deviation
techniques from [10] to the cases where the boundary of the remote set is not smooth at the
‘global most probable point’ (GMPP; for the formal definition thereof, see the text after (18)
below), but, rather, that point is located at the ‘apex of the corner’ on the boundary. It is in
such cases that the hitting probability asymptotics (in the bivariate case) are of the form shown
in the second line on the right-hand side of (1). The condition a ∈ (a1, a2) in (1) is equivalent
to the GMPP being at the ‘corner’ of the remote quadrant (of which the hitting will mean
simultaneous ruin in the bivariate case), while a 	∈ [a1, a2] corresponds to the GMPP being on
one of the sides of the quadrant, which is the ‘smooth boundary case’ dealt with in [10] (the
boundary cases a= ai, i= 1, 2, correspond to the situations discussed in Remark 3 below).
In Remark 1 we explain the ‘genesis’ of the power factor in the asymptotics in the case when
the GMPP is at the ‘corner point’ of the target set. It turns out that in the case d> 2 there is
a whole spectrum of different power factors that can appear in front of the exponential factor
for the asymptotic representation of the hitting probability, depending on the dimensionality of
the ‘target set’ boundary component to which the GMPP belongs; see Remark 2 below.

To explain in more detail, let

Q+ := {x= (x1, . . . , xd) ∈Rd : xj > 0, 1≤ j≤ d}.
Next note that, in the abovementioned d-variate Sparre Andersen-type model, the simultaneous
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ruin event is equivalent to the bivariate RW

S(n) :=
n∑

j=1

ξ (j), n= 0, 1, 2, . . . , (2)

with i.i.d. jumps ξ (j) := J(j)− c(τ (j)− τ (j− 1)), j≥ 1, c := (c1, . . . , cd), hitting the set u+
cl(Q+), u := (u1, . . . , ud) ∈Q+ being the vector of initial reserves of the d companies (here
and in what follows, cl(V) and int(V) stand for the closure and interior of the set V ,
respectively), i.e.

{τsim <∞}= {η(u+ cl(Q+))<∞}, where η(V) := inf{n≥ 0: S(n) ∈ V}
is the first hitting time of the Borel set V ⊂R

d by the RW S. Assuming further that u= sg for
a fixed g ∈Q+ and an s> 0, we see that u+ cl(Q+)= sG, where

G := g+ cl(Q+).

Therefore, the problem of finding the asymptotics of ψsim(sg) as s→∞ dealt with in
Theorem 5 of [2] is reduced to a special case of the main problem considered in [10], i.e.
computing the asymptotics of the probability

P(η(sG)<∞) as s→∞. (3)

However, as already mentioned, the main condition imposed in [10] on the admissible sets
G in (3) was that the boundary of sG at the ‘most probable point’ of that set is smooth (for
precise definitions, see [10, pp. 248, 256]). This is not satisfied in the most interesting case of
our ruin problem, where that point is located at the ‘corner’ sg of the set sG (which means,
roughly speaking, that given that the RW S eventually hits sG, it is most likely that it does that
in vicinity of that point sg). Thus, the results of [10] are not applicable in that case. In this
paper, we extend them to such situations, obtaining asymptotics for (3) of the form somewhat
different from those in the ‘smooth boundary case’. In particular, in the case d= 2 our result
implies the relation in the second line in (1) for our Sparre Anderson-type model.

Roughly speaking, the asymptotics of (3) in the d-dimensional case, when the boundary of
G is smooth in the vicinity of the most probable point, was derived in [10] as follows. Let

�[y) :=
d∏

j=1

[yj, yj +�) (4)

be the cube with the ‘left-bottom’ corner y and edge length �> 0. Starting with the
representation

P(η(sG)<∞)=
∑
n≥1

P(η(sG)= n), (5)

we compute the value of the summands on the right-hand side (RHS) of (5) by summing terms
of the form

P(η(sG)= n | S(n) ∈�[y))P(S(n) ∈�[y)) (6)

over y-values on a�-grid in a half-space (used instead of sG when s is large, which is possible
since the boundary of the set is smooth in the vicinity of the most probable point). The second
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factor in (6) is evaluated using the integro-local large deviation theorem [8], whereas the first
factor can be computed using the smoothness of the boundary ∂G by reducing the problem to
evaluating the distribution of the global minimum of a one-dimensional RW with a positive
trend. Finally, the sum on the RHS of (5) is computed using the Laplace method [11].

A direct implementation however of the above scheme in our case encounters serious
technical difficulties (in particular, there is no abovementioned reduction to the univariate
problem when computing the first factor in (6)). That may explain why Borovkov and
Mogulskii [10] only dealt with the smooth boundary case. In the present paper, we employ a
more feasible approach which introduces an auxiliary half-space Ĥ ⊃G, ∂Ĥ ∩G= {g}, such
that the logarithmic asymptotics of P(η(sĤ)<∞) as s→∞ are the same as for P(η(sG)<
∞), and the ‘most probable points’ for sĤ and sG both coincide with sg (cf. Lemmata 2
and 3 in Section 3). Then, in Theorem 2 below, we use the approach from [10] together with
the integro-local large deviation theorem and the total probability formula to derive the fine
asymptotics for the probabilities of the form

P(η(sG)<∞, η(sĤ)= n, S(n) ∈ sg+�[y)). (7)

Next we partition Ĥ into a narrow half-cylinder with the generatrix orthogonal to ∂Ĥ, which
covers the ‘very corner of sG’, and its complement in Ĥ (as shown in Figure 3 in Section 3). The
main contribution to P(η(sG)<∞) is computed by ‘integrating’ (7) in y over that half-cylinder
and then by summing the resulting expressions (denoted by P3,n in the proof of Theorem 1 in
Section 3; see (57) and (58)) over n using the Laplace method. The total contribution of the
terms (7) with y outside that half-cylinder (which is equal to the sum P1 + P2; cf. (54)) is
shown to be negligibly small compared to the abovementioned main term.

To give precise definitions of the key concepts like the ‘most probable point’ and exact
formulations of our results, we will need to introduce some notation and a number of important
concepts from the large deviation theory for RWs with i.i.d. jumps in R

d. This is done in
Section 2, which also contains a summary of the key properties of the deviation rate functions
defined and discussed there, some auxiliary constructions, and the main result (Theorem 1) of
the paper. Further auxiliary constructions and assertions are presented in Section 3, together
with the proof of Theorem 1.

2. Some preliminaries and the main result

In this section we will present and discuss the key concepts needed for the Cramér
large deviation theory, in particular, the first and second (deviation) rate functions. For an
introduction to large deviation theory for univariate RWs and the main properties of the first
rate function, see Chapter 9 of [5].

Unless stated otherwise, all the concepts and properties discussed in this section were
introduced and/or established in [6] and [7]. Moreover, we will introduce three important
conditions assumed to be met in the main theorem that we state at the end of the section.
We conclude this section with remarks commenting on the difference between the forms of
the asymptotics of the hitting probabilities in the smooth and nonsmooth cases, and also on
possible extensions of our main result.

For vectors u= (u1, . . . , ud) and v= (v1, . . . , vd) ∈Rd, d≥ 2, we set 〈u, v〉 :=∑d
i=1 uivi and ‖v‖ := 〈v, v〉1/2. For a function f ∈C1(S), S being an open subset of R

d,
and x ∈ S, we denote by f ′(x) :=∇xf (x), where ∇x := (∂/∂x1, . . . , ∂/∂xd), the gradient
of f at x. (On a couple of occasions, where it may be unclear with respect to what variable
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the gradient is computed, we will still have to use the nabla with the respective subscript.) By
f ′′ we denote the Hessian of the function f ∈C2(S),

f ′′(x) :=∇�x ∇x f (x),

where ‘�’ denotes transposition,
Let ξ be a random vector in R

d satisfying the following condition.

(C1) The distribution F of ξ is nonlattice and there is no hyperplane K = {x : 〈a, x〉 = c} ⊂R
d

such that F(K)= 1.

The moment generating function of ξ ∈Rd is denoted by

ψ(λ) :=Ee〈λ,ξ〉 =
∫

e〈λ,x〉F(dx), λ ∈Rd.

Let �ψ := {λ ∈Rd : ψ(λ)<∞} be the set on which ψ is finite. It is well known that �ψ is
convex. We will need the following Cramér moment condition imposed on F:

(C2) �ψ contains a nonempty open set.

Under condition (C2), for a fixed λ ∈�ψ , the Cramér transform Fλ of the distribution F for
that λ is defined as the probability distribution given by

Fλ(W) := E(e〈λ,ξ〉; ξ ∈W)

ψ(λ)
, W ∈B(Rd),

where B(Rd) is the σ -algebra of Borel subsets of Rd (see, e.g. [3] and [4]). Denote by ξ(λ) a
random vector with distribution Fλ.

The first rate function �(α) for the random vector ξ is defined as

�(α) := sup
λ∈�ψ

(〈α, λ〉 − lnψ(λ)), α ∈Rd, (8)

which is the Legendre transform of the cumulant function lnψ(λ). For α ∈Rd, denote by λ(α)
the vector λ at which the upper bound in (8) is attained (when such a vector exists, in which
case it is always unique):

�(α)= 〈α, λ(α)〉 − lnψ(λ(α)).

Define the Cramér range �� for F as the set of all vectors that can be obtained as the
expectations of the Cramér transforms Fλ of ξ for λ ∈ int(�ψ ):

�� :=
{
α = ψ

′(λ)

ψ(λ)
≡ ( lnψ(λ))′, λ ∈ int(�ψ )

}
.

The rate function � is convex on R
d and strictly convex and analytic on ��. Moreover, for

α ∈��, we have (cf. [6])
λ(α)=�′(α). (9)

Introduce the notation F(α) := Fλ(α) and ξ (α) := ξ(λ(α)), and define

S(α)(n) :=
n∑

i=1

ξ (α)(i), n= 0, 1, . . . , (10)
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where the ξ (α)(i) are independent copies of ξ (α). For α ∈��, we can easily verify that

E ξ (α) = lnψ(λ)′|λ=λ(α) = α, cov ξ (α) = lnψ(λ)′′|λ=λ(α) = (�′′(α))−1.

Denote by
σ 2(α) := det cov ξ (α) = det (�′′(α))−1

the determinant of the covariance matrix of ξ (α).
The probabilistic interpretation of the first rate function is as follows (see, e.g. [10]): for any

α ∈Rd, letting Uε(α) denote the ε-neighborhood of α,

�(α)=− lim
ε→0

lim
n→∞

1

n
ln P

(
S(n)

n
∈Uε(α)

)
,

Accordingly, for a set B⊂R
d, any point α ∈ B such that

�(α)= inf
v∈B
�(v) (11)

is called the most probable point (MPP) of B. If such an α is unique, we denote it by

α[B] := arg min
v∈B

�(v). (12)

Since� is convex,�(α)≥ 0 for any α ∈Rd, and�(α)= 0 if and only if α =Eξ for Eξ /∈ B,
we always have

α[B]= α[∂B], (13)

so that the MPP in that case is on the boundary of B.
The concept of the MPP for the set G is related to the behavior of P(S(n) ∈ sG) as s→∞,

n� s. However, we are interested in the probability of the event that the trajectory {S(n)}n≥1
ever hits sG. To deal with that problem, we need to introduce the concept of the second rate
function D defined in [7] as follows:

D(v) := inf
t>0

�(tv)

t
, v ∈Rd. (14)

This function admits an alternative representation (see Theorem 1 of [7]) of the form

D(v)= sup{〈λ, v〉 : ψ(λ)≤ 1}, v ∈��. (15)

The following key properties (D1)–(D4) of the second rate function will be used below. The
first property is an immediate consequence of representation (15):

(D1) The function D is convex on R
d.

Now introduce t(v) as the point at which the infimum in (14) is attained:

D(v)= �(t(v)v)

t(v)
.

The next property is established in Theorem 2 of [7].

(D2) For any v ∈��, the point t(v)v is an analyticity point of � and t(v) is unique.
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It will also be convenient to consider the reciprocal quantity

u := 1

t
.

For v ∈Rd and B⊂R
d, set

Du(v) := u�

(
v
u

)
, Du(B) := inf

v∈B
Du(v), (16)

and let

D(B) := inf
u>0

Du(B)= inf
u>0

inf
v∈B

u�

(
v
u

)
. (17)

The value
uB := arg min

u>0
Du(B) (18)

is called the most probable time (MPT) for the set B⊂R
d. We set

rB := 1

uB
. (19)

The reason for calling uB the MPT is as follows. The problem of hitting the remote set sB
(s→∞) by the RW {S(n)}n≥1 can be re-stated in the scaled time-space framework as that of
hitting the original set B by the process {s−1S(�su�)}u>0. Then, given that that continuous-time
process hits B, it is most likely to do so at a time close to uB.

We refer to the point b ∈ B such that D(b)=D(B) as the global MPP (GMPP) for the set B.
The probabilistic meaning of the GMPP is that, in a setting where s→∞, if our RW ever hits
the set sB, it is most likely that it will do that in the vicinity of sb (i.e. within a distance o(s)
therefrom).

We will need two more properties of the function D.

(D3) If we have D(B)=D(b) for a b ∈ B⊂R
d then

D′(v)|v=b =�′(α)|α=rBb = λ(rBb). (20)

The latter equality in (20) is the known key property (9) of the rate function�. To prove the
former equality, note that, from (D2) and the implicit function theorem, we have

∂

∂u
Du(v)

∣∣∣∣
u=u(v)

= 0, u(v) := 1

t(v)
.

Therefore, as D(v)=Du(v)(v), using the chain rule results in

D′(v)= (Du(v)(v))′

= ∂

∂u
Du(v)|u=u(v)u

′(v)+ (∇vDu(v))|u=u(v)

=
(
∇vu�

(
v
u

))∣∣∣∣
u=u(v)

=�′(α)|α=v/u(v).

As u(b)= uB = 1/rB by assumption, property (D3) is proved.
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(D4) Du(v)= u�(v/u) is a convex function of (u, v) ∈R+ ×R
d.

To prove this property, let (u1, v1), (u2, v2) ∈R+ ×R
d be any two points in the time-space,

a ∈ (0, 1). The function � is convex, so that

�(pα1 + (1− p)α2)≤ p�(α1)+ (1− p)�(α2), p ∈ (0, 1), α1, α2 ∈��.

By choosing p := au1/(au1 + (1− a)u2), α1 := v1/u1, and α2 := v2/u2 in the above inequality
and multiplying both sides by au1 + (1− a)u2, we obtain

(au1 + (1− a)u2)�

(
a1v1 + (1− a)v2

au1 + (1− a)u2

)
≤ au1�

(
v1

u1

)
+ (1− a)u2�

(
v2

u2

)
, (21)

which establishes the desired convexity. Property (D4) is proved.
For r> 0, let

L(r) := {v ∈Rd : �(v)=�(α(r))}, (22)

be the level surface (line when d= 2) of � that passes through the point

α(r) := α[rG] (23)

(see (12); we assume here that there exists a unique point α satisfying (11) with B= rG) and
introduce the respective superlevel set

L̂(r) := {v ∈Rd : �(v)≥�(α(r))}.
Lemma 1. Let r> 0. If there is an α0 ∈�� such that α0 is an MPP for the set rG, then this
MPP is unique for rG:

{α0} = {α(r)} = L(r)∩ rG.

The proof of Lemma 1 is given in Section 3.
Consider the following condition that depends on the parameter r> 0:

(C3(r)) We have
λ(rg) ∈Q+, rg ∈��, 〈Eξ , λ(rg)〉< 0.

The first part of the condition means that the ‘external’ normal vector to the level surface of
the convex function � at the point rg points inwards rG, which means that the vertex rg is an
MPP for rG. Under the second part of the condition, this MPP for rG is unique by Lemma 1:
rg= α(r), so that λ(rg) coincides with the vector

N(r) :=�′(α)|α=α(r) = λ(α(r)), r> 0, (24)

which is a normal vector to the level surface L(r) at the point α(r) pointing inwards L̂(r) (the
above definition of N(r) makes sense whenever rG has a unique MPP). Since always N(r) ∈
cl(Q+), the first part of (C3(r)) excludes the case when the normal to L(r) at the point α(r)= rg
belongs to the boundary of the set rG.

The main result of the present paper is the following assertion.

Theorem 1. If conditions (C1), (C2) and (C3(rG)) are satisfied, where rG is defined by (19)
with B=G, then

P(η(sG)<∞)= As−(d−1)/2e−sD(G)(1+ o(1)) as s→∞, (25)

where the value of the constant A ∈ (0,∞) is given in (72).
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Remark 1. In the ‘smooth case’, when the boundary of G is twice continuously differentiable
in the vicinity of the GMPP (the latter was defined after (19)), the exact asymptotics for the
hitting probability was shown to have the form

P(η(sG)<∞)= Be−sD(G)(1+ o(1)) as s→∞, (26)

where the constant B> 0 (depending on F and G) can be written explicitly (see Theorem 7 of
[10]). Thus, the qualitative difference between the asymptotics (25) in the case of the orthant
G with the GMPP at its vertex and the asymptotics (26) in the ‘smooth case’ is the presence of
the power factor s−(d−1)/2 in the former formulation (cf. the factor s−1/2 in the second line of
(1), the asymptotics of the ruin probability in the special bivariate case from [2]).

The presence of that power factor can be roughly explained as follows. The distribution of
the location of the first hitting point of the auxiliary half-space sĤ(rG)⊃ sG (defined below;
see (28) and (31)) is close to the normal law on its boundary sH(rG) with the mean point at sg
and covariance matrix proportional to s1/2 (see Corollary 3.2 of [10]). However, the RW S will
only have a noticeable chance of hitting sG at or after the time when it hits sĤ(rG) if the ‘entry
point’ to sĤ(rG) is basically in a finite neighborhood of the vertex point sg. It is the integration
over that neighborhood with respect to the abovementioned ‘almost normal’ distribution ‘of
the scale s1/2’ that results in the additional factor s−(d−1)/2 on the RHS of (25).

Remark 2. We can consider, in a similar way, the case where the GMPP neither lies on the
face of the orthant (which would be the ‘smooth case’ dealt with in [10]) nor is the vertex
thereof (our case), but lies on an m-dimensional (1≤m< d− 1) component of the orthant
boundary. It is not hard to see from our proofs that the hitting probability asymptotics in such
a case will be ‘intermediate’ between (26) and (25), with the power factor s−(d−m−1)/2.

A rough explanation of this is similar to that given in Remark 1. In that case, the distribution
of the location of the first hitting point of the auxiliary half-space (of which the boundary
will now contain the respective m-dimensional component of the orthant boundary) will again
be close to the normal law on the boundary of that half-space, with the covariance matrix
proportional to s1/2. But now, to have a noticeable chance of hitting the set sG, the ‘entry
point’ to sĤ(rG) should be within a ‘short distance’ from that m-dimensional component of the
orthant boundary (rather than from the GMPP itself). So now we will have to integrate with
respect to the abovementioned ‘almost normal’ distribution over a subset of the hyperplane
which is ‘bounded in (d−m− 1) directions’; hence, the resulting power factor.

Remark 3. If conditions (C1), (C2), and (C3(rG)) are met except for the last assumption that
〈Eξ ,N(rG)〉< 0, we still have a large deviation situation provided that Eξ /∈ cl(Q+). In that
case, g will still be the GMPP for G, but the asymptotics of (3) will be of the same form (25) as
in the smooth boundary case (except for the value of the constant B). The reason for that will
be clear from the proof of Theorem 1 (more precisely, from its part dealing with bounding the
term P1). Roughly speaking, what happens in that case is that if the RW S enters the auxiliary
half-space sĤ(rG) in the sector from which one can ‘see’ the set sG along the rays with the
directional vector Eξ , then the RW will eventually hit sG with probability bounded away from
0. The probability of hitting that part of sĤ(rG) differs from the probability of hitting the
‘smooth case’ set sĤ(rG) by basically a constant factor.

Remark 4. As discussed at the beginning of this section, the RHS of (25) gives the asymp-
totics of the simultaneous ruin probability �sim(sg) as s→∞ in the d-dimensional extension
of the problem from [2], under conditions (C1), (C2), and (C3(rG)). In the case of an alternative
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location of the GMPP, the asymptotics of�sim(sg) can be obtained from the main result of [10]
(when the GMPP is on the face of G) or arguing as indicated in Remark 2 (in all other cases).

Remark 5. Our result could also be extended to the case of a more general set G, with the
property that the GMPP for hitting that set by our RW is at a ‘vertex’ on ∂G. Here is a possible
set (i)–(iv) of conditions for such an extension.

(i) G∩ {tEξ : t≥ 0} =∅.

(ii) There is a g ∈ ∂G which is the unique GMPP of G.

(iii) There exist ε, δ > 0 such that D(g)≡D(G)<D(G \Uε(g))− δ.
(iv) Denote by

Cθ (b) :=
{

v ∈Rd : arccos
〈v, b〉
‖v‖‖b‖ ≤ θ

}
, θ ∈ (0, π/2),

a circular cone in R
d with the axis direction vector b, opening angle 2θ, and apex at 0,

and by ζ the unit normal vector to the level surface of � passing through the GMPP
(see (35)). Then there exist a b ∈Rd and values 0< θ1 < θ2 <π/2 such that

Cθ1 (b)∩Uε(0)⊂ (G− g)∩Uε(0)⊂Cθ2 (ζ )∩Uε(0).

Condition (iv) ensures that ∂G is nonsmooth at the GMPP g, where it has a ‘vertex’ with a
positive solid angle at it. It is not very hard to verify, basically using the same argument as
that used in the proof of our Theorem 1 (but with a number of appropriate changes), that
P(η(sG)<∞) for such a G will also have asymptotics of the form (25).

Remark 6. We can further extend the setup of our large deviation problem considering,
instead of just ‘inflated sets’ sG, other versions of ‘remote sets’. Such possible versions include
shifts sg+ V for some fixed set V ⊂R

d (which coincides with the inflated set s(g+ V) in our
special case when V = cl (Q+), but would be different from that set when V is not a cone),
combinations of shift and inflation which may, say, be of the form sg+ svV for some v> 0,
and so on. It appears that our approach would also work for some of those other settings, but
the answers may be different in their form from both (25) and (26).

3. Proofs

For the reader’s convenience, we start this section with a short list of notation often used in
the proofs that either have already been introduced or will appear below. Next to the notation
we cite the equation number where the definition first appears.

• Auxiliary hyperplanes and half-spaces: H(r)= g+H0(r), Ĥ(r)= g+ Ĥ0(r) (28).

• Most probable points: α[B]= arg minv∈B �(v) (12); α(r)= α[rG] (23); β(r)=
α[rĤ(rG)] (33); χ = nβ(s/n)− sg (34).

• The second rate function and related objects: Du(v)= u�(v/u), Du(B)= infv∈B Du(v)
(16); D(v)= infu>0 Du(v) (14); D(B)= infu>0 Du(B) (17).

• Most probable times: uB = arg minu>0 Du(B) (18); rB = 1/uB (19).

• Normals to the level surfaces of �: N(r)= λ(α(r)) (24); ζ =N(rG)/‖N(rG)‖ (35).
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• The first hitting time of the auxiliary half-space: ηs = η(sĤ(rG)) (cf. (54); this formula
also introduces probabilities Pj, j= 1, 2, 3).

Finally, by c (with or without subscripts) we denote in this section positive constants (possibly
different within one and the same argument and depending on F and g).

In all the assertions below except Lemma 2 we always assume that conditions (C1), (C2),
and (C3(rG)), where rG is defined by (19) with B=G, are met.

The scheme of the proof of our main result was outlined in the penultimate paragraph of the
introduction. At the first step, we will prove Lemma 1.

Proof of Lemma 1. Suppose that there is another MPP α1 	= α0 for the set rG. Denote by
l the straight line segment with the end points α0 and α1. Since both rG and the sublevel
set L̃ := {v ∈Rd : �(v)≤�(α0)} are convex and int(̃L)∩ (rG)=∅ (as �(v)<�(α0) for any
v ∈ int(̃L)), we must have l⊂ (rG)∩ L̃= (rG)∩ ∂L̃. The latter relation implies that

�(α)=�(α0), α ∈ l. (27)

As α0 belongs to the open set��, there exists an ε ∈ (0, ‖α0 − α1‖) such that Uε(α0)⊂��, so
that� is strictly convex on Uε(α0). In particular, it is strictly convex on the segment l∩Uε(α0),
which contradicts (27). Lemma 1 is proved. �

Next we will construct auxiliary half-spaces. Recall (24) and let

H0(r) := {v ∈Rd : 〈v,N(r)〉 = 0}, Ĥ0(r) := {v ∈Rd : 〈v,N(r)〉 ≥ 0}
be the linear subspace orthogonal to N(r) and the ‘upper’ half-space bounded by H0(r),
respectively. We denote their respective translations by the vector g by

H(r) := g+H0(r) and Ĥ(r) := g+ Ĥ0(r). (28)

Under condition (C3(r)), we have

rH(r)= rg+ rH0(r)= α(r)+H0(r) and rĤ(r)= α(r)+ Ĥ0(r). (29)

Since α(r) ∈ L(r) by (22) and α(r)= rg from condition (C3(r)), we have nα(r)= nrg= sg ∈
nL(r) (see Figure 1), when we choose

r := s

n
, (30)

where s> 0 is the parameter used to scale the set G and n ∈N will have the interpretation of
the number of steps in the RW S (see (2)). Hence, the sets

sH(r)= sg+H0(r) and sĤ(r)= sg+ Ĥ0(r), (31)

are respectively the tangent hyperplane to the scaled surface nL(r) at the point sg and the
‘upper’ half-space bounded by sH(r).

The role of the half-space rĤ(r) is clarified in the next lemma, which shows that the MPP
for rĤ(r) coincides with the MPP for the scaled version rG of the set G.

Lemma 2. If conditions (C1), (C2), and (C3(r)) are satisfied for an r> 0, then

α[rĤ(r)]= α(r)= rg.
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FIGURE 1: Auxiliary constructions: the level line L(r) of �, its scaled version nL(r), the respectively
tangent straight lines rH(r) and sH(r), and other related objects (case d= 2, r= s/n).

Proof. In view of (C3(r)), we only have to show that α[rĤ(r)]= rg. Since rH(r) is the
tangent hyperplane to L(r) at the point rg, arguing as in the proof of Lemma 1, we see that
the sublevel set cl(̂L(r)c) has a unique contact point rg with rH(r). It is clear that int(rĤ(r)) is
separated from cl(̂L(r)c) by the hyperplane rH(r). Hence, �(v)>�(rg), v ∈ int(rĤ(r)), which
completes the proof of Lemma 2. �

The properties of the half-space Ĥ(rG) stated in the next lemma will play a key role in our
argument. It turns out that the crude asymptotics of P(η(sĤ(rG))<∞) as s→∞ are the same
as those for P(η(sG)<∞) and, moreover, the MPTs and MPPs for the sets G and Ĥ(rG) (and
hence the GMPPs for them) are the same as well.

Lemma 3. Suppose that condition (C3(rG)) holds. Then

uG = uĤ(rG) and α(rG)= α[rĤ(rG)Ĥ(rG)]= rGg,

so that D(G)=D(Ĥ(rG)), and (uG, uGα(rG))= (uĤ(rG), uĤ(rG)α[rĤ(rG)Ĥ(rG)]) is the unique
point at which the infimum on the RHS of (17) is attained for both B=G and B=
Ĥ(rG).

Proof. First we show that (uG, g) is the unique time-space point where the infimum on the
RHS of (17) is attained when B=G. From (D3) and (C3(rG)),

D′(v)|v=g =�′(α)|α=rGg ≡N(rG) ∈Q+. (32)

As the sublevel set L̃1 := {v ∈Rd : D(v)≤D(g)} whose boundary passes through g is convex
due to (D1), relation (32) means that L̃1 ∩G= {g}. Therefore, D(G)=D(g) and g is the only
point v ∈G such that D(G)=D(v).

By (D2), there is a unique point t(g)> 0 such that D(g)=�(t(g)g)/t(g). Hence, (uG =
1/t(g), g) is the unique point at which the infimum on the RHS of (17) with B=G is
attained.
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Now note that, in view of (32), H(rG) is the tangent hyperplane to the level surface ∂L̃1
at the point g. Arguing as in the proof of Lemma 1 and using the strict convexity of D in a
neighborhood of g, which can be seen from (D3) under condition (C3(rG)), we obtain L̃1 ∩
H(rG)= {g}. Repeating (with obvious changes, replacing G with Ĥ(rG)) the argument in the
first part of this proof, we see that (1/t(g), g) is also the unique point at which the RHS of (17)
with B= Ĥ(rG) attains its minimum, so that uĤ(rG) = 1/t(g)= uG and

α[rĤ(rG)Ĥ(rG)]= rĤ(rG)g= rGg= α[rGG]≡ α(rG)= rGg.

Lemma 3 is proved. �
To prove the main Theorem 1, we will need a few further ancillary results. Recall the

notation given in (11), (29), (30), and denote by

β(r) := α[rĤ(rG)] (33)

the MPP of the set rĤ(rG). By Lemma 3,

β(rG)= α(rG)= rGg.

Denote by G the class of functions γ : R+→R
+ such that γ (s)= o(s) as s→∞. The next

lemma describes the ‘movement’ of the MPPs for the half-spaces rĤ(rG)≡ (s/n)Ĥ(rG) for
n-values in the γ (s)-neighborhood of s/rG.

Lemma 4. Let γ ∈ G. There exists a constant vector κ ∈Rd such that, as s→∞, for |n−
s/rG| ≤ γ (s), we have

nβ

(
s

n

)
− sg=

(
n− s

rG

)
κ +O(s−1γ 2(s)).

Proof. Observe that

χ := nβ

(
s

n

)
− sg= n(β(r)− rg)= n[(β(r)− β(rG))+ (rG − r)g]. (34)

To evaluate the first term on the RHS, first recall that β(r) ∈ rH(rG) according to (13) and
introduce the unit normal vector to H(rG) (cf. (24)):

ζ := N (rG)

‖N(rG)‖ . (35)

Next note that rH(rG)= rGH(rG)+ εζ , where

ε := (r− rG)〈g, ζ 〉 = o(1) as s→∞, (36)

under the conditions of the lemma. Choose an orthonormal system e1, . . . , ed−1 of vectors
orthogonal to ζ and let J be the (d− 1)× d-matrix having these vectors as its rows. As β(r) ∈
rH(rG), this vector is of the form

β(r)= rGg+ εζ +
d−1∑
i=1

hiei = rGg+ εζ + hJ, h := (h1, . . . , hd) ∈Rd−1.
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As β(r) is the MPP for rĤ(rG), it is the unique point of that form which is orthogonal to H(rG)
or, which is the same, orthogonal to all ej, j= 1, . . . , d− 1:

λ(rGg+ εζ + hJ)J� = 0. (37)

Next, assuming that ‖h‖ = o(1), we use condition (C3(rG)), the multivariate Taylor formula,
and (9) to write

λ(rGg+ εζ + hJ)= λ(rGg)+ (εζ + hJ)�′′(rGg)+O(ε2 + ‖h‖2).

Substituting this into (37), noting that λ(rGg)J� = 0 and setting A :=�′′(rGg) for brevity, we
obtain

(εζ + hJ)AJ� +O(ε2 + ‖h‖2)= 0.

The remainder term here is a continuous function of h, whereas JAJ� is a positive-definite
matrix since A is. So we conclude that there exists a (unique, as we already know) solution to
the above equation equal to h=−εζAJ�(JAJ�)−1 +O(ε2). Hence,

β(r)− β(rG)≡ β(r)− rGg= ε(ζ − ζAJ�(JAJ�)−1J)+O(ε2). (38)

It follows from (34), (36), and (38) that

β(r)− rg= β(r)− β(rG)+ (rG − r)g

= ε(ζ − ζAJ�(JAJ�)−1J)+O(ε2)+ (rG − r)g

= (rG − r)κ

rG
+O((rG − r)2),

where κ := rG[(ζAJ�(JAJ�)−1J − ζ )〈g, ζ 〉 + g]. As n(rG − r)= rG(n− s/rG) and n(rG −
r)2 = n−1r2

G(n− s/rG)2 =O(s−1γ 2(s)), the lemma is proved. �

For α ∈��, recall (10) and, for z ∈Rd, introduce the two functions

p(z) := P(η(cl(Q+)− z)<∞),

so that p(z)= 1 for z ∈ cl(Q+), and

qα(z) := P

(
inf
n≥1
〈λ(α(rG)), S(α)(n)〉 ≥ 〈λ(α(rG)), z〉

)
(39)

(cf. [10, pp. 253–254]; in fact, qα was defined there as an integral involving the RHS of (39),
but on close inspection it is easy to see that it is actually the same as (39)). For a Borel subset
W ⊂ Ĥ0(rG), a w ∈H0(rG), and r> 0 such that β(r) ∈��, set

E(r,w,W) :=
∫

W
e−〈λ(β(r)),v〉p(w+ v)qβ(r)(v) dv<∞,

the last inequality being a consequence of the bound (49) below for p and the fact that λ(β(r))⊥
H0(rG). Finally, denote by P the orthogonal projection onto H0(rG).

The next theorem is a key step in implementing our approach based on auxiliary half-spaces.
If the RW S hits sG then it inevitably hits the ‘best half-space approximation’ sĤ(rG)⊃ sG to it
(in the sense that both sets have the same crude hitting probability asymptotics). In Theorem 2,
we compute the probability of hitting sG ‘localizing’ in both time and space when and where
the RW first hits sĤ(rG).

https://doi.org/10.1017/apr.2019.28 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2019.28


Multivariate large deviation 849

Theorem 2. Set w := nβ(r)− sg+ x. There exists a sequence δn→ 0 such that, for any fixed
�0 > 0, M0 ∈ (0,∞), and γ ∈ G, we have, as s→∞,

P(η(sG)<∞, η(sĤ(rG))= n, S(n) ∈ nβ(r)+ x+�[y))

= exp{−n�(β(r))− x�′′(β(r))x�/(2n)+O(‖x‖3n−2)}
(2πn)d/2σ (β(r))

× [E(r,w, �[y))(1+ o(1))+ o(�d exp{−c1‖P (w+ y)‖ − c2〈ζ , y〉})] (40)

uniformly in the range of the variables n, x ∈H0(rG) and y specified by∣∣∣∣n− s

rG

∣∣∣∣≤ γ (s), � ∈ [δn, �0],

‖x‖ ≤ γ (s), ‖y‖<M0, x+�[y)⊂ Ĥ0(rG).

Remark 7. The point of separating the variables x and y in the statement of this theorem is
that it will be convenient in the next step (Corollary 1) of the proof of our main result. At that
step, we will obtain a representation similar to (40) where instead of the ‘small’ cube �[y) we
will have a half-cylinder with a ‘small’ base�∗[x)⊂H0(rG) and generatrix parallel to ζ (to be
achieved by ‘integrating’ the asymptotics from (40) with respect to y).

Proof of Theorem 2. Assume for simplicity that d= 2 (we will explain at the end of the
proof how the argument changes in the case d≥ 3). Set �m :=�m−1, where m=m(n)→∞
as n→∞ slowly enough (the choice of m is discussed below). For y= (y1, y2), set

zi,j := (y1 + (i− 1)�m, y2 + (j− 1)�m), i, j≥ 1,

and partition the square �[y) into m2 sub-squares �m[zi,j): �[y)=⋃1≤i,j≤m �m[zi,j). Clearly,
setting x′ := nβ(r)+ x≡w+ sg, we have

P := P(η(sG)<∞, η(sĤ(rG))= n, S(n) ∈ x′ +�[y))

=
∑

1≤i,j≤m

P(η(sG)<∞, η(sĤ(rG))= n, S(n) ∈ x′ +�m[zi,j)). (41)

Due to the Markov property, the (i, j)th term in the sum on the RHS of (41) equals∫
�m[zi,j)

P(η(sG)<∞, η(sĤ(rG))= n, S(n) ∈ x′ + dv)

=
∫
�m[zi,j)

P(η(sG)<∞ | η(sĤ(rG))= n, S(n)= x′ + v)

× P(η(sĤ(rG))= n, S(n) ∈ x′ + dv)

=
∫
�m[zi,j)

p(w+ v)P(η(sĤ(rG))= n, S(n) ∈ x′ + dv)

=: Ii,j.

Now introduce the time-reversed RW S̃(k) := ξ (n)+ ξ (n− 1)+ · · · + ξ (n− k+ 1), 1≤
k≤ n. Note that η(sĤ(rG)) is the first time the univariate RW {〈S(k), ζ 〉}k≥0 hits the level 〈x′, ζ 〉
and that 〈w, ζ 〉 = 0, 〈v, ζ 〉> 0 for v ∈�m[zi,j), so that

{η(sĤ(rG))= n, S(n)= x′ + v} =
{

min
1≤k≤n

〈̃S(k), ζ 〉> 〈v, ζ 〉, S(n)= x′ + v
}

.
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Furthermore, the function p(z) is nondecreasing along any ray with a directional vector v ∈
cl(Q+): as cl(Q+)− z⊂ cl(Q+)− z− v for such v, we have

p(z+ v)= P(η(cl(Q+)− z− v)<∞)≥ P(η(cl(Q+)− z)<∞)= p(z). (42)

Therefore,
min

v∈�m[zi,j)
p(v)= p(zi,j), max

v∈�m[zi,j)
p(v)= p(zi+1,j+1), (43)

and, as clearly 〈zi,j, ζ 〉 ≤ 〈v, ζ 〉 for v ∈�m[zi,j), we obtain

Ii,j ≤
∫
�m[zi,j)

p(w+ zi+1,j+1)P
(

min
1≤k≤n

〈̃S(k), ζ 〉> 〈zi,j, ζ 〉, S(n)= x′ + dv
)

= p(w+ zi+1,j+1)P
(

min
1≤k≤n

〈̃S(k), ζ 〉> 〈zi,j, ζ 〉, S(n) ∈ x′ +�m[zi,j)
)

= p(w+ zi+1,j+1)P
(

min
1≤k≤n

〈̃S(k), ζ 〉> 〈zi,j, ζ 〉
∣∣∣ S(n) ∈ x′ +�m[zi,j)

)
× P(S(n) ∈ x′ +�m[zi,j)). (44)

Asymptotic representations for the second and third factors on the RHS can be respectively
obtained from Theorems 10 and 9 of [10]. The assumptions of the theorems in [10] include
Cramér’s strong nonlattice condition (C2) on the characteristic function of ξ , but that condition
is actually unnecessary provided that ξ is just nonlattice and the ‘small cube’ edge is only
allowed to decay slowly enough (the key tool for such an extension is the integro-local Stone’s
theorem; for more detail, see, e.g. [9]). Under such weakened conditions, the assertions of
Theorems 10 and 9 of [10] will still hold uniformly in the small cube edge lengths in the
interval [δ′n, �0] for some sequence δ′n→ 0.

Now we will choose m=m(n)→∞ such that δn := δ′nm→ 0 as n→∞. Since x′/n=
β(r)+ o(1), by the modified version of Theorem 10 of [10], for the second factor on the RHS
of (44), we have

P

(
min

1≤k≤n
〈̃S(k), ζ 〉> 〈zi,j, ζ 〉

∣∣∣ S(n)= x′ +�m[zi,j)
)
= qβ(r)(zi,j)(1+ o(1))

(cf. [10, p. 264]), whereas by the modified version of Theorem 9 of [10] (which, roughly
speaking, is just a combination of Stone’s integro-local theorem with Cramér’s change of
measure, a multi-variate version of Theorem 9.3.1 of [5]) for the third factor on the RHS
of (44), we have the relation

P(S(n) ∈ x′ +�m[zi,j))= �2
m(1+ o(1))

2πnσ ((x′ + zi,j)/n)
exp

{
− n�

(
β(r)+ x+ zi,j

n

)}
.

Now, expanding the rate function in the exponential on the RHS about the point β(r) and using
(9), for the probability on the left-hand side (LHS), we obtain the representation

�2
m(1+ o(1))

2πnσ (β(r))
exp

{
−n�(β(r))− 〈λ(β(r)), zi,j〉 − 1

2n
x�′′(β(r))x� + θi,j

}
,

where the remainders o(1) and θi,j =O(‖x3‖n−2) are both uniform in � ∈ [δn, �0] and zi,j ∈
R

d, x ∈H0(rG) such that ‖x‖ ≤ γ (s), ‖zi,j‖<M0, x+�[zi,j)⊂ sĤ(rG). Here we used the
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Taylor expansion of � at β(r), relation (9), and the fact that 〈λ(β(r)), x〉 = 0 for x ∈H0(rG).
Combining the above representations for the factors on the RHS of (44) yields an upper bound
for Ii,j.

In the same way, but now using the first relation in (43) and the observation that 〈zi+1,j+1,

ζ 〉 ≥ 〈v, ζ 〉, v ∈�m[zi,j), we obtain a lower bound for Ii,j of the same form as the upper bound,
but involving p(w+ zi,j) and qβ(r)(zi+1,j+1) on its RHS.

Summing the obtained upper and lower bounds for Ii,j, 1≤ i, j≤m, we see from (41) that

�2
m

∑
1≤i,j≤m

p(w+ zi,j)qβ(r)(zi+1,j+1)e−〈λ(β(r)),zi,j〉(1+ o(1))

≤ J

:= 2πnσ (β(r)) exp

{
n�(β(r))+ 1

2n
x�′′(β(r))x� − θ

}
P

≤�2
m

∑
1≤i,j≤m

p(w+ zi+1,j+1)qβ(r)(zi,j)e−〈λ(β(r)),zi,j〉(1+ o(1)),

where θ =O(‖x3‖/n2). As ‖zi,j − zi+1,j+1‖ = 21/2�/m→ 0, we can now replace
〈λ(β(r)), zi,j〉 in the lower bound with 〈λ(β(r)), zi+1,j+1〉, yielding

�2
m

∑
1≤i,j≤m

p(w+ zi,j)qβ(r)(zi+1,j+1)e−〈λ(β(r)),zi+1,j+1〉(1+ o(1))

≤ J

≤�2
m

∑
1≤i,j≤m

p(w+ zi+1,j+1)qβ(r)(zi,j)e−〈λ(β(r)),zi,j〉(1+ o(1)).

Observe that the LHS (RHS) in the above formula is, up to the factor (1+ o(1)), the lower
(upper) Darboux sum for the function

p(w+ z)qβ(r)(z)e−〈λ(β(r)),z〉, z ∈�[y). (45)

It is not hard to see that the difference between the sums vanishes uniformly as s→∞, and so
they both tend to the Riemann integral E(r,w, �[y)) of that function over �[y).

Indeed, setting, for a function h(z), z ∈R2,

h
i,j

:= h(zi+1,j+1), hi,j := h(zi,j), for i, j≥ 1

(the values of h at the top-right and left-bottom vertices of the subsquares �m[zi,j),
respectively), and letting f (z) := p(w+ z) and g(z) := qβ(r)(z)e−〈λ(β(r)),z〉, the difference be-
tween the upper and lower Darboux sums for (45) on �[y) can be written, suppressing the
superscripts i, j in all the factors, as

δ :=�2
m

∑
1≤i,j≤m

(f g− f g).

Using the monotonicity of both f (z) (see (42)) and the exponential factor e−〈λ(β(r)),z〉 along
directions from Q+, we can bound the value of the sum here as∑

1≤i,j≤m

(f g− f g)=
∑

1≤i,j≤m

(f − f )g+
∑

1≤i,j≤m

f (g− g)

≤ e−〈λ(β(r)),y〉 ∑
1≤i,j≤m

(f − f )+ f (zm,m)
∑

1≤i,j≤m

(g− g). (46)
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Since f
i,j = f i+1,j+1, 1≤ i, j≤m− 1, using the telescoping argument, we see that the first sum

on the RHS of (46) equals∑
2≤i≤m+1

f (zi,m+1)−
∑

1≤i≤m

f (zi,1)+
∑

2≤j≤m

f (zm+1,j)−
∑

2≤j≤m

f (z1,j)≤ 2mf (zm+1,m+1),

whereas the second sum on the RHS of (46), using the same argument, is seen to be bounded
from above by 2mg(y)≤ 2me−〈λ(β(r)),y〉. Summarizing, we obtain

δ ≤ 4�2m−1e−〈λ(β(r)),y〉f (zm+1,m+1), (47)

where f (zm+1,m+1)= p(w+ y+ (�,�)).
To bound the last quantity, we will derive a bound for the function p(u) in the general case

d≥ 2. It follows from the condition that 〈Eξ , ζ 〉< 0 (part of (C3(rG))) that there exists a

closed round cone C⊃Q+ with the axis direction ζ , apex at 0,

and the opening angle π − 2φ with φ > 0 such that −Eξ ∈C.
(48)

Clearly, C⊂ Ĥ0(rG). For any u ∈ Ĥ0(rG)\C, denote by u′ := arg minv∈C ‖u− v‖ the nearest to
u point of C and let

�(u) := u′ − u
‖u′ − u‖

be the inner normal to ∂C at that point. Denote by T̂(u) := {v ∈Rd : 〈v, �(u)〉 ≥ 0} the
half-space containing C and bounded by the tangent to the ∂C hyperplane passing through
the point u′ (and the origin). Clearly,

p(u)≤ P(η(C− u)<∞)

≤ P(η(̂T(u)− u)<∞)

≤ P

(
sup
n≥1
〈S(n), �(u)〉 ≥ ‖u′ − u‖

)
= P

(
sup
n≥1

Su(n)≥ (‖P (u)‖ tan φ − 〈u, ζ 〉) sin φ
)
,

where Su(n) := 〈S(n), �(u)〉 ≡∑n
k=1〈ξ (k), �(u)〉 is a univariate RW with the negative drift:

E〈ξ , �(u)〉 =−〈−Eξ , �(u)〉< 0 since −Eξ ⊂C⊂ T̂(u) and �(u) is the inner normal vector to
∂ T̂(u), so that 〈−Eξ , �(u)〉> 0. Therefore,

p(u)≤ e−ν(�(u))(‖P (u)‖ tan φ−〈u,ζ 〉) sin φ, (49)

where ν(�(u)) := sup{ν ∈R : Eeν〈ξ,�(u)〉 ≤ 1}> 0 (see [1, p. 81]). That ν(�(u))> 0 follows
from condition (C3(rG)) and the fact that φ > 0 can be chosen arbitrary small, thus making
all the vectors �(u) with u ∈ Ĥ0(rG)\C arbitrary close to ζ ≡ λ(α(rG))/‖λ(α(rG))‖ with
λ(α(rG)) ∈�ψ . This also implies that

ν0 := inf
u∈Ĥ0(rG)\C

ν(�(u))> 0,

which, together with (47) and (49), yields the bound

δ ≤ c�2m−1 exp{−〈λ(β(r)), y〉 − ν0(‖P (w+ y)‖ tan φ − ν0〈ζ , y〉) sin φ}
≤ c�2m−1 exp{−c1‖P (w+ y)‖ − c2〈ζ , y〉}
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for small enough c1, c2 > 0 (as λ(β(r))= hζ for h bounded away from 0 and φ can be chosen
arbitrary small). Therefore,

J = E(r,w, �[y))(1+ o(1))+ o(�2e−〈β(r),y〉−c1‖P (w+y)‖−c2〈ζ ,y〉)

uniformly in the specified range. This completes the proof in the case d= 2.
For d≥ 3,we partition�[y)⊂R

d into md small cubes (instead of m2 small squares, as in the
case d= 2). After that, all the computations are done in the same way as above (including (43),
where the min and max of p are now attained at the opposite vertices of the small cubes), except
for the ‘telescoping argument’ following (46). Instead of the sums over the nodes on the edges
of the square �[y), we end up now with sums over the nodes on the faces of the cube �[y),
yielding a factor md−1 instead of m. But, as we then divide the result by md (instead of m2,
which was the case when d= 2), we end up with the same desired final result. Theorem 2 is
proved. �

Next we will use Theorem 2, ‘integrating’ representation (40) to compute the probability of
ever hitting sG localizing only the time when S first hits sĤ(rG) and the projection onto H0(rG)
of the point where S enters that set. This result will be used in the key step in the proof of
Theorem 1, when evaluating the contribution of the main term P3 (to be defined in (54)).

Fix a Cartesian coordinate system in the hyperplane H0(rG) and, for v ∈H0(rG) and �> 0,
denote by �∗[v) the (d− 1)-dimensional cube in H0(rG) with edges parallel to the axes in the
chosen coordinate system, the ‘left–bottom’ vertex at v, and the edge length� (cf. (4)). Denote
by

W(�∗[v)) :=
⋃
t≥0

{�∗[v)+ tζ }

the half-cylinder with the base �∗[v) and generatrix parallel to the unit normal ζ to H0(rG).
Recall the notation w= nβ(r)− sg+ x from Theorem 2 and set

�(s, n) := e−n�(β(r))

(2πn)d/2σ (β(r))
, where r= s

n
. (50)

Following Remarks 1 and 3 of [10], we can ‘tile’ the half-cylinder W(�∗[0)) with ‘small’ cubes
�′[y) with�′ → 0 and then sum the representations for those small cubes given by Theorem 2,
thus ‘integrating’ these local representations to obtain the following result.

Corollary 1. There exists a sequence δ∗n→ 0 as n→∞ such that, for any fixed �0 > 0 and
γ ∈ G, we have, as s→∞,

P(η(sG)<∞, η(sĤ(rG))

= n, S(n) ∈ nβ(r)+ x+W(�∗[0)))

=�(s, n) exp

{
− 1

2n
x�′′(β(r))x� +O

(‖x‖3
n2

)}
[E(r,w,W(�∗[0)))(1+ o(1))+ R],

(51)

where R= o(
∫
�∗[0) e−c1‖w‖ dμ(w)), μ being the (d− 1)-dimensional volume measure on

H0(rG), the o( · ) term being uniform in x ∈H0(rG), and n≥ 1 such that ‖x‖ ≤ γ (s), |n−
s/rG| ≤ γ (s), and � ∈ [δ∗n , �0].
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FIGURE 2: The auxiliary sets Vj±, j= 1, 2, and V3 in the case Eξ ∈−Q+.

We just note here that the bound for R is obtained by choosing y⊥H0(rG) in Theorem 2
and integrating along the direction of ζ .

Now we are ready to proceed to proving the main result of the paper.

Proof of Theorem 1. First we will partition the half-space sĤ(rG)⊃ sG into several subsets
and, for each of them, evaluate the probability of ever hitting sG when the RW first hits sĤ(rG)
in the respective partition element. How we carry out these computations will be different for
different elements of the partition.

We will now assume that d= 2 as in this case it is easier to explain how we do the evaluation.
The construction to be used when d≥ 3 is described later, just after (53).

Let e= (e1, e2) := (ζ2,−ζ1) be the unit vector orthogonal to ζ such that e1 > 0. For M ≥ 1
(to be chosen later), set a± := sg± (M ln s)e and consider the sets

V+ := {v ∈ sĤ(rG) : 〈v, e〉 ≥ 〈a+, e〉}, V− := {v ∈ sĤ(rG) : 〈v, e〉<−〈a−, e〉}.
Next we will split each of the sets V± into two parts. We need to consider two alternative
situations, depending on whether Eξ is in −Q+ or not.

Case Eξ ∈−Q+. In this case, we set (see Figure 2)

V1+ := V+ ∩
{
v : v2 ≤ sg2 − 1

2 (M ln s)|e2|
}
,

V1− := V− ∩
{
v : v1 ≤ sg1 − 1

2 (M ln s)e1
}
,

and set

V2− := V−\V1−, V2+ := V+\V1+,
V1 := V1+ ∪ V1−, V2 := V2+ ∪ V2−, V3 := sĤ(rG)\(V− ∪ V+).

(52)

Case Eξ /∈−Q+ (but (C3(rG)) is still met, i.e. 〈Eξ , ζ 〉< 0). Here the above simple
construction of the sets Vj± must be somewhat modified. For definiteness, assume that Eξ2 > 0,
so that Eξ lies in the interior of the second quadrant, implying that 〈Eξ , e〉< 0. In this case,
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FIGURE 3: The auxiliary sets Vj±, j= 1, 2, and V3 in the case Eξ 	∈ −Q+.

all we need to change in the above definition of the sets V· is to amend how Vj+, j= 1, 2, are
specified (the Vj− stay the same; in the alternative case, when Eξ1 > 0, we have to redefine
Vj−, j= 1, 2, keeping Vj+ unchanged). This is done as follows. Introduce the points

a′+ := sg+ Eξ

〈Eξ , e〉M ln s

(which is the intersection of the ray emanating from sg in the direction of−Eξ and the straight
line parallel to ζ and passing through a+) and

a′′+ := a+ + 1

3
(a′+ − a+)= sg+

(
2

3
e+ Eξ

3〈Eξ , e〉
)

M ln s,

a0 := sg−
(

Eξ

〈Eξ , e〉 − e
)

M ln s

3
.

In words, a′′+ is one third of the way from a+ to a′+ going along the direction of ζ , whereas a0
is at the same distance from sg in the opposite way (see Figure 3).

Now we define V1+ as the intersection of V+ with the half-plane lying underneath the
straight line � going through the points a0 and a′′+:

V1+ := V+ ∩
{

v ∈R2 : v= a0 + x

(
1

3
e+ 2Eξ

3〈Eξ , e〉
)
− yζ , x ∈R, y≥ 0

}
. (53)

All the other sets V· are defined now according to (52).
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For d≥ 3, we use a general construction of the Vj (there will only be three sets here, no
need for Vj±) that extends (53). It is applicable whether Eξ lies in −Q+ or not. We first set
V3 := {v= sg+ u ∈ sĤ(rG) : ‖u− 〈u, ζ 〉ζ‖ ≤M ln s} to be a ‘round’ half-cylinder in sĤ(rG)
with generatrix parallel to ζ and the base that is the (d− 1)-dimensional ball that is a subset of
sH(rG), has its center at sg, and is of radius M ln s. Then we use the cone C described in (48)
to define

Cs:= sg− M ln s

3 tan φ
ζ +C, V1 := Vc

3 ∩Cs, V2 := Vc
3 \ V1.

Now set ηs := η(sĤ(rG)) and write

P(η(sG)<∞)=
3∑

j=1

P(η(sG)<∞, S(ηs) ∈ Vj)= :
3∑

j=1

Pj. (54)

We will show that P1 and P2 are negligibly small compared to the RHS of (25). After that, we
will use Corollary 1 to demonstrate that, choosing a large enough M, the term P3 can be made
arbitrary (relatively) close to the RHS of (25).

Bounding P1. First we note that in the case d= 2 we have

P1 = P1− + P1+, P1± := P(η(sG)<∞, S(ηs) ∈ V1±).

Assume that Eξ ∈−Q+. Then

P1+ :=
∫

V1+
P(η(sG)<∞ | ηs <∞, S(ηs)= v)P(ηs <∞, S(ηs) ∈ dv)

≤
∫

V1+
P

(
sup
n≥1

S2(n)≥ 2−1(M ln s)|e2|
)
P(ηs <∞, S(ηs) ∈ dv)

= P

(
sup
n≥1

S2(n)≥ 2−1(M ln s)|e2|
) ∫

V1+
P(ηs <∞, S(ηs) ∈ dv)

≤ s−c0M
P(ηs <∞),

where c0 := 2−1|e2|ν0 > 0 and we used the strong Markov property to obtain the first inequality
and a bound of the form (49) for the distribution tail of supn≥1 S2(n). That |e2|> 0 is due to
condition (C3(rG)) (as it excludes situations where H(rG) is parallel to any of the coordinate
axes). The term P1− is bounded in the same way.

Since P(ηs <∞) ∼ ce−sD(sĤ(rG)) as s→∞ by Theorem 7 of [10] and D(Ĥ(rG))=D(G)
by Lemma 3, we showed that, for some 0< c, c1 <∞,

P1 ≤ cs−c1Me−sD(G). (55)

Choosing M > 1/(2c1) (M> (d− 1)/(2c1) when d> 2) completes the argument.
Now we turn to the case when Eξ /∈Q+,Eξ2 > 0 and use the alternative construction (53)

of V1+. Note that that half-space is separated from sG by a gap of width cM ln s for some c> 0
in the direction orthogonal to �. Furthermore, denote by ζ ′ a unit vector orthogonal to � and
such that 〈ζ , ζ ′〉> 0 (so that ζ ′ is pointing in the direction of sG). It is easy to verify that, by
the above construction, we have E〈ξ , ζ ′〉< 0.This means that we are in the same situation as
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above, when considering the case Eξ ∈−Q+, and can use the same argument to establish that
P1 is negligibly small.

The last argument extends in a straightforward way to the case d≥ 3 as well: by
construction, in that case the set V1 is ‘separated’ from sG by a gap of (variable) width
≥ cM ln s for some c> 0.

Bounding P2 = P(η(sG)<∞, S(ηs) ∈ V2). We again start with the case d= 2. It is clear
from our constructions (see Figures 2 and 3) that there exists a c2 > 0 such that V2 ⊂ s1Ĥ(rG)
with s1 := s+ c2M ln s (we can take c2 := (M ln s)−1 minv∈V2〈v, ζ 〉, where the minimum is
attained at the vertex of one of the sets V2±). Therefore, again using Theorem 7 of [10] and
our Lemma 3, we have

P2 ≤ P(ηs <∞, S(ηs) ∈ V2)

≤ P(η(s1Ĥ(rG))<∞)

∼ ce−s1D(Ĥ(rG))

= cs−c2MD(G)e−sD(G). (56)

Choosing a large enough M, we establish the desired result. There is no change in the argument
when d≥ 3.

Evaluating P3 = P(η(sG)<∞, S(ηs) ∈ V3). Clearly,

P3 =
∞∑

n=1

P3,n, P3,n := P(η(sG)<∞, ηs = n, S(n) ∈ V3), n≥ 1. (57)

First we will compute the sum of the terms P3,n with

n ∈Ns := {n : |n− suG| ≤Ms1/2}.

In the assertion of Corollary 1, choose γ (s) :=Ms1/2, where M =M(s)→∞ slowly enough
so that the term O(‖x‖3/n2) in the exponential in (51) is o(1) for ‖x‖ ≤ γ (s) (i.e. M= o(s1/6)).
For a �> 0, let m := (M ln s)/� (we can assume without loss of generality that m ∈N). First
assume for simplicity that d= 2, and set tk := k�e and zk := sg+ tk, k=−m, . . . ,m (so that
z−m = a− and zm = a+). Recalling that r= 1/u and rG = 1/uG, in view of Corollary 1 with
x= xk := zk − nβ(1/u)≡ tk + sg− nβ(1/u), we have

P3,n = P(η(sG)<∞, ηs = n, S(n) ∈ V3)

=
m−1∑

k=−m

P(η(sG)<∞, ηs = n, S(n) ∈W(�∗[zk)))

= (1+ o(1))�(s, n)
m−1∑

k=−m

e−xk�
′′(β(1/u))x�k /(2n)E

(
1

u
, tk,W(�∗[0))

)
+ o(�(s, n)), (58)

where the remainder term o(�(s, n)) appears as the result of summing the R terms in (51), as
we can easily verify that

∫
H0(rG) e−c1‖w‖ dμ(w)<∞.

Next observe that

E

(
1

u
, tk,W(�∗[0))

)
=
∫
�∗[tk)

ρu(t) dμ(t),
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where we set, for t ∈H0(1/uG),

ρu(t) :=
∫ ∞

0
e−〈λ(β(1/u)),t−tk+yζ 〉qβ(1/u)(t− tk + yζ )p(t+ yζ ) dy.

Note that, since e−〈λ(β(1/u)),t−tk+yζ 〉 = e−〈λ(β(1/u)),yζ 〉 and qβ(1/u)(t− tk + yζ )= qβ(1/u)(yζ ) for
t ∈H0(1/uG), we actually have

ρu(t)=
∫ ∞

0
e−〈λ(β(1/u)),yζ 〉qβ(1/u)(yζ )p(t+ yζ ) dy.

Recalling our notation (34), the sum on the RHS of (58) can be expressed as

m−1∑
k=−m

e−(tk−χ)�′′(β(1/u))(tk−χ)�/(2n)
∫
�∗[tk)

ρu(t) dμ(t).

Setting f (z) := exp{−z�′′(β(1/u))z�/(2n)}, we can easily verify that

f (z+�1e)

f (z)
= 1+ o(1) (59)

uniformly in n ∈Ns, �1 ∈ (0, �], and ‖z‖ ≤ cMs1/2, c> 0. Therefore, letting �→ 0
sufficiently slowly, we can replace the above sum with the integral over the set �∗0[a−) with
�∗0 := 2m�≡ 2M ln s to obtain

P3,n = (1+ o(1))�(s, n)
∫
�∗0[a−)

e−(t−χ)�′′(β(1/u))(t−χ)�/(2n)ρu(t) dμ(t)+ o(�(s, n)). (60)

Recalling that a− =−(M ln s)e, we have from Lemma 4 (with γ (s)=Ms1/2) that

exp

{
− 1

2n
(t− χ)�′′

(
β

(
1

u

))
(t− χ )�

}
= exp

{
− 1

2n
χ�′′

(
β

(
1

u

))
χ� + 1

n
t�′′

(
β

(
1

u

))
χ� − 1

2n
t�′′

(
β

(
1

u

))
t�
}

= (1+ o(1)) exp

{
− 1

2n
χ�′′

(
β

(
1

u

))
χ�
}

uniformly in t ∈�∗0[a−) and n ∈Ns. Hence, it follows from (60) that

P3,n = (1+ o(1))�(s, n)e−χ�′′(β(1/u))χ�/(2n)
∫
�∗0[a−)

ρu(t) dμ(t)+ o(�(s, n)).

Note that
∫
�∗0[a−) ρu(t) dμ(t)= E(1/u, 0,W(�∗[a−))) and, as M→∞, we have E(1/u, 0,

W(�∗[a−)))→ E(1/u, 0, Ĥ0(1/uG)), so that

P3,n = (1+ o(1))�(s, n)e−χ�′′(β(1/u))χ�/(2n)E

(
1

u
, 0, Ĥ0

(
1

uG

))
+ o(�(s, n)). (61)

Representation (61) holds in the case d≥ 3 as well. This is shown using the same argument as
above, the only difference being that, instead of partitioning the straight line segment with end
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points a− and a+ into small subintervals �∗[zk), we partition the base of the half-cylinder V3
into small cubes (showing that the ‘boundary effects’ arising due to the ‘imperfection’ of such
a partition of that ball will be negligible).

Recalling the representation χ = (n− suG)κ +O(s−1γ 2(s)) from Lemma 4 and setting

a(u) := κ�′′
(
β

(
1

u

))
κ�, (62)

we see that, for |n− suG| ≤ γ (s), we have

exp

{
− 1

2n
χ�′′

(
β

(
1

u

))
χ�
}
= exp

{
− 1

2n
[a(u)(n− suG)2 +O(s−1γ 3(s))]

}
= exp

{
− a(u)s

(u− uG)2

2u
+O(s−2γ 3(s))

}
= exp

{
− a(u)s

(u− uG)2

2u

}
(1+ o(1))

= exp

{
− a(uG)s

(u− uG)2

2u

}
(1+ o(1)),

since γ (s)=Ms1/2,M= o(s1/6), and |u− uG| ≤Ms−1/2 for n ∈Ns, and the function a(u) is
continuous.

Recalling (16), (50), and the fact that n= su, we have

�(s, n)= e−sDu(Ĥ(1/uG))

(2πs)d/2ud/2σ (β(1/u))
.

We conclude that the first term on the RHS of (61), after the substitution n= su, takes
(up to the factor 1+ o(1)) the form

πs(u) := 1

(2πs)d/2ud/2σ (β(1/u))
exp

{
− sDu

(
Ĥ

(
1

uG

))
− a(uG)s

(u− uG)2

2u

}
× E

(
1

u
, 0, Ĥ0

(
1

uG

))
,

and so in this part of the proof we aim to compute the sum∑
n∈Ns

P3,n = (1+ o(1))
∑
n∈Ns

πs

(
n

s

)
+
∑
n∈Ns

o(�(s, n)). (63)

To replace the first sum on the RHS of (63) by the respective integral with respect to du, we
note that, for 0≤ θ < 1 and u ∈ [uG −Ms−1/2, uG +Ms−1/2]= :Is, we have

πs(u+ θ/s)

πs(u)
= 1+ o(1).

This can be verified by an elementary calculation, using the continuity of β(1/u) and E(1/u, 0,
Ĥ0(1/uG)) in u, and also the fact that, by the mean value theorem,

Du+θ/s
(

Ĥ

(
1

uG

))
=Du

(
Ĥ

(
1

uG

))
+D′u

(
Ĥ

(
1

uG

))∣∣∣∣
u+θ∗/s

θ

s
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for some θ∗ ∈ (0, θ ), where D′u(Ĥ(1/uG))|u+θ∗/s = o(1) uniformly in u ∈ Is since
D′u(Ĥ(1/uG))|u=uG = 0 (cf. the proof of Lemma 3). Therefore, the first sum on the RHS
of (63) equals

P̃3 := (1+ o(1))̃EuG

(2π )d/2sd/2−1

∫
Is

exp

{
− sDu

(
Ĥ

(
1

uG

))
− a(uG)s

(u− uG)2

2u

}
du, (64)

where we used the fact that

Ẽu := E(1/u, 0, Ĥ0(1/uG))

ud/2σ (β(1/u))
= (1+ o(1))̃EuG for u ∈ Is.

To be able to now apply the Laplace method for evaluating the integral on the RHS of (64),
we will need the following lemma.

Lemma 5. There exists a δ > 0 such that the function Du(Ĥ(rG)) is convex on the interval
(uG − δ, uG + δ).

Proof. First note that, in view of (C3(rG)), there is a δ > 0 such that β(1/u) is well defined
for u ∈ (uG − δ, uG + δ). That the function Du(Ĥ(rG))= u�(Ĥ(rG)/u)≡ u�(β(1/u)) is convex
in u on that interval means that, for u1, u2 ∈ (uG − δ, uG + δ), a ∈ (0, 1), and u0 := au1 + (1−
a)u2, we have

u0�

(
β

(
1

u0

))
≤ au1�

(
β

(
1

u1

))
+ (1− a)u2�

(
β

(
1

u2

))
. (65)

Recall that β(1/u) is the MPP of the set Ĥ(rG)/u and, as � is convex, that point is located
on the boundary H(rG)/u of that set by (13). By (D4) (setting vk := ukβ(1/uk) in (21)), letting
β0 := au1β(1/u1)/u0 + (1− a)u2β(1/u2)/u0, we have

u0�(β0)≤ au1�

(
β

(
1

u1

))
+ (1− a)u2�

(
β

(
1

u2

))
. (66)

On the other hand, as β(1/u) ∈H(rG)/u, we also have

au1

u0
β

(
1

u1

)
∈ a

u0
H(rG) and

(1− a)u2

u0
β

(
1

u2

)
∈ 1− a

u0
H(rG).

Hence, we conclude that β0 ∈H(rG)/u0. However, β(1/u0) is the MPP of the ‘upper’
half-space Ĥ(rG)/u0, and, therefore, �(β(1/u0))≤�(β0). Together with (66) this proves
(65). �

Now it follows that the function in the exponential in (64) is concave and continuously
differentiable in a neighborhood of the point u= uG at which it attains its maximum value
equal to −sDu(Ĥ(1/uG))=−sD(G) (by Lemma 3). Furthermore, there exist (see Equation
(28) of [10])

σ 2
D := d2

du2
Du

(
Ĥ

(
1

uG

))∣∣∣∣
u=uG

> 0 and
d2

du2

(
(u− uG)2

u

)∣∣∣∣
u=uG

= 2

uG
.

By the routine use of the Laplace method (see, e.g. Section 2.4 of [11]), recalling that we let
M =M(s)→∞, we find that the integral in (64) equals

(1+ o(1))e−sD(G)

√
2π

s(σ 2
D + a(uG)/uG)

.
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Therefore, letting σ ∗D :=
√
σ 2

D + a(uG)u−1
G , we have

P̃3 = (1+ o(1))E(1/uG, 0, Ĥ(1/uG))

(2π )(d−1)/2ud/2
G σ ∗Dσ (α(1/uG))

e−sD(G)

s(d−1)/2
. (67)

It remains to compute the sum of the second terms o(�(s, n)) in (63) over n ∈Ns. Applying the
Laplace method in the same way as when evaluating P̃3, we find that∑

n≥1

�(s, n)=O(̃P3). (68)

So the abovementioned sum of the remainders is o(̃P3). We conclude from (63) that∑
n∈Ns

P3,n = (1+ o(1))̃P3. (69)

Next we will bound the sum
∑

n/∈Ns
P3,n. For a fixed γ ∈ G (to be chosen later, after (70);

we will need a function growing faster than Ms1/2), let

N∗s := {n ∈N : Ms1/2 < |n− suG| ≤ γ (s)}, N∗∗s := {n ∈N : |n− suG|> γ (s)},
and show that the sums of P3,n over n ∈N∗s and n ∈N∗∗s are both o(̃P3). These sums will have
to be bounded in different ways, the sum over N∗∗s being easier to handle.

Consider the sum over n ∈N∗s . It will again be easier to first explain the proof in the case d=
2; it is extended to the general case using the same argument as presented after representation
(61). By Corollary 1, for n ∈N∗s , expression (58) becomes

P3,n = (1+ o(1))�(s, n)
m−1∑

k=−m

[
exp

{
− 1

2n
xk�

′′
(
β

(
1

u

))
x�k +O(‖xk‖3n−2)

}

× E

(
1

u
, tk,W(�∗[0))

)]
+ o(�(s, n)),

where the remainder term o(�(s, n)) is the same as that in (58). It will turn out that, for n ∈N∗s ,
the values of xk will be large enough to ensure the desired result due to the quadratic term in
the exponential in the sum.

Recall that xk = tk + sg− nβ(1/u). Since ‖sg− nβ(1/u)‖< cγ (s) for n ∈N∗s by Lemma 4
and ‖tk‖ ≤M ln s, k=−m, . . . ,m, we have ‖xk‖< c1γ (s), k=−m, . . . ,m. It is not hard to
verify that relation (59) holds for ‖z‖< γ (s) as well. Therefore, setting

ϒ(n, s, t) := 1

2n
(t− χ)�′′

(
β

(
1

u

))
(t− χ)�

and following steps similar to those used to obtain (60), we have, for n ∈N∗s ,

P3,n = (1+ o(1))�(s, n)
∫
�∗0[a−)

e−ϒ(n,s,t)+O(‖χ‖3n−2)ρu(t) dμ(t)+ o(�(s, n)). (70)

Now choose γ (s) := s5/8 and M := s1/10 (thus ensuring that γ (s)�Ms1/2 and M = o(s1/6),
as required), and consider the first factor in the integrand. By Lemma 4, we have ‖χ‖3n−2 =
O(γ 3(s)s−2)= o(1) for n ∈N∗s . Furthermore, as ‖t‖ ≤M ln S, due to the same lemma, using a

https://doi.org/10.1017/apr.2019.28 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2019.28


862 Y. PAN AND K. BOROVKOV

computation similar to that following (62), for n from the same range, we have

ϒ(n, s, t)= 1

2n
(n− suG)2a(u)+O(s−2γ 3(s)+ s−1γ (s)M ln s)

≥ a(u)

2u
M2 + o(1)

= a(uG)

2uG
M2(1+ o(1))

≥ c0M2

for some c0 > 0, as a(u)/u→ a(uG)/uG > 0.
Now recalling that a− =−(M ln s)e, �0 = 2M ln s, and M→∞, we see that the expression

on the RHS of (70) does not exceed

(1+ o(1))�(s, n)e−c0M2
∫
�∗0[a−)

ρu(t) dμ(t)+ o(�(s, n))

=
(

E

(
β

(
1

u

)
, 0, Ĥ0

(
1

uG

))
+ 1

)
o(�(s, n))

= o(�(s, n))

as E(1/u, 0, Ĥ0(1/uG))<∞. Therefore, it follows from (68) that∑
n∈N∗s

P3,n = o

( ∑
n∈N∗s

�(s, n)

)
= o

(∑
n≥1

�(s, n)

)
= o(̃P3). (71)

This bound is obtained in the case d≥ 3 in exactly the same way, using the same change in the
argument as described in the paragraph following (61).

It remains to evaluate the term
∑

n∈N∗∗s
P3,n. From (57) and Chebyshev’s exponential

inequality, we have

P3,n ≤ P

(
S(n) ∈ sĤ

(
1

uG

))
≤ e−n�(β(1/u)) = e−sDu(Ĥ(1/uG)).

Recall that Du(Ĥ(rG)) is convex in a neighborhood of uG and attains its minimum at uG, with
(d/du)Du(Ĥ(rG))|u=uG = 0 and (d2/du2)Du(Ĥ(rG))|u=uG = σ 2

D > 0. Setting n1 := |n− uGs|,
for some δ > 0, we see that, for our chosen γ (s)= s5/8, we have, for some ck ∈ (0,∞), 1≤
k≤ 5, the bounds∑

n∈N∗∗s

e−sDn/s(Ĥ(1/uG)) ≤ 2e−sD(G)
( ∑
γ (s)<n1≤δs

e−c1n2
1/s +

∑
n1>δs

e−c3sδ2−c2s(n1−δs)
)

≤ 2e−sD(G)
(

c4s

γ (s)
e−c1γ

2(s)/s + c5e−c3sδ2
)

= o(̃P3).

Together with (57), (67), (69), and (71), that leads to

P3 = As−(d−1)/2e−sD(G)(1+ o(1)),
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where

A := E(1/uG, 0, Ĥ(1/uG))

(2π )(d−1)/2ud/2
G σ ∗Dσ (α(1/uG))

. (72)

Together with (55) and (56), this completes the proof of Theorem 1. �

4. A numerical example

To illustrate our main result, we will present the outcome of a simulation study where we
used an importance sampling algorithm to obtain Monte Carlo estimates for P(η(sG)<∞) for
a range of s values in the case of a bivariate RW with a normal jump distribution.

The estimate is based on the change-of-measure representation

P(η(sG)<∞)=Eλe
−〈λ,S(η(sG))〉,

where Eλ is the expectation with respect to the probability measure Pλ, under which the ξ i are
i.i.d. random vectors with distribution Fλ, and λ is chosen so that

ψ(λ)= 1, Pλ(η(sG)<∞)= 1. (73)

We took F to be the bivariate normal distribution N(μ,  ) with a nondegenerate  , in
which case clearly ψ(λ)= exp{μλ� + 1

2λ λ
�}, and the first relation in (73) is satisfied on an

ellipse passing through the origin. Furthermore, we can easily show that here �(α)= 1
2 (α−

μ) −1(α −μ)� and, given that condition (C3(rG)) is satisfied (so that, in particular, D(G)=
D(g)), we have

D(G)= 1

2t(g)
(t(g)g−μ) −1(t(g)g−μ)�,

where t(g) solves the equation d(�(tg)/t)/dt= 0.
For our numerical example, we chose

μ := (− 0.5,−0.3),  :=
(

1 0.4
√

0.8
0.4
√

0.8 0.8

)
, g := (1.5, 2).

It is easy to verify that conditions (C1), (C2), and (C3(rG)) are met in this case. Next we had
to choose a λ that would satisfy (73); we took λ∗ := (0.533 131 5, 0.710 842 0) (in which case
ψ(λ∗)− 1≈ 2.6× 10−8). A routine computation yields D(G)≈ 2.229 39.

We simulated 5× 104 trajectories of S(α) with α := α(λ∗)= (0.287 450 0, 0.459 412 5). For
each trajectory, we simulated the first 350 steps (that was always enough to hit sG with s= 15
in our experiment), testing at each step the condition that the RW S(α) hits sG for each s= 7+
0.02k, k= 0, 1, . . . , 400. Then taking the sample means of e−〈λ∗,S(η(sG))〉 yielded simultaneous
estimates for P(η(sG)<∞) for all s-values from the above grid.

In Figure 4 we present the ratio of the main term As−1/2e−sD(G) on the RHS of (25) to the
Monte Carlo estimates for s ∈ [7, 15], together with the 99% confidence intervals (obtained as
discussed in [1, p. 463]). As computing the theoretical value of A is somewhat cumbersome,
for the purposes of the present illustration, we used the value of A obtained by fitting the
simulation data (which yielded A≈ 0.3396), concentrating on verifying the functional form of
(25). Fitting that formula to the values of the Monte Carlo estimates yielded D(G)≈ 2.229 54
(so that the relative error for the second rate function is less than 10−4). The plot shows
remarkable stability for the ratio, thus confirming the validity of our main result.
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FIGURE 4: The ratio of the main term in the theoretical asymptotics (25) for P(η(sG)<∞) for the
normal RW to the Monte Carlo estimates, together with the ends of the 99% confidence intervals thereof,

for s ∈ [7, 15].
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